
& Reaction Mechanisms | Hot Paper |

Dissociative Ionization and Thermal Decomposition of
Cyclopentanone

Johan I. M. Pastoors,[a] Andras Bodi,[b] Patrick Hemberger,[b] and Jordy Bouwman*[a, c]

Abstract: Despite the growing use of renewable and sus-
tainable biofuels in transportation, their combustion chemis-
try is poorly understood, limiting our efforts to reduce harm-
ful emissions. Here we report on the (dissociative) ionization
and the thermal decomposition mechanism of cyclopenta-

none, studied using imaging photoelectron photoion coinci-
dence spectroscopy. The fragmentation of the ions is domi-

nated by loss of CO, C2H4, and C2H5, leading to daughter

ions at m/z 56 and 55. Exploring the C5H8OC+ potential
energy surface reveals hydrogen tunneling to play an impor-

tant role in low-energy decarbonylation and probably also in
the ethene-loss processes, yielding 1-butene and methylke-

tene cations, respectively. At higher energies, pathways with-

out a reverse barrier open up to oxopropenyl and cyclopro-
panone cations by ethyl-radical loss and a second ethene-
loss channel, respectively. A statistical Rice–Ramsperger–
Kassel–Marcus model is employed to test the viability of this
mechanism. The pyrolysis of cyclopentanone is studied at

temperatures ranging from about 800 to 1100 K. Closed-
shell pyrolysis products, namely 1,3-butadiene, ketene, pro-

pyne, allene, and ethene, are identified based on their pho-

toion mass-selected threshold photoelectron spectrum. Fur-
thermore, reactive radical species such as allyl, propargyl,

and methyl are found. A reaction mechanism is derived in-
corporating both stable and reactive species, which were

not predicted in prior computational studies.

Introduction

In general, biofuels are renewable and often sustainable alter-

natives to fossil fuels, which can also mitigate harmful emis-
sions.[1] In particular, more and more research focuses on fuels

derived from waste biomass. While fossil fuels are typically
composed of mostly carbon and hydrogen, biofuels also con-

tain oxygen in the form of hydroxyl (e.g. , ethanol), carboxyl, al-
dehyde, or ketone functional groups.[2] Their varying composi-

tion leads to differing combustion chemistry, which needs to

be thoroughly understood.
One of numerous possible classes of biofuel molecules are

ketones. Cyclopentanone is a cyclic ketone of C5H8O composi-

tion that can be produced from furfural,[3, 4] which in turn is
produced industrially by acidic hydrolysis of hemicellulose, a

major constituent of plant matter,[5] or, alternatively, through

pyrolysis of biomass.[6] Cyclopentanone also serves as a precur-
sor for other, high-density, fuels,[7] which are suitable for use in

airplanes. A thorough understanding of the unimolecular dis-
sociation of cyclopentanone is crucial to accurately model its

combustion.
The pyrolysis of cyclic ketones has been studied in some

detail. Employing fractional product condensation and IR spec-

troscopic analysis, Johnson and Walters[8] found 2-cyclopenten-
1-one, 1-butene, ethene, carbon monoxide, and hydrogen as
cyclopentanone pyrolysis products. Delles et al.[9] performed
similar experiments and reported the formation of 4-pentenal

in addition to products reported by Johnson and Walters.[8]

Several low-molecular-weight species were observed in a gas

chromatogram of the reaction mixture, but could not be as-
signed. Porterfield et al.[10] studied the pyrolysis of another cy-
cloketone, cyclohexanone (C6H10O), using flash pyrolysis in

combination with photoionization mass spectrometry and
matrix isolation Fourier transform infrared (FTIR) spectroscopy.

