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Abstract

The epithelial-mesenchymal transition (EMT), in which cells undergo a switch from a polarized, 

epithelial phenotype to a highly motile fibroblastic or mesenchymal phenotype is fundamental 

during embryonic development and can be reactivated in a variety of diseases including cancer. 

Spatio-temporally-regulated mechanisms are constantly orchestrated to allow cells to adapt to their 

constantly changing environments when disseminating to distant organs. Although numerous 

transcriptional regulatory factors are currently well-characterized, the post-transcriptional control 

of EMT requires continued investigation. The hnRNP E1 protein displays a major role in the 

control of tumor cell plasticity by regulating the translatome through multiple non-redundant 

mechanisms, and this role is exemplified when E1 is absent. hnRNP E1 binding to RNA molecules 

leads to direct or indirect translational regulation of specific sets of proteins: (1) hnRNP E1 

binding to specific targets has a direct role in translation by preventing elongation of translation; 

(2) hnRNP E1-dependent alternative splicing can prevent the generation of a competing long non-

coding RNA that acts as a decoy for microRNAs (miRNAs) involved in translational inhibition of 

EMT master regulators; (3) hnRNP E1 binding to the 3’ untranslated region of transcripts can also 

positively regulate the stability of certain mRNAs to improve their translation. Globally, hnRNP 

E1 appears to control proteome reprogramming during cell plasticity, either by direct or indirect 

regulation of protein translation.
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INTRODUCTION

Epithelial-mesenchymal transition in tumor progression and metastasis

Metastasis represents a critical step in tumor progression and accounts for more than 90% of 

cancer-induced mortality[1]. Despite the tremendous efforts made by the scientific 

community over recent decades, the cellular and molecular events that control tumor cell 

plasticity remain incompletely elucidated.

It has been shown that the epithelial-mesenchymal transition (EMT) is essential in 

embryonic development and in tumor metastasis and is among the mechanisms deemed 

critical in tumor cell plasticity. EMT consists of a fine-tuned phenotypic switch, 

characterized by the loss of apical-basal polarity and cellular adhesion in epithelial cells[2,3]. 

Cells undergoing transition gradually express mesenchymal features, such as enhanced 

cytoskeletal rearrangement and extracellular matrix (ECM) degradation, both essential for 

cell motility [Figure 1].

EMT is not a unidirectional mechanism. The transition is a fine-tuned, reversible mechanism 

that allows cells to switch between epithelial and mesenchymal phenotypes while 

manifesting all intermediate phenotypic shades[2,4]. The reverse mechanism, known as 

mesenchymal-epithelial transition (MET), allows reversion to the differentiated phenotype. 

Reversion is important for the potential formation of metastases that can occur as tumor cells 

attempt to relocate to distant organs to develop secondary tumors. Due to its transience, its 

presence in multiple-states, and its reversible nature, EMT is technically challenging to 

observe throughout tumor progression in vivo[4]. Nevertheless, it is clearly demonstrated that 

transitioned cells harbor higher invasive capacities[5–7]. In the early steps of metastasis, 

epithelial cancer cells must acquire the ability to separate from the primary tumor[4,8]. Such 

departure may occur as single cells or as clusters of cells, and always requires the loss or the 

alteration of cell-to-cell and cell-to-matrix interactions[9].

In the current model, EMT-positive tumor cells displaying newly-acquired mesenchymal 

features invade their surrounding environment and intravasate into the circulatory system. 

Cancer dissemination in this model results from ECM degradation and increased 

motility[10,11]. It was also proposed that the survival of circulating tumor cells (CTCs) in the 

blood stream was enhanced by the phenotypic plasticity observed during EMT[12–15]. 

Following dissemination into the circulation, CTCs extravasate and colonize distant organs 

to ultimately form secondary tumors. The ultimate metastatic colonization occurs through 

the reepithelialization of cells by MET and is followed either by a proliferative cycle with 

subsequent drug resistant secondary tumor growth, or by a dormant cycle with latency of 

tumor relapse. Although there are countless reports demonstrating that genetic mutations are 

recurrently arising in many types of primary tumors, the attempts to identify genes that are 
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recurrently mutated in the genomes of metastasized cells have consistently failed until now. 

