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Follicular helper T cells (TFH cells), known as the primary “helpers” of the germinal

center (GC) reaction, promote the humoral immune response to defend against various

pathogens. Under conditions of infection by different types of pathogens, many shared

transcription factors (TFs), such as Bcl-6, TCF-1, and Maf, are selectively enriched

in pathogen-specific TFH cells, orchestrating TFH cell differentiation and function. In

addition, TFH cells also coexpress environmentally associated TFs as their conventional

T cell counterparts (such as T-bet, GATA-3, or ROR-γt, which are expressed in Th1, Th2,

or Th17 cells, respectively). These features likely indicate both the lineage-specificity and

environmental adaption of the TFH cell responses. However, the extent to which the TFH

cell response relies on these environmentally specific TFs is not completely understood.

Here, we found that T-bet was specifically expressed in Type I TFH cells but not Type

II TFH cells. While dispensable for the early fate commitment of TFH cells, T-bet was

essential for the maintenance of differentiated TFH cells, promoting their proliferation,

and inhibiting their apoptosis during acute viral infection. Microarray analysis showed

both similarities and differences in transcriptome dependency on T-bet in TFH and TH1

cells, suggesting the distinctive role of T-bet in TFH cells. Collectively, our findings reveal

an important and specific supporting role for T-bet in type I TFH cell response, which can

help us gain a deeper understanding of TFH cell subsets.

Keywords: T-bet, follicular helper T cells, type I immune response, humoral response, T cell differentiation,

transcriptional regulation

INTRODUCTION

Because of the complexity and diversity of pathogens, organisms have developed highly
organized and well-adapted immune systems to eliminate invaders. To defend against different
microorganisms, the immune system elicits optimal responses according to the species of invader
(1). For example, intracellular microbes induce type I immune response, which consists of IFN-
γ-producing group1 innate lymphoid cell (ILC) lineages (including natural killer cells and ILC1s)
(2–4), CD4+ type I T helper cells (TH1) (5, 6), and CD8+ type I cytotoxic T cells (TC1) mediated
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responses (7, 8); venoms or helminthes induce type II immune
response, which includes IL-4-producing ILC2s (9–11), TH2
cells (6, 12), and TC2 cells (7, 13); and extracellular fungi or
bacteria induce type III immune response, which comprises IL-
17-producing ILC3s (14, 15), TH17 cells (16–18), and TC17
cells (19, 20). This phenomenon reflects the high plasticity and
environmental dependency of immune cells.

As a CD4+ helper T cell subset specialized to “help” the
germinal center (GC) reaction (21, 22), follicular helper T cells
(TFH cells) have been reported to play important roles in type
I immune response (23–27), type II immune response (28–32),
and type III immune response (33–35). TFH cells express high
levels of CXCR5, which is required for their localization in
lymphoid follicles (21, 22, 36–40). In the light zone of GCs, they
provide crucial signals to antigen-specific B cells and promote
somatic hyper mutation, class switch recombination (CSR), and
affinitymaturation of GCB cells through cellular interactions and
cytokine secretion (41–45). In addition, TFH cells also facilitate
the differentiation of memory B cells and long-lived plasma cells
from GC B cells (21, 22, 46).

TFH cells share similar differentiation processes during
different types of immune responses; during the initiation phase
of TFH cell differentiation, the expression of some TFs (such as
Bcl-6, Ascl2, Maf, and TCF-1) is regulated in certain activated
CD4+ T cells, which promotes CXCR5 expression (47–51).
Next, CXCR5+Bcl-6+TFH precursor cells migrate to the T-B
border zone, where they receive more differentiation signals
from activated B cells (52). After this engagement, the reinforced
expression of Bcl-6 regulates surface markers, which promote the
migration of the TFH cells into GCs, where they provide helper
signals to B cells (53, 54). Despite these similarities, TFH cells are
also endowed with some unique characteristics for responding
to distinct microenvironment associated with different types of
microbial infection. Previous studies showed that TFH cells also
express lineage-specific TFs like their conventional counterparts
when defending against different types of pathogens, such as T-
bet, GATA-3, or ROR-γt in type I, II, or III immune responses,
respectively (28, 55–60). The production of IFN-γ, IL4, or IL17
driven by these specific TFs in TFH cells can help B cells switch to
the optimal class of antibody to clear themicrobes (25, 29, 33, 61–
66). However, the extent to which TFH cells rely on these TFs for
their differentiation or maintenance is not clear.

The transcription factor T-bet was originally discovered
as a lineage marker of TH1 cells because it can establish
TH1 differentiation and inhibit polarization of other CD4+

T cell subsets such as TH2 or TH17 cells (67–69). Later,
it was also found to be extensively expressed by multiple
different lymphocyte lineages during type I immune response,
including both innate and adaptive immune cell subsets (70–
72). For example, T-bet has been reported to promote the early
differentiation and terminal maturation of NK cells (73–75). It
has also been found that T-bet can promote IFN-γ production
in ILCs and γδ T cells (4, 76, 77). Moreover, T-bet expressed by
DCs can enhance their TH1-priming capacity (78). In NKT cells,
T-bet can upregulate CD122 levels and promote survival (74, 79).
In addition, T-bet is required for optimal terminal differentiation
and granzyme B secretion in CD8+ T cells (80, 81). Moreover,

T-bet expressed by B cells can promote the survival of memory
B cells and enhance IgG2 switching (66, 82). Together, these
facts highlight T-bet as the master regulator of type I immune
response. In type I immune response, activated antigen-specific
CD4+ T helper cells mainly differentiate into TH1 and TFH cell
subsets (27, 83). Most studies have focused on the role of T-bet in
TH1 differentiation and have generally considered T-bet to be a
suppressor of TFHdifferentiation (72, 84–86). However, the exact
role of T-bet in the TFH cell response is not well-understood.