They reported that methylvinyl ketone and ethene are formed
through keto–enol tautomerization followed by a retro-Diels–

Alder reaction. Furthermore, they argued that the other detect-

ed products, among which ketene (C2H2O), are formed by
means of a, b, or g C@C bond cleavage followed by rearrange-

ments of the thus formed diradicals.
Cyclopentanone pyrolysis has also been addressed computa-

tionally. Zaras et al.[11] characterized the energetics of the uni-
molecular dissociation of cyclopentanone using the composite
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G3B3 method. They considered C@C scission reactions, among
other possible channels, and only found products formed from

reactions initiated by a-cleavage, despite the fact that b-cleav-
age was determined to be lower in energy. The computational

results on the neutral cyclopentanone potential energy surface
(PES) were employed to calculate rate constants of the initial

isomerization steps over the 800–2000 K temperature range by
using Rice–Ramsperger–Kassel–Marcus (RRKM) modeling. They

concluded that the main products are C2H4 + CO and the rate

constants suggest that keto–enol isomerization plays a pivotal
role in the formation of other products, namely cyclopente-
none, 1,3-butadiene, and acetylene.

Wang et al.[12] performed a combined theoretical and experi-

mental study on the dissociative photoionization of cyclopen-
tanone, providing a detailed C5H8OC+ PES. Experiments were

performed using a femtosecond laser to induce dissociative

ionization and time-of-flight (TOF) mass spectrometry for de-
tection of fragments. Based on quantum chemical computa-

tions, rates and branching fractions were derived by RRKM
modeling.

Literature data to validate the theoretical computations on
cyclopentanone dissociation are scarce. In prior experimental

pyrolysis studies, product species were assigned offline after

condensation, introducing the possibility of secondary reac-
tions and inherently imposing uncertainties on the actual un-

derlying formation mechanism of the detected products. More-
over, these studies were not sensitive to reactive intermediates,

which could provide important clues to the overall chemistry.
Furthermore, single-photon dissociative ionization data em-

ploying parent-ion internal energy selection are not available.

However, such data can be used to quantify bond dissociation
energies on the cationic surface accurately, and provide details

on the underlying dissociation mechanism,[13] relevant for un-
derstanding and modeling, for example, mass spectra.[14]

Here we report on an experimental study of the (dissocia-
tive) ionization and pyrolysis of cyclopentanone, using thresh-
old photoelectron photoion coincidence spectroscopy (TPEPI-

CO).[15] The pyrolysis products are sampled directly from the
pyrolysis reactor and are identified by comparing their thresh-
old photoelectron spectra to data available from the literature.
A pyrolysis mechanism is proposed and discussed in light of

the recent findings on cyclohexanone pyrolysis. The experi-
mental findings on the dissociative ionization are rationalized

by hydrogen tunneling and a model is constructed to test the
viability of this fragmentation mechanism.

Results

The ionization, dissociative ionization, and pyrolysis of cyclo-

pentanone have been studied and the results are presented in
the next sections. A reaction mechanism is proposed for the

dissociative ionization and experimental results on pyrolysis
are compared to a computational study from the literature.

Supplementary pyrolysis reaction mechanisms are proposed to
explain some of the observed products.

Threshold photoelectron spectrum

The cyclopentanone cation has C2 symmetry and the highest
occupied molecular orbital (HOMO), shown together with the

mass-selected threshold photoelectron spectrum in Figure 1,

has antibonding character along the C=O bond and bonding

character along the two (O=)C@C bonds. Upon ionization
through the X̃+ 2B !X̃ 1A transition, electron density is removed

from the HOMO, leading to a 0.02 a contraction of the C=O
bond and a 0.03 a elongation of the two (O=)C@C bonds, as

predicted by B3LYP/6–311 + + G(d,p) geometry optimization of

the neutral and ionic ground state. The measured spectrum re-
veals a strong resonance at (9.27:0.02) eV, which is in agree-

ment with the ionization potential for cyclopentanone of
(9.25:0.02) eV reported by Chadwick et al.[16] The simulated
spectrum matches the resonances in the measured spectrum
very well. Three major features at 9.30, 9.36 and 9.43 eV can be

assigned to a CH2 rocking motion (260 cm@1), a C@C(=O)@C
stretching vibration (776 cm@1) and a combination of C=O and
a C@C(=O)@C stretch (1268 cm@1).