Such observations are advocating for the prime role of cell plasticity in tumor cells 

dissemination. However, the experimental evidences of the casual function of EMT in 

metastasis formation remain to be clearly demonstrated. The explicit role of EMT in tumor 

progression remains actively debated but its implication in the increased resistance seen in 

both conventional and targeted antitumor therapies is currently well-accepted by the 

scientific community[12,14,16–21]. I seems now clear that the controversy around the role of 

EMT in tumor dissemination might be attributed to its non-linear and multi-modal nature 

and that these many intermediate stages of EMT may occupy different regions on such a 

multi-dimensional landscape[22]. Many groups are still investigating the role of EMT in 

tumor cells dissemination, and at this point, multiple hypotheses are still emerging to 

underline the mechanisms involved in the successful dissemination of tumor cells beyond 

the current EMT/MET view[23].

Heterogeneous nuclear ribonucleoprotein E1

Heterogeneous nuclear ribonucleoproteins (hnRNPs) encompass a large family of RNA-

binding proteins (RBPs) that contribute to multiple aspects of nucleic acid metabolism. 

These aspects include alternative splicing, mRNA stabilization, transcriptional control, and 

translation regulation. The coding sequences of hnRNPs reveal a modular structure 

consisting of one or more RNA-binding motifs, and at least one auxiliary domain that 

regulates protein-protein interactions and subcellular localization[24]. Indeed, all hnRNPs 

contain RNA binding domains that may include RNA recognition motifs (RRM), the quasi-

RRM, glycine-rich domains and KH domains. Contrary to RNA-binding domains, auxiliary 

domains are divergent in protein sequence and are unstructured but are highly involved in 

regulating subcellular localization and other biological features. Most of the hnRNP proteins 

contain nuclear localization signals and are therefore mainly located in the nucleus during 

steady state. However, they can translocate into the cytosol via signaling pathway activation 

or by recruitment by other proteins. Importantly, for most of the hnRNPs, cellular functions 

are tightly regulated through post-transcriptional modifications including but not limited to 

methylation, phosphorylation, ubiquitination and sumoylation.

Poly(rC)-binding protein 1 (PCBP1 also called hnRNP E1) belongs to a hnRNP family that 

is composed of hnRNP K/J and the alpha-complex proteins (PCBP1–4α or CP1–4). Proteins 

in this family contain three hnRNP K homology (KH) domains for RNA-binding. The 

human PCBP1 gene encodes the hnRNP E1 protein, and was initially defined as clone 

sub2.3, with poly(C)-binding activity and observed similarity to hnRNP E2[25]. hnRNP E1 

harbors three highly conserved KH domains, KH1 to KH3. KH1 and KH3 domains were 

initially predicted to bind to RNA and in vitro studies later showed that the KH2 domain of 

hnRNP E1 also binds to RNA to regulate protein translation[26–28]. The hnRNP E1 and 

hnRNP E2 proteins share 82% amino acid identity, with an even higher level of conservation 

(93%) for their KH domains[24].

The subcellular localization of hnRNP E1 is predominantly nuclear, and demonstrates 

accumulation within nuclear speckles, with precise sites of accumulation observed with 

splicing factors prior to nascent transcript loading[29]. The nuclear localization of hnRNP E1 
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is abolished by Actinomycin D[30]. Since splicing factors undergo continuous and rapid 

nucleo-cytoplasmic shuttling[31], and because splicing is coupled to transcription, RNA 

polymerase inhibition results in the cytoplasmic accumulation of many splicing factors. 

Such observations support the primordial nuclear role of hnRNP E1 in pre-RNA splicing[32]. 