In this study, using a combined conditional/inducible
knockout system, we investigated the putative role of T-bet
in regulating the response of virus-specific TFH cell in acute
viral infection. We found the constitutive expression of T-bet
in TFH cells during acute viral infection. A great reduction in
the magnitude of the TFH cell response was observed when T-
bet expression was deficient. Furthermore, microarray analysis
showed significant differences in function- and proliferation-
related genes between WT and Tbx21−/− TFH cells. In addition,
TFH and TH1 cells showed different levels of T-bet dependency
in their lineage-specific expression patterns. Thus, our findings
demonstrate the crucial and specific role of T-bet in type I
TFH cell responses, which suggests that modulation of T-bet
expression in TFH cells may be a powerful therapeutic method
for the treatment of infectious diseases and autoimmune diseases.

MATERIALS AND METHODS

Mice and Treatment
C57BL/6J (CD45.1+ and CD45.2+), CD4cre transgenic, Ifng−/−

and Tbx21fl/fl mice were purchased from Jackson Laboratory.
ERT2cre transgenic mice were kindly provided by Yisong Wan
(University of North Carolina). SMARTA (CD45.1+) mice were
a kind gift from Rafi Ahmed (Emory University). All these
strains had a C57BL/6J background. All mice were housed and
bred under specific-pathogen-free (SPF) conditions. All mouse
experiments were performed following the guidelines of the
Institutional Animal Care and Use Committees of Army Medical
University. All mice were infected/immunized at 6–10 weeks
of age. Lymphocytic choriomeningitis virus (LCMV, Armstrong
strain) was provided by Rafi Ahmed (Emory University). A
total of 2 × 105 plaque-forming units of LCMV (Armstrong
strain) were injected intraperitoneally to establish an acute viral
infection model in mice. The Listeria monocytogenes-expressing
LCMV-gp61-80 was created from vector strain 1. A total of
1 × 107 colony-forming units of recombinant bacteria were
injected intravenously to establish a mouse bacterial infection
model. NP-KLH (100µg; N-5060-25; Biosearch Technology) was
emulsified 1:1 with Aluminum hydroxide gel (Alum) (21645-
51-2; InvivoGen) and was injected subcutaneously to establish a
protein immunization model in mice. Tamoxifen (1mg; T5648;
Sigma-Aldrich) was diluted with sunflower oil and injected
intraperitoneally into ERT2cre-Tbx21fl/fl or ERT2cre-Tbx21fl/fl

mice to induce gene deletion at the indicated timepoints.

Flow Cytometry and Antibodies
Stained cells were analyzed by flow cytometry with a FACS Canto
II flow cytometer (BD Bioscience). Flow cytometry data were
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analyzed with FlowJo software (Tree Star). LCMV-GP66 tetramer
staining was described previously (51). CXCR5 staining has also
been described previously (47). Surface staining was performed
in PBS containing 2% fetal bovine serum (weight/volume).
Staining for intracellular IgG2c, Bcl2, and IFN-γ was performed
using a Cytofix/Cytoperm Fixation/Permeabilization Kit
(554714; BD Bioscience). Staining for intranuclear TCF-1, T-bet
and FOXP3 was performed with a Foxp3/Transcription Factor
Staining Buffer Set (00-5523; eBioscience). For intracellular
cytokine production analysis, before surface and intracellular
staining, cells were stimulated with GP61-80 peptide for 5 h at
37◦C, 5% CO2 in the presence of GolgiPlug (BD Bioscience),
GolgiStop (BD Bioscience), and DNase I (Sigma-Aldrich). For
in vivo incorporation of BrdU, mice were given BrdU (1.5mg of
BrdU in 0.5ml of DPBS) intraperitoneally 3 h before staining.
BrdU staining was performed with a BrdU Flow Kit (559619;
BD Bioscience) according to the manufacturer’s instructions.
Annexin V staining was performed with an Annexin V
Apoptosis Detection Kit I (559763; BD Bioscience) according
to the manufacturer’s instructions. The antibodies and reagents
used in flow cytometry staining are listed in Table S1.

Enzyme-Linked Immunosorbent Assay
LCMV-specific IgG and IgG2c were titrated with LCMV
lysates and the secondary antibodies HRP-conjugated goat anti-
mouse IgG (1036-05; SouthernBiotech) and HRP-conjugated
goat anti-mouse IgG2c (1078-05; SouthernBiotech) as previously
described (87).

Adoptive Cell Transfer
To examine the LCMV-specific TFH cell response, 1 × 106 (for
analysis before day 3 or after day 30) or 2 × 105 (for analysis
between day 3 and day 30) sorted naïve or retrovirus-transduced
CD45.1+ SMARTA cells (WT or Tbx21−/−) were adoptively
transferred into naïve or infection-matched CD45.2+ mice (WT
or Tbx21−/−) according to the requirements of the experiments.
After being allowed to rest for one day, the cell-transferred hosts
were infected intravenously with 2 × 106 plaque-forming units
(for analysis at day 3 or earlier) or infected intraperitoneally with
2× 105 plaque-forming units (for analysis at day 5 or later).

Mixed Bone Marrow Chimera
To determine the intrinsic role of T-bet, bone marrow cells
collected from CD45.2+ Tbx21−/− mice and CD45.1+ WTmice
were mixed at a ratio of 3:7 and transferred intravenously into
lethally irradiated (5.5Gy, twice) naïve WT CD45.1+ mice (5
× 106 cells/mouse). After at least 8 weeks of bone marrow
reconstitution, the recipients were infected with LCMV.

Quantitative RT-PCR
To compare gene expression in LCMV-specific TH1 cells and
TFH cells differentiated from naïveWT and Tbx21−/− SMARTA
cells, SLAMhiCXCR5− and SLAMlowCXCR5+ SMARTA cells
were sorted from recipient mice and directly lysed with
TRIzol LS reagent (10296; Life Technologies). Total RNA
was extracted with isopropyl ethanol and reverse-transcribed
with a RevertAid H Minus First Strand cDNA Synthesis Kit

(K1632; Thermo Scientific). Quantitative PCR of cDNA was
carried out with a QuantiNova SYBR Green PCR Kit (208054;
Qiagen) on a CFX96 Touch Real-Time System (Bio-Rad). The
sequences of Tbx21 primers used in RT-qPCR are listed here:
Tbx21 (F)-5

′

CAATGTGACCCAGATGATCG 3
′

; Tbx21(R)-5
′

CAATGTGACCCAGATGATCG 3
′

. Expression was calculated
normalized to Hprt.

Microarray and Analysis
For the isolation of LCMV-specific TH1 cells and TFH cells,
SLAMhiCXCR5− and SLAMlowCXCR5+ SMARTA cells were
sorted from recipient mice adoptively transferred with WT or
Tbx21−/− SMARTA cells at day 6 post LCMV infection. For
the isolation of naïve CD4+ T cells, CD44−CD62L+CD4+ T
cells were sorted from naïve WT C57BL/6J mice. The cells were
sorted directly into TRIzol LS reagent (10296; Life Technologies).
Total RNA was extracted with isopropyl ethanol and submitted
to the CapitalBio Corporation for microarray analysis. Gene
set enrichment analysis (GSEA) was performed as described
previously (88). Clustering analysis was performed and heat
maps were constructed using Cluster 3.0 with a hierarchical
average linkagemethod, and the results were visualized using Java
TreeView software. Pathway enrichment analysis was performed
using KOBAS 3.0 (89).

Immunofluorescence Staining
Spleen tissues were snap frozen in O.C.T. compound (4583;
SAKURA) and stored at −80◦C until frozen sectioning. The
tissues were cut into 10 µm-thick cryosections and fixed with
ice-cold acetone. The sections were rehydrated and blocked
with 5% rat serum and 3% BSA with 0.1% Tween and stained
with fluorescent-labeled antibodies and reagents, including CD4
(RM4-5; BioLegend), IgD (11-26c.2a; BioLegend), GL7 (GL7;
BD Bioscience), and DAPI (R37606; Invitrogen). Images were
obtained with an EVOS FL Imaging System (ThermoFisher).

Statistical Analysis
Statistical analysis was performed with Prism 6.0. Differences
between groups were analyzed with paired (for bone marrow
chimera experiments) or unpaired two-tailed t-tests. A p-value
<0.05 was considered significant.

RESULTS

The Transcription Factor T-Bet Is
Selectively Expressed in Type I but not
Type II TFH Cells
Previously, it has been reported that T-bet is expressed in mouse
TFH cells in LCMV infection model (27), which belongs to
type I immune response. However, whether TFH cells express
T-bet in other type I immune response models or in type II
immune responses is not clear. Thus, we first examined the
expression of T-bet in Listeriamonocytogenes (LM) infection, NP-
KLH immunization and LCMV infection models. Based on the
expression of CD44 and CXCR5, FOXP3−CD4+ T cells were
divided into three subsets, CD44+CXCR5+, CD44+CXCR5−,
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FIGURE 1 | Transcription factor T-bet is selectively expressed in Type I but not Type II TFH cells. (A–F) WT C57BL/6 mice were infected with LCMV, LM, or immunized

with NP-KLH. Lymphocytes of Spleen (for LCMV and LM infection) or draining lymph nodes (for NP-KLH immunization in alum) were isolated and analyzed for T-bet

expression in TFH cells at day 8 post infection/immunization. (A–C) Representative flow cytometry of TFH cells (CD44+CXCR5+), Non-TFH cells (CD44+CXCR5−)

and Naïve CD4+ T cells (CD44−CXCR5−) in LCMV (A), LM (B), infection or NP-KLH (C) immunization model. Numbers adjacent to outlined areas indicate percent of

each subset in parent subset. (D–F) Representative Flow cytometry of T-bet expression in TFH cells, Non-TFH cells and Naïve CD4+ T cells (left) and the summary of

T-bet expression by calculating the mean fluorescence intensity (MFI) of T-bet in each cell subsets (right) during LCMV (D), LM (E) infection, or NP-KLH (F)

immunization in alum. (G,H) WT SMARTA cells (CD45.1+) were transferred into WT naïve C57BL/6 mice (CD45.2+) and the splenocytes were analyzed for T-bet

expression of virus-specific TFH and TH1 cells at day3, 6, 10, 40, 90, and 160 post LCMV infection. (G) Representative Flow cytometry of T-bet expression in TFH

cells (CD45.1+CXCR5+), TH1 cells (CD45.1+CXCR5−) and Naïve CD4+ T cells (CD45.2+CD44−). (H) Kinetics of T-bet expression of TFH and TH1 cells by

calculating the MFI of T-bet in each subset followed by normalization to the T-bet MFI of Naïve CD4+ T cells. ns, not significant; *P < 0.05,

**P < 0.01,****P < 0.0001 (unpaired two-tailed t-test). Data are representative of two independent experiments with 3–5 mice per group (error bars, SEM).
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and CD44−CXCR5− cells, which were referred to as TFH, non-
TFH and naïve CD4+ T cells, respectively (Figures 1A–C). At
day 8 after immunization, we observed that TFH cells and
non-TFH cells generated from the LCMV/LM infection model
expressed much higher levels of T-bet than naïve CD4+ T cells
(Figures 1D,E). In addition, we noticed that TFH cells expressed
less T-bet than non-TFH cells in the LCMV/LM infection model
(Figures 1D,E), which is consistent with published data (27).
However, in the NP-KLH immunizationmodel, there is nearly no
detectable T-bet expression in both TFH cells and non-TFH cells
(Figure 1F). These data demonstrated that T-bet is selectively
expressed in TFH cells derived from type I rather than type II
immune responses, suggesting that unlike common transcription
factors such as TCF1 or Bcl6, T-bet may be an immune response
type-dependent feature of TFH cells.