The subcellular localization of hnRNP E1 is also governed by cell signaling stimuli. It was 

demonstrated that SMAD3 and hnRNP E1 were induced to govern alternative splicing, 

mediated by their colocalization in SC35 (also known as SRSF2)-positive nuclear speckles, 

downstream of EGF and TGFb, respectively[33]. Even if it is to a lesser extent, hnRNP E1 is 

also clearly observed in the cytoplasm, and its presence potentially correlates to its function 

as a translational regulator[29,34,35].

REGULATION OF TRANSCRIPTION

HnRNP E1 functions as a regulator of gene expression at the transcriptional level, although 

this does not appear to be its primary role. Recombinant cloning of the four members 

(PCBP1 to PCBP4) of the poly(C) binding protein family (PCBP) demonstrated that 

transcriptional activity of the mouse μ-opioid receptor (MOR) gene increased due to 

interaction between PCBPs and the 26-bp polypyrimidine stretch in the MOR proximal 

promoter[36]. PCBPs can bind either to single-stranded or to double-stranded DNA[27]. 

hnRNP E1 also exhibits a mild but consistent activation of the promoter of the BRCA1 

gene[37]. Finally, hnRNP E1 was found to regulate eIF4E transcription[38]. Recruitment of 

hnRNP E1 to the eIF4E basal element (4EBE) in the eIF4E promoter region occurs 

downstream of serum or EGF-mediated cellular stimulation, and this mechanism requires 

Pak1-dependent phosphorylation of hnRNP E1 protein[38]. These findings suggest that both 

hnRNP E1 and its phosphorylation downstream of growth factor-induced signaling play a 

regulatory role in eIF4E transcription in mitogen-stimulated cells.

TRANSLATION REGULATION

The hnRNP E1 protein regulates translation through either direct or indirect mechanisms. 

Examples of the most common mechanisms include regulation of mRNA stability, direct 

control of the ribosomal machinery, or the generation of RNA species that prevent miRNA-

mediated translational repression of specific mRNAs.

Control of mRNA stability

The role of hnRNP E1 in RNA stability is exemplified by a broad spectrum of mRNA 

interactions. Mainly, hnRNP E1 regulates gene expression via binding to specific AU-rich 

elements (AREs) or U-rich elements located in the 3’ untranslated regions (UTR) of target 

mRNAs. For instance, the binding of hnRNP E1 to p27kip1 3’ UTR via its KH1 domain 

stabilizes p27kip1 mRNA, fueling p27kip1 protein expression by enhancing its translation 

prior to degradation. The upregulated p27kip1 protein consequently inhibits cell proliferation, 

cell cycle progression, and tumorigenesis, and can concurrently promote cell apoptosis 

under paclitaxel treatment[39]. Interestingly, other cyclin-dependent kinase inhibitors such as 

p21Waf1 are also regulated through hnRNP E1 mediated mRNA stability. Co-

immunopurification of p21Waf1 mRNA from MDAMB-468 breast cancer cells using hnRNP 
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E1 antibody suggests that hnRNP E1 protein binds to one or more motifs distributed 

throughout the p21Waf1 3’ UTR to stabilize the mRNA[30].

The eNOS mRNA 3’ UTR contains multiple evolutionarily conserved pyrimidine (C and 

CU)-rich sequence elements that are both necessary and sufficient for mRNA stabilization. 

The hnRNP E1 protein binds to these 3’ UTR elements. Hence, hnRNP E1is recruited to a 

stabilizing RNP complex that protects eNOS mRNA from the inhibitory effects of its 

antisense transcript sONE, and from 3’ UTR-targeting small interfering RNAs (siRNAs) and 

miRNAs[40]. HnRNP E1 regulates the stability of p63 mRNA via binding to a CU-rich 

element (CUE) within the p63 3’ UTR[41]. The p63 protein contribution to EMT could vary 

according to the biological context. It has been shown that p63 directly modulates the tumor 

cell plasticity by either attenuating EMT in human prostate cancer cells or promoting tumor 

cell invasion during human and mouse breast tumor cells dissemination[42,43]. 

Phosphorylation of hnRNP E1 also contributes to stabilization of mu opioid receptor (MOR) 

mRNA via interaction with ARE RNA-binding protein 1 (AUF1) and poly A binding protein 

(PABP)[44].