Next, focusing on the expression of T-bet in type I TFH
cells, we investigated the expression kinetics of T-bet in LCMV-
specific TFH cells using a SMARTA cell adoptive transfer
system. SMARTA cells express LCMV-gp66-specific TCRs, so
they can recognize and respond to LCMV and other LCMV-
gp66 epitope-carrying microbes (90). We purified naïve ly5.1
SMARTA cells from spleen tissue, transferred them into naïve
C57BL/6J recipient mice, and infected the recipient mice with the
LCMV strain Armstrong. At different time points post infection,
wemeasured the expression of T-bet in donor SMARTATH1 and
TFH cells. At day 3 post infection, T-bet expression in TFH and
TH1 cells was ∼2- and 4-fold higher, respectively, than that in
naïve CD4+ T cells (Figures 1G,H). At day 6 post infection, T-bet
expression in TFH and TH1 cells was upregulated to nearly 8-
and 24-fold, respectively, compared to that in naïve CD4+ T cells
(Figures 1G,H). At day 10 post infection, T-bet expression in
TFH and TH1 cells had decreased back to levels∼6- and 13-fold
higher than those in naïve CD4+ T cells (Figures 1G,H). At day
40, 90, and 160 post infection, T-bet expression in TFH and TH1
cells had further decreased and remained ∼4- and 6-fold higher,
respectively, than that in naive CD4+ T cells (Figures 1G,H).
Taken together, these data indicate that TFH and TH1 cells share
a dynamic similarity in their T-bet expression patterns: T-bet
expression sharply increases in the early effect phase, gradually
falls back in the contraction phase, and is stably maintained at a
certain level in the memory phase. Meanwhile, consistently lower
levels of T-bet were observed in TFH cells than in TH1 cells
throughout the entire response.

T-Bet Is Required for TFH Cell Expansion
During Acute Viral Infection
To investigate whether T-bet is required for optimal TFH cell
responses during acute viral infection, we generated a CD4cre-
Tbx21fl/fl strain of mice (called Tbx21−/− mice here) by crossing
transgenic CD4cre mice with Tbx21fl/fl mice to selectively knock
out the Tbx21 gene (encoding the T-bet protein) in T cells.
These Tbx21−/− mice showed normal T cell development in vivo
(Figures S1A,B). At day 8 post LCMV Armstrong infection, the
RT-qPCR and flow cytometry results showed that TH1 and TFH
cells from Tbx21−/− mice did not express T-bet (Figures 2A,B).
In addition, we observed a significant decrease in the frequency

and number of polyclonal CD44+CXCR5+ TFH cells in the
spleens of Tbx21−/− mice (Figure 2C). To determine whether
this phenotype was caused by deficient clonal expansion or
abnormal differentiation, we used the gp66 tetramer to measure
antigen-specific CD4+ T cells. The results showed that fewer
gp66-specific CD4+ T cells were present inTbx21−/− mice
(Figure 2D), indicating that clonal expansion of gp66-specific
Tbx21−/− CD4+ T cells was heavily affected. Consistent with the
decreased number of gp66-specific CD4+ T cells, the number of
gp66-specific TFH cells was also greatly decreased in Tbx21−/−

mice (Figure 2E). Furthermore, we observed a mild increase in
the frequency of gp66-specific Tbx21−/− TFH cells (Figure 2E),
which was consistent with a report that T-bet inhibits TFH cell
differentiation in vitro (84). Together, these data suggest that T-
bet is required for TFH cell response mainly by promoting clonal
expansion during acute viral infection.

Optimal Germinal Center Response
Requires T-Bet Expression in TFH Cells
Based on the critical role of TFH cells in “helping” GC response,
we next investigated whether T-bet deficiency in TFH cells
would influence the germinal center response. At day 8 post
LCMV Armstrong infection, we observed severely affected GC
formation in the spleens of Tbx21−/− mice (Figure 3A). Loss
of T-bet expression in TFH cells strongly reduced the frequency
of GC B cells and plasma cells (Figures 3B,C). In addition,
Tbx21−/− mice showed less IgG2c class switching in plasma
cells (Figure 3D) as well as much lower LCMV-specific IgG and
subtype IgG2c titers in serum (Figures 3E,F) than WT mice.
These data further verified the vital role of T-bet in promoting
the TFH cell response and antibody IgG2 class switching.

T-Bet Is not Required for Type II TFH
Cell Response
The observation of a compromised type I TFH response in
Tbx21−/− mice during acute viral infection led us to investigate
whether T-bet plays an important role in type II TFH cell
response. Thus, we tested the TFH and GC responses of
Tbx21−/− mice in a protein immunization model. At day 8
post NP-KLH immunization, we observed similar frequencies
and numbers of TFH cells in Tbx21−/− mice and control mice
(Figure S2A). In addition, we did not find any reductions in
the frequency or number of GC B cells as well as plasma cells
in Tbx21−/− mice (Figures S2B,C). These results are consistent
with the observation that T-bet is not expressed in CD4+ T cells
during type II immune response. Together with the crucial role
of T-bet in regulating type I TFH cell response during acute viral
infection, these results confirm that T-bet is an environmentally
specific regulator of type I TFH cell response.

T-Bet Promotes TFH Cell Expansion in a
T Cell Intrinsic Manner
In the CD4cre-induced Tbx21 knockout system, both CD4+ and
CD8+ T cells lost their capacity to express T-bet. In addition, a
deficient GC response might reciprocally amplify the impairment
of the TFH cell response in Tbx21−/− mice. To further clarify the
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FIGURE 2 | T-bet is required for TFH cell expansion during acute viral infection. WT and Tbx21−/− mice were infected with LCMV. Splenocytes were isolated and

analyzed by flow cytometry and RT-qPCR at day 8 post infection. (A) Summary of T-bet expression (showed as MFI) of TFH cells (CD44+CXCR5+) and TH1 cells

(CD44+CXCR5−) in WT and Tbx21−/− mice. (B) T-bet gene expression relative to Hprt mRNA of sorted TFH and TH1 cells from WT and Tbx21−/− mice was

assessed by RT-qPCR. (C–E) Representative Flow cytometry of TFH cells (CD44+CXCR5+) (C), tetramer-positive CD4+ T cells (D), and tetramer-positive TFH cells

(E) in WT and Tbx21−/− mice (left), and the summary of percentages and number of these cell subsets (right). Numbers adjacent to outlined areas indicate percent of

each cell subset in parent subset. ns, not significant; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (unpaired two-tailed t-test). Data are representative of

three independent experiments with 3–5 mice per group (error bars, SEM).

cell-intrinsic role of T-bet in regulating the TFH cell response, we
set up bonemarrow chimeras by reconstituting lethally irradiated
WT (ly5.1+) recipient mice with a 3:7 ratio mixture of bone
marrow cells from Tbx21−/− (ly5.2+) and WT (ly5.1+) donor
mice, respectively (Figure 4A). Chimera mice were infected with
LCMV Armstrong after successful bone marrow reconstitution
(Figures S3A,B). At day 8 post infection, we still observed a
largely decreased frequency of gp66-specific CD4+ T cells and
polyclonal TFH cells in Tbx21−/− (ly5.2+) mice compared
to control mice (Figures 4B,C). Similar to what we found in
Tbx21−/− mice, the frequency of gp66-specific TFH cells was
slightly increased in Tbx21−/− cells of chimeramice (Figure 4D).
Moreover, the Tbx21−/−: WT ratios of polyclonal TFH cells,

gp66-specific CD4+ T cells and gp66-specific TFH cells were
markedly decreased relative to that of total CD4+ T cells
(Figures 4B–D). These data confirmed the intrinsic role of T-bet
in regulating the TFH cell response during acute viral infection.

T-Bet Promotes TFH Cell Maintenance by
Regulating Proliferation and Apoptosis
It was clear that the deficiency of the TFH cell response in
Tbx21−/− mice was mainly caused by the greatly reduced
magnitude of the TFH cell response. To investigate the kinetics
of virus-specific TFH cell expansion in Tbx21−/− mice, we
transferred the same number of WT or Tbx21−/− SMARTA cells
into naïve recipient mice and then infected host mice with LCMV
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FIGURE 3 | Optimal germinal center response requires T-bet expressed in TFH cell. WT and Tbx21−/− mice were infected with LCMV. Spleens were harvested at day

8 post infection. (A) Representative Immunofluorescent staining of splenic B cell follicular with GL-7 (green), anti-IgD (blue), and anti-CD4 (red). (B,C) Representative

flow cytometry of GC B cells (FAS+PNA+) (B) and plasma cells (CD138+B220low) (C) (left) with its percentages (right) in WT and Tbx21−/− mice. (D) Representative

flow cytometry of IgG2c+ plasma cells (left) with its percentages (right) in WT and Tbx21−/− mice. Numbers adjacent to outlined areas indicate percent of each cell

subset in parent subset. (E,F) Serum of WT and Tbx21−/− mice were collected and tested for anti-LCMV IgG (E) and anti-LCMV IgG2c (F) by enzyme-linked

immunosorbent assay (ELISA). *P < 0.05, ***P < 0.001, ****P < 0.0001 (unpaired two-tailed t-test). Data are representative of two independent experiments with

3–5 mice per group (error bars, SEM).

Armstrong. From day 2 post infection, we detected a continuous
slightly higher frequency of TFH cells in the Tbx21−/− SMARTA
group than in the WT group (Figures 5A,B). At day 2 and day 5
post infection, we did not observe any differences in the numbers
of Tbx21−/− and WT SMARTA TFH cells (Figures 5A,B). To
our surprise, the number of Tbx21−/− SMARTA TFH cells
decreased sharply at day8 post infection (Figures 5A,B). Besides,
the reduction in the virus-specific TFH cell population in
Tbx21−/− mice might not have been caused by impaired early
activation of CD4+ T cells (Figures S4A,B). Taken together,

the results suggest the possibility that the loss of TFH cells in
Tbx21−/− mice was mainly caused by reduced maintenance at
the late phase of the anti-viral immune response.

To more carefully investigate the influence of T-bet on TFH
cell maintenance at the late phase of infection, we generated
ERT2cre-Tbx21fl/fl mice (iTbx21−/−) by crossing Tbx21fl/fl mice
with ERT2cre transgenic mice, in which Tbx21 gene knockout
could be induced by tamoxifen treatment. We treated mice with
tamoxifen at 1–3 days before or 5–7 days after LCMV infection
to induce T-bet deletion before or after TFH cell commitment,
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FIGURE 4 | T-bet promotes TFH cell expansion in a T cell intrinsic manner. (A) Setup of Bone marrow chimera mice. Bone marrow cells from WT (CD45.1+) and

Tbx21−/− (CD45.2+) mice were mixed in 7:3 ratio and adoptively transferred into lethally irradiated recipient WT (CD45.1+) mice. After bone marrow reconstitution,

recipients were infected with LCMV (Armstrong strain). Spleens were harvested at day8 post infection. (B–D) Representative flow cytometry of TFH cells

(CD44+CXCR5+) (B), tetramer-positive CD4+ T cells (C) and tetramer-positive TFH cells (D) in WT and Tbx21−/−. Bone marrow derived cells (left), and the summary

of percentages and ratio (by comparing the T-bet−/−: WT ratio in target cells and total CD4+ T cells) of these cell subsets (right). Numbers adjacent to outlined areas

indicate percent of each cell subset in parent subset. **P < 0.01, ***P < 0.001, ****P < 0.0001 (paired two-tailed t-test). Data are representative of two independent

experiments with 6 or 9 chimera mice.

respectively. Under both of these circumstances, we observed a
lower abundance of TFH cells in iTbx21−/− mice at day 9 post
infection (Figures 5C,D). In addition, iTbx21−/− CD4+ T cells
were purified and adoptively transferred into infection-matched
recipient mice at day 7 post LCMV infection (Figure 5E). After
3 days of tamoxifen or vehicle administration (days 8–10), we
observed a decreased number of donor TFH cells in mice treated
with tamoxifen than in control mice at day 14 post infection
(Figure 5F). These results suggest that T-bet is required for the
TFH cell response even after TFH commitment.

Furthermore, to investigate the sharp decrease in the number
of Tbx21−/− SMARTA TFH cells at the late effector phase,
we sorted WT and Tbx21−/− SMARTA TFH cells from

recipient mice at day 6 post LCMV Armstrong infection and
adoptively transferred a 1:1 ratio mixture of WT and Tbx21−/−

SMARTA TFH cells into infection-matched mice (Figure 5G).
At day 9 post infection, we observed that the ratio of WT
and Tbx21−/− SMARTA TFH cells had changed to ∼4:1
(Figure 5H). Taken together, these results indicated that intrinsic
expression of T-bet is essential for TFH maintenance at the late
effector phase.