Alternative polyadenylation

The addition of the poly-(A) to the messenger RNA 3’ UTR is a co-transcriptional process 

occurring in the nucleus. As 3’ UTRs contain cis elements that are involved in various 

aspects of mRNA metabolism, 3’ UTR alternative polyadenylation (APA) can affect post-

transcriptional gene regulation considerably in various ways, including modulation of 

stability, translation, nuclear export and cellular localization of mRNA. 3’ UTR-APA can 

also affect the localization of the encoded protein[45]. Polyadenylation of mRNA is a two-

step process consisting of endonucleolytic cleavage and addition of an untemplated poly(A) 

tail.

The role for hnRNP E1 in the regulation of alternative polyadenylation has been established 

in an in vitro-transcribed and polyadenylated alpha-globin 3’ UTR assay[46]. Furthermore, a 

screening study for alternative polyadenylation utilizing RNA interference (RNAi) identified 

hnRNP E1 as the second highest factor in the control of polyadenylation signal usage. The 

mechanism by which hnRNP E1 modulates polyadenylation has yet to be characterized[47].

Direct control of translation machinery through BAT elements

As we and others have previously demonstrated, the regulation of gene expression at the 

post-transcriptional level plays an indispensable role in TGFβ-induced EMT and 

metastasis[30,34,48–52]. We identified a transcript-selective translational regulatory pathway 

in which a ribonucleoprotein (mRNP) complex binds to a 33-nucleotide TGFβ-activated 

translation (BAT) element in the mRNA 3’ UTR and silences the translation of a cohort of 

mesenchymal protein-encoding mRNAs. HnRNP E1 is a critical component of the BAT-

binding mRNP complex[53]. Silenced mRNAs include Disabled2 (Dab2) and Interleukin-

like EMT-inducer (ILEI), which are involved in mediating EMT[34,51,54,55]. Furthermore, 

TGFβ activates a kinase cascade terminating in the phosphorylation of hnRNP E1 protein at 

Serine 43. This phosphorylation occurs by isoform-2 specific activation of Akt and induces 

the release of the mRNP complex from the BAT element. This results in the reversal of 
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translational silencing of mesenchymal protein-encoding transcripts that are required for 

EMT. By using a genome-wide combinatorial approach involving expression, polysome 

profiling and RIP-Chip analysis, we have identified the members of the cohort of 

translationally regulated mRNAs that are induced during TGFβ-mediated EMT[53].

At the molecular level, the eukaryotic elongation factor-1 A1 (eEF1A1) is an important 

additional functional component of the mRNP complex. We have previously demonstrated 

that the BAT element, hnRNP E1 and eEF1A1 form a ternary complex that mediates 

translational silencing at the translational elongation step[35]. In non-stimulated cells 

exhibiting epithelial characteristics, hnRNP E1 binds to eEF1A1 and blocks progression of 

the 80S ribosome by preventing the release of eEF1A1 from the ribosomal A-site following 

GTP hydrolysis. EMT induced by either TGFβ or hnRNP E1 knockdown disrupts the mRNP 

complex, allowing eEF1A1-mediated translational elongation of mesenchymal transcripts to 

proceed[34,35] [Figure 2].

This mode of translational regulation represents an unusual case of dependency upon either 

agonists or stimuli to upregulate translation through 3’-UTR elements. Thus, the elucidation 

of this post-transcriptional regulatory pathway identified an “EMT gene signature” and 

provided mechanistic information as to how cell plasticity could be tightly regulated. Taken 

together, this work underscores the contribution of the nonphosphorylated hnRNP E1 

protein to maintenance of epithelial cell integrity under normal conditions. During tumor-

related epithelial plasticity, hnRNP E1 also acts as the trigger for the reversal of translational 

silencing, resulting in a fine-tuned, spatio-temporally controlled increase in mesenchymal 

protein expression.

Indirect control of translation through alternative splicing

Alternative splicing regulates over 90% of multi-exon protein-coding genes in humans[57]. 

Abnormal regulation of alternative splicing often produces disease-specific protein 

isoforms[58,59]. Additionally, genome-wide analysis has identified tens of thousands of 

“splice variant” mRNAs that are enriched in a wide range of human diseases[60,61]. The 

hnRNP E1 protein is well documented for its repressive role in alternative splicing 

mechanisms as they apply to human health and disease. For instance, hnRNP E1 represses 

tumor cell invasion by inhibiting the alternative splicing of CD44[62]. It was therefore 

demonstrated that enforced hnRNP E1 expression inhibited CD44 variants expression in 

HepG2 human liver cancer cells while knockdown of endogenous hnRNP E1 induced these 

variants splicing[62]. Interestingly, another study based on in vitro and in vivo models of 

breast cancer progression demonstrated the switch of CD44 expression occurring from 

variant isoforms to the standard isoform during EMT. This isoform switch to CD44s was 

essential for cells to undergo EMT and was required for the formation of breast tumors that 

display EMT characteristics in mice[63]. HnRNP E1 also binds to the growth hormone 

receptor pseudoexon and prevents its usage to allow the expression of a functional 

protein[64]. Disruption of hnRNP E1 binding and subsequent activation of an alternative 

splicing event responsible for Laron syndrome was demonstrated either by hnRNP E1 

knockdown or by alterations to the genomic pseudosite. We also recently reported the 

binding of hnRNP E1 to a pre-RNA pseudosite in the serine/threonine-protein phosphatase 1 
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regulatory subunit 10 (PNUTS) transcript[30]. The hnRNP E1 protein binds to a conserved 

BAT element that is similar in structure to those observed in the 3’-UTRs of the 

mesenchymal encoding mRNAs discussed above. The loss of hnRNP E1 binding to the 

alternative splicing site of PNUTS following hnRNP E1 knockdown, phosphorylation, 

and/or cytoplasmic translocation activates usage of the pseudosite and generates an 

alternatively spliced isoform of PNUTS. This alternative PNUTS isoform does not encode a 

functional protein, but rather a non-coding isoform of the gene. Functionally, the lncRNA-

PNUTS acts as a decoy for miRNA-205 and binds to the miRNA causing a decrease in 

miRNA-205 bioavailability. This abolishes translational inhibition of mesenchymal factors 

such as ZEB mRNAs that would otherwise be suppressed in epithelial cells[30]. Since 

alternative splicing and generation of lncRNA-PNUTS is an early event in TGFß-mediated 

EMT, the lncRNA-PNUTS likely operates as a transient inhibitor of the miRNA-205 to 

allow for the temporal upregulation of ZEBs and subsequent regulation of downstream EMT 

events. Indeed ZEBs proteins are reciprocally linked in a feedback loop with the miR-200 

family, each strictly controlling the expression of the other[18,65]. In this way, a transient, but 

nevertheless, strong decrease in miR-205 bioavailability, sufficient to activate the ZEB 

proteins, would allow for transcriptional repression of the miR-200 family or other miRNAs 

such as miR-183 or miR-203 thereby further stabilizing ZEB proteins and reinforcing the 

EMT process[30]. Moreover, it has been suggested that the feedback loop of miR-200/ZEB 

also generates hybrid phenotypes of the cells during EMT-mediated tumor cell plasticity[66] 

[Figure 3].

CONCLUSION

For many years, characterization of the role of RBPs in tumor biology and cell plasticity 

resulted in substantial progress, and the investigation of hnRNP E1 provided understanding 

of many facets of its molecular function in cells. The function of the PCBP1 gene encoding 

the hnRNP E1 protein was first demonstrated through characterization of its role as a 

negative regulator of alternative splicing. Since then, many additional roles have also been 

discovered, and most of them appear to have critical participation in the maintenance of cell 

phenotype integrity[34,39,67]. At the molecular level, the ability of hnRNP E1 to specifically 

bind to mRNA species often leads to a direct or indirect regulation of their translation. This 

occurs either by controlling processivity of ribosomal machinery, stabilizing mRNA, or 

locking/unlocking dormant translational controls. Since it is well established that hnRNP E1 

controls cell plasticity in health and disease through multiple fine-tuned regulatory 

mechanisms, it will be essential to develop investigations involving novel therapeutic 

strategies. Moreover, targeting the KH domain of hnRNP E1 may be relevant. However, 

because hnRNP-E1 is pleiotropic and ubiquitous, confining therapeutic strategies to tumor 

cells may be challenging.