Next, to gain insight into the reason for the reduction in
the TFH cell population, we measured the proliferation and
apoptosis of SMARTA TFH cells. At day 2 post infection,
we observed even higher proliferation and expression of the
survival marker Bcl2 but comparable apoptosis in Tbx21−/−
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FIGURE 5 | T-bet promotes TFH cell maintenance. (A,B) WT or Tbx21−/− SMARTA cells (CD45.1+) were transferred into naïve WT mice (CD45.2+), which would be

infected with LCMV. Splenocytes were isolated and analyzed for TFH response at day2, 5 and 8 post infection. Flow cytometry of TFH cells derived from transferred

SMARTA cells (A), and the summary of the percentages and numbers of those cells (B). (C,D) WT and iT-bet−/− mice were treated with Tamoxifen for 3 days before

(Continued)
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FIGURE 5 | or after LCMV infection. Spleens were harvested at day 9 post infection. (C) Flow cytometry of TFH cells (left) with its number (right) in mice treat with

Tamoxifen before infection (day−3 to−1). (D) Flow cytometry of TFH cells (left) with its number (right) in mice treat with Tamoxifen after infection (day 5–7). (E) Setup of

CD4+ T cell transfer experiment. CD4+ T cells were purified form spleens of iT-bet−/− mice (CD45.2+) without Tamoxifen treatment and adoptively transferred into

infection-matched recipient mice (CD45.1+). At day 8–10 post infection, recipient mice were treated with Tamoxifen or vehicle. Spleens were harvested at day 14 post

infection. (F) Representative flow cytometry of TFH cells (left) and summary of TFH cell number (right) in Tamoxifen treated mice (iTbx21−/−) and vehicle treated mice

(WT) was showed here. (G) Setup of TFH co-transfer experiments. WT SMARTA cells (CD45.1+CD45.2+) and Tbx21−/− SMARTA cells (CD45.1−CD45.2+) were

transferred into naïve B6 mice (CD45.1+CD45.2−) separately before infecting recipients with LCMV. At day 6 post infection, WT SMARTA TFH cells and Tbx21−/−

SMARTA TFH cells were FACS sorted and mixed (about 1:1), then co-transferred into infection-matched B6 mice (CD45.1+CD45.2−). Spleens were harvested and

analyzed for transferred TFH cells at day 9 post infection. (H) Flow cytometry of sorted SMARTA TFH cells before (day 6 p.i.) and after (day 9 p.i.) co-transfer (left). The

percentage of Tbx21−/− SMARTA TFH cells in total donor TFH cells and the number of WT and Tbx21−/− SMARTA TFH cells at day 9 post infection were

summarized (right). Numbers adjacent to outlined areas in (A,C,D,F,H) indicate percent of each cell subset in parent subset. ns, not significant; *P < 0.05,

**P < 0.01, ***P < 0.001, ****P < 0.0001 (unpaired (B–D,F) or paired (H) two-tailed t-test). Data in (C,D,F) are representative of two independent experiments with

3–5 mice per group (error bars, SEM).

SMARTA TFH cells compared to WT cells (Figures 6A–C).
However, at day 5 post infection, the proliferation rate
of Tbx21−/− SMARTA TFH cells dropped quickly to a
significantly lower level than that of WT cells (Figure 6A),
which was consistent with the lower Bcl2 expression in
Tbx21−/− SMARTA TFH cells (Figure 6C). At day 8 post
infection, higher apoptosis rates and lower Bcl2 expression were
found in Tbx21−/− SMARTA TFH cells than in WT cells
(Figures 6B,C). These results suggested that T-bet controls the
TFH cell maintenance ultimately by promoting proliferation
at the mid phase and inhibiting apoptosis at the late
effector phase.

T-Bet Dependency of the TFH and TH1
Cell Transcriptomes
To investigate the molecular mechanisms regulated by T-bet
in TFH and TH1 cell response, we sorted WT and Tbx21−/−

SMARTA TFH and TH1 cells from recipient mice at day 6
post LCMV Armstrong infection after adoptive transfer, as
well as naïve mice-derived CD4+ T cells, for gene expression
profile analysis. The gene expression patterns differed greatly
between WT and Tbx21−/− cell population at the genome-
wide level (Figures 7A,B). We observed 822 upregulated and
899 downregulated genes in Tbx21−/− TH1 cells relative to
WT TH1 cells (Figure S5A). Accordingly, we identified 151
upregulated and 367 downregulated genes in Tbx21−/− TFH
cells (Figure S5B). Among these differentially expressed genes,
103-up and 223-down regulated genes were shared by Tbx21−/−

TFH and TH1 cells (Figure 7C). Besides, PANTHER pathway
enrichment analysis of the changed genes in Tbx21−/− TFH and
TH1 cells also showed similar enrichment in many important
pathways, such as DNA replication, Apoptosis, and Interferon-
gamma signaling pathway, which account for the impaired
maintenance of Tbx21−/− TFH cells (Figures S5C,D). To further
figure out the downstream factors involved in the maintenance of
differentiated TFH and TH1 cells controlled by T-bet, we did the
gene set enrichment analysis focusing on cell proliferation and
survival and found a reduction to a similar extent in an array of
proliferation and survival relevant genes, such as Ccna2, Ccnb2,
Aurkb, E2f1, E2f7, and E2f8 in both Tbx21−/− TH1 and TFH cells
compared to their WT counterpart (Figure 7D), highlighting the
shared regulatory pathway important for both TFH and TH1

proliferation and survival that is likely imprinted by the same
Type-I microenvironment (58).

Despite these similarities, bioinformatics analysis of the
microarray data also observed many differences in the
dependency of T-bet in TFH and TH1 cell development.
Principal component analysis (PCA) showed that after T-bet
deletion, the gene expression profile of Tbx21−/− TH1 cells
shifted toward that of TFH cells to some extent (Figure 7B).
Then, we selected sets of genes that were upregulated in TFH
cells (TFH-UP) compared with non-TFH cells or upregulated
in TH1 cells (TH1-UP) compared with TFH cells based on
both published data (91) (GEO accession code GSE21379) and
our microarray data (GEO accession code GSE122931). Gene
set enrichment analysis (GSEA) of TH1 cells showed that the
TH1-UP gene set was enriched in WT TH1 cells, whereas the
TFH-UP gene set was enriched in Tbx21−/− TH1 cells, which
suggested to some extent that the gene-expression pattern of
Tbx21−/− TH1 cells lost TH1 signature and change to TFH
signature (Figure 7E). Similar to that of TH1 cells, GSEA of
TFH cells showed that the TH1-UP gene set was enriched in
WT TFH cells (Figure 7F). However, different from what we
have observed in TH1 cells, genes in the TFH-UP gene set
were enriched in WT TFH cells much more than in Tbx21−/−

TFH cells, which suggested that the gene-expression pattern of
Tbx21−/− TFH cells lost TH1 signature but also lost part of its
TFH signature (Figure 7F). Through further assessed 48 genes
known to be associated with T cell differentiation or function,
we found a distinct T-bet dependency of the TFH and TH1
cell gene-expression pattern (Figure 7G). In TH1 cells, We
found that the transcription levels of a set of important Th1
lineage associated genes like Il12rb2 (92) Cxcr3, Prdm1, Gzmb,
Gzmk, Gzma, Cx3cr1, and Ifng were significantly decreased in
Tbx21−/− Th1 cells than in WT TH1 cells. We also observed
Prdm1 expression was lower in Tbx21−/− TH1 cells than in
WT TH1 cells. In addition, the expression of Foxp3, Gata3,
and Rorc, which are essential for Treg, TH2, and TH17 cell
differentiation, respectively, was higher in Tbx21−/− TH1
cells than in WT TH1 cells (Figure 7G). On the other hand,
the abundances of TFH lineage-specification associated genes,
including Tox2, Id3, Bhlhe40, Il6st, Il6ra, and Tcf7 were much
increased in Tbx21−/− TFH cells (Figure 7G), at least in part
explaining the differential role of T-bet in regulating the program
of TH1 and TFH differentiation. We compared the expression
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FIGURE 6 | T-bet regulates TFH cell proliferation and apoptosis. WT or Tbx21−/− SMARTA cells (CD45.1+) were transferred into naïve WT mice (CD45.2+), which

would be infected with LCMV. Splenocytes were isolated and analyzed for TFH response at day 2, 5, and 8 post infection. (A) Flow cytometry of BrdU incorporation in

TFH cells (left), and summary of BrdU-incorporated cells percentage (right). Numbers adjacent to outlined areas indicate percent of each cell subset in parent subset.

(B) Flow cytometry of Annexin-V and 7-AAD staining in TFH cells (left), and summary of Annexin-V+7-AAD− percentage (right). Numbers in quadrants indicate

percent cells in each. (C) Flow cytometry of BCL-2 expression in TFH cells (left), and the summary of Bcl-2 expression (showed as MFI) of TFH cells. ns, not

significant; **P < 0.01, ***P < 0.001, ****P < 0.0001 (unpaired two-tailed t-test). Data are representative of two independent experiments with 3–5 mice per group

(error bars, SEM).

of Batf4 (93) and Irf4 in WT and Tbx21−/− TFH cells. As
expected, we observed the dramatically decrease expression of
Batf and Irf4 in Tbx21−/− TFH cells. Besides, the significant
lower expression of Icos (94) was also detected in Tbx21−/−

TFH cells compared to that in WT counterparts (Figure 7G).
Whereas, expression of other TFH cell-relevant genes like
Prdm1, Bcl6, and Cxcr5 was not significantly influenced by

T-bet deletion (Figure 7G). The imbalanced impact of T-bet
deletion on TH1 and TFH cells may interpret the mildly higher
frequency of TFH cells than TH1 cells in antigen-specific CD4+

T cells that we observed (Figures 2E, 4D, 5A). Together, these
data indicate both similarities and differences in transcriptome
dependency on T-bet in TFH and TH1 cells during acute
viral infection.
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FIGURE 7 | T-bet dependency of the TFH and TH1 cell transcriptomes. (A) Clustering of genes based on their expression in WT TH1, WT TFH, Tbx21−/− TH1, and

Tbx21−/− TFH cells. (B) Principal component analysis (PCA) of genes in the five cell populations listed in (A). (C) Venn diagram comparing the differentially expressed

genes in TH1 and TFH cells. The red numbers represent upregulated genes, and the green numbers represent downregulated genes. (D) Heat map of genes related to

(Continued)
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FIGURE 7 | cell proliferation in WT TH1, Tbx21−/− TH1, WT TFH, and Tbx21−/− TFH cells. (E) GSEA of WT and Tbx21−/− TH1 genes showing gene sets

upregulated in TH1 cells relative to TFH cells (left) and gene sets upregulated in TFH cells relative to TH1 cells (right). (F) GSEA of WT and Tbx21−/− TFH genes

showing gene sets upregulated in TH1 cells relative to TFH cells (left) and gene sets upregulated in TFH cells relative to TH1 cells (right). The gene sets used in GSEA

include published data (GEO accession code GSE21379) and our microarray data (GEO accession code GSE122931). (G) Heat map of genes related to T cell

differentiation and function in WT TH1, Tbx21−/− TH1, WT TFH, and Tbx21−/− TFH cells.

IFN-γ as a Candidate Downstream Target
of T-Bet in Regulating TFH Cell Expansion
As a direct target of T-bet, it has been reported that IFN-γ
could promote clonal expansion and survival of CD4+ T cells
(95). Microarray analysis also showed that the interferon-
gamma signaling pathway was severely impaired in TFH cells
after T-bet deletion. In addition, we observed largely decreased
IFN-γ production in ex vivo recalled Tbx21−/− TFH cells
(Figures 8A,B). To investigate if IFN-γ could regulate TFH cell
expansion, we compared the TFH cell responses in Tbx21−/−

and Ifng−/− mice during LCMV Armstrong infection. At day
8 post infection, we found that the frequency and number of
TFH cells were decreased in both Tbx21−/− and Ifng−/− mice
(Figure 8C). In addition, T-bet expression was not affected by
IFN-γ deletion (Figure 8D). Although not sufficient, these results
suggest that IFN-γ might be a candidate target of T-bet in
regulating TFH cell expansion.