The phenotypic changes observed during cell plasticity and tumor progression demand 

radical proteomic reprogramming of cells concomitant with a modulation of the codon usage 

by the translational machinery. Accumulation of evidence advocates for acknowledgement 

of a primary role for hnRNP E1 in cell plasticity, and this is reinforced by identification of 

mechanisms involving hnRNP E1 that directly or indirectly converge upon the translational 

control of plasticity-associated proteins. We therefore propose that hnRNP E1, together with 

Grelet and Howe Page 7

J Cancer Metastasis Treat. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



its associated proteins, acts as a hub that orchestrates the demands of proteome 

reprogramming during health and disease-associated cell plasticity.
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Figure 1. 
Epithelial-mesenchymal transition relies upon a gradually orchestrated switch from a 

polarized, epithelial phenotype to a highly motile fibroblastic or mesenchymal phenotype. 

Epithelial cells are polarized with strong cell-cell cohesions and are organized by multiple 

cell junction proteins such as E-Cadherin, Occludin, Zonula Occludens, β-catenin and other 

epithelial markers. During EMT, tumor cells lose their epithelial features and acquire a 

mesenchymal phenotype, which promotes their motility and invasive capacity. The switch is 

acquired through a deep reprogramming of the transcriptional landscape and involves 

activation of EMT transcription factors such as ZEBs, reorganization of cytoskeletal 

components by regulation of proteins such as Vimentin, and modulation of expression/

secretion of invasion-mediating proteases such as matrix metalloproteinases
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Figure 2. 
Molecular mechanism of hnRNP E1-mediated translational silencing. The eukaryotic 

elongation factor-1A1 (eEF1A1) forms a complex with hnRNP E1 and the BAT element, 

and silences specific protein expression by stalling the elongation of their translation by 

ribosomes. Given the necessity for cognate-codon interaction with the ribosomal A site, it is 

likely that the formation of the BAT mRNP complex occurs post-delivery of the aminoacyl-

tRNA to the ribosome. The ability of the BAT mRNP complex to inhibit eEF1A1-dependent 

elongation suggests that the 3’-UTR is interacting with the 5’-UTR in a circularized model 

to facilitate its proximity to the 80S ribosome[35]. It has been suggested that translatable 

mRNAs are likely to be found in circular forms due to interaction between PABP, eIF4G, 

and the cap-binding protein eIF4E[56]
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Figure 3. 
Molecular mechanism of hnRNP E1-mediated alternative splicing of PNUTS. A: The 

PPP1R10 (PNUTS) gene locus can encode either a protein coding mRNA or a non-coding 

RNA isoform. The PNUTS gene locus is highly conserved between human and mouse and 

expresses both coding and non-coding transcripts. The lncRNA-PNUTS is generated by the 

usage of the 3’ alternative splice site (3’ASS) located at the 5’ end of exon 12. This usage 

leads to the change of the open reading frame and the generation of a premature stop codon; 

B: the binding of hnRNP E1 to a BAT consensus element located in the alternative splicing 

site results on its masking and prevents its usage to generate the PPP1R10 mRNA translated 

into the PNUTS protein; C: loss of hnRNP E1 binding to the alternative splice site uncovers 

it and allows its usage by the spliceosome machinery. The lncRNA-PNUTS acts as a decoy 

for miRNA-205 and thus allows the de-repression of ZEB protein translation. Reactivated 

expression of ZEB proteins induces the shutdown of epithelial markers such as E-Cadherin, 

allowing EMT to proceed
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