DISCUSSION

Follicular helper T cells (TFH cells) play critical roles in type I, II,
and III immune responses, but how TFH cells adapt to different
environments has remained largely unknown. In this study, we
identified a key link between the transcription factor T-bet and
type I TFH cell response during acute viral infection. We found
that T-bet is specifically expressed in TFH cells originating from
type I but not type II immune response. Tbx21−/− mice exhibited
significant deficiency in the TFH cell response during acute viral
infection.We observed a greatly decreasedmagnitude of the TFH
cell response in Tbx21−/− mice compared to WTmice, although
a slightly increased ratio of TFH cells was observed. Based on
these results, we concluded that T-bet is required for optimal type
I TFH cell response.

In addition to LCMV infection, type I TFH cells have also been
discovered as TH1-biased TFH cells in simian immunodeficiency
virus infection and TH1-polarized TFH cells in malaria infection
(96, 97). Type I TFH cells not only express Bcl6, CXCR5, IL21,
and PD-1 but also coexpress CXCR3 and IFN-γ. The secreted
IFN-γ can help antibodies from B cells switch to the IgG2a/c
class, which is essential for efficient elimination of viruses and
other pathogens. Similar to the case in TH1 cells, the expression
of TH1-associated molecules in type I TFH cells is also induced
by the transcription factor T-bet. In addition, our research
demonstrated the crucial role of T-bet in promoting TFH cell
proliferation and maintenance. Based on the specialized role of
type I TFH cells in defending against intracellular pathogens,
we propose that this Th1-like effector TFH population be
named TFH1.

During TH1 differentiation, it has been reported that T-bet
attenuates the TFH cell-like phenotype in the late phase of
TH1 specification by repressing the expression of Bcl6 and
other molecules associated with TFH cell development (84).
In addition, T-bet has been found to inhibit Tcf7 expression
by directly binding with the Tcf7 gene promoter and suppress
Bcl6 function by physically interacting with the Bcl6 protein
(85, 86, 98). These in vitro results suggest that T-bet uses multiple
mechanisms to inhibit TFH differentiation. However, evidence
supporting the role of T-bet in regulating the TFH phenotype is
not sufficient at the in vivo level. In our study, we clearly showed
that the maintenance of TFH at the later effector phase is sharply
impaired after T-bet deletion even though mildly increased early
TFH differentiation was observed. Additionally, the constitutive
expression of T-bet in type I TFH cells may suppress early TFH
generation but sustain the clonal expansion of TFH cells at the
late stage. Thorough understanding of the distinct role of T-
bet in type I TFH cells at different stages necessitates further
investigation in the future.

Notably, we did not observe any T-bet expression in
type II TFH cells during protein immunization. Accordingly,
Tbx21−/− mice showed normal TFH and GC responses
during protein immunization. These results remind us that,
unlike Bcl6 or Blimp1, the transcription factor T-bet is not
a fundamental regulator of “all-weather” TFH cell responses
under natural conditions. In other words, T-bet is a type I
TFH cell-specific regulator, suggesting that diverse transcription
factors are required for optimal TFH cell responses in
different environments.

In addition, our microarray analysis results showed that there
are not only many similar but also many different important
changes in the TFH and TH1 cell transcriptomes that occur in
a T-bet-dependent manner. On the one hand, Tbx21−/− TFH
cells share many altered genes with TH1 cells, including genes
enriched in signaling pathways involved in DNA replication,
apoptosis and interferon-gamma signaling. On the other hand,
many TFH differentiation-related genes were altered in different
directions and to different degrees in Tbx21−/− TH1 and
TFH cells. Four possible mechanisms might be involved in
this scenario. First, some genes are regulated by T-bet in a
redundant way, which means that the regulatory role of T-bet
may be unnecessary if these genes have already been up- or
downregulated by other transcription factors. Second, differences
in chromatin accessibility between TFH and TH1 cells would
lead to differences in the binding affinity of T-bet. Third,
by interacting with different transcription factors, T-bet could
differentially regulate gene expression in TFH and TH1 cells.
Fourth, the post transcriptional modification of T-bet is different
in TFH and TH1 cells, which might result in different or even
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FIGURE 8 | IFN-γ as a candidate downstream target of T-bet in regulating TFH cell expansion. (A) Flow cytometry of IFN-γ production in TFH cells (left), with the

summary of IFN-γ percentages (right) derived from WT and Tbx21−/− mice at day 8 post LCMV infection. (B) Flow cytometry of IFN-γ production in WT and

Tbx21−/− TFH cells (left), with the summary of IFN-γ percentages (right) derived from same bone marrow chimera mice at day 8 post LCMV infection. (C,D) WT,

Tbx21−/− and Ifng−/− mice were infected with LCMV. Spleens were harvested at day 8 post infection. (C) Flow cytometry of TFH cells (left) with the summary of

percentages and numbers (right) in these mice. (D) Flow cytometry of T-bet expression (left), and the summary of T-bet expression (showed as MFI) in TFH cells of WT,

Tbx21−/−, and Ifng−/− mice. Numbers adjacent to outlined areas in (A–C) indicate percent of each cell subset in parent subset. ns, not significant; *P < 0.05,

**P < 0.01, ***P < 0.001, ****P < 0.0001 (unpaired two-tailed t-test). Data are representative of two independent experiments with 3–5 mice per group (error

bars, SEM).

opposite regulatory functions at the same gene loci. Further
studies are needed to explore the exact mechanism underlying
the contradictory effects of T-bet in regulating the development
of TH1 and TFH cells.

Overall, this study revealed that T-bet, although slightly
inhibiting TFH differentiation, mainly supports type I TFH
cell response by promoting cell proliferation and apoptotic
intervention to maintain the TFH cell response at the late

effector phase during acute viral infection. These findings
provide important insights into the transcription factor-mediated
regulation of the environmental suitability of TFH cells.
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