Dissociative ionization

The dissociative photoionization of cyclopentanone has been

studied to distinguish dissociative ionization products from
thermal decomposition products.[17] Furthermore, it is interest-
ing to compare and contrast the fragmentation processes in
the neutral molecule, induced by heat in the microreactor, and
in the ion, brought about by the excess energy of an ionizing

vacuum ultraviolet (VUV) photon. In the breakdown diagram in
Figure 2 A, the fractional abundance of parent and fragment
ions detected in threshold photoionization of the room-tem-

perature sample is plotted as a function of photon energy. The
lowest energy channel sets in at around 10.4 eV in the room-
temperature sample, and involves the loss of 28 amu, that is,
CO or C2H4. The CBS-QB3 calculated dissociative photoioniza-

tion energies to form the most stable fragment ions, the 1-
butene and methylketene cations, are 10.46 and 10.76 eV, re-

Figure 1. Threshold photoelectron spectrum of cyclopentanone (connected
blue circles) displayed together with a Franck–Condon simulation of the
spectrum (green). The inset shows the highest occupied molecular orbital
on cyclopentanone.
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spectively. As will be discussed later, the formation of the cy-

clopropanone cation is already possible at its thermochemical
onset at 11.26 eV over a loose transition state, but its contribu-
tion can be ruled out at low photon energies. On the other
hand, loss of 29 amu corresponds unequivocally to the loss of

C2H5, of which the thermochemical threshold lies at 11.14 eV,
more than 0.5 eV lower than HCO loss (11.69 eV).

We note in passing that, upon ionization, the calculated OC-
CH2-CH2 bond angle increases from 57.68 to 106.38 in cyclopro-
panone, that is, the cationic minimum is severely distorted.

The cyclic structure corresponds to a transition state, which
connects the two structures with the carbonyl group coordi-

nated to the each of the CH2 groups. For sake of simplicity, we
continue calling this ion the cyclopropanone cation.

The time-of-flight distributions, shown in Figure 2 B, shed

light on the competition between the 28 and 29 amu loss
channels. The m/z 56 peak exhibits a quasi-exponential decay

to higher TOF, which is indicative of fragmentation in the ac-
celeration region of the mass spectrometer, and—in the exper-

imental configuration used in this work—a unimolecular rate
constant of 104–107 s@1. In contrast, the 29 amu loss peak at

m/z 55 is quite symmetric, suggesting absence of a kinetic
shift. Therefore, the rate-determining step in the CO- or C2H4-

loss channel appears to be a tight transition state, and loss of
C2H5, associated with a looser transition state, quickly outcom-

petes 28 amu loss once it is energetically allowed.
The potential energy surface of the C5H8O cation is explored

considering these insights, and dissociation pathways are pro-
posed in Figure 3. Dissociation is preceded by a-bond breaking

in the parent ion, yielding a straight-chain intermediate at

10.00 eV, which plays a central role in all three fragmentation
processes, that is, the loss of C2H5, C2H4, and CO. Ethene loss to

form the cyclopropanone cation comprises the highest energy
product channel, but can take place without an energy maxi-
mum, along an attractive reaction energy curve. 2,5-Hydrogen

transfer results in a slightly more stable isomer over a moder-
ate barrier at 10.37 eV, which may be subject to tunneling,
after which an ethyl radical may be expelled. The most stable
dissociation products, the 1-butene cation and carbon monox-

ide, are only accessible after surmounting an energetic 3,5-hy-
drogen-transfer transition state at 11.18 eV. However, these hy-

drogen-transfer processes may be enhanced by tunneling, sim-

ilar to the less dominant methane-loss process in acetone,[18]

which could also explain the low and slowly rising rate con-

stant associated with 28 amu loss. The first, a-bond breaking
step in the parent ion may also be accompanied by simultane-

ous 3,2-hydrogen-atom transfer over a transition state
(11.17 eV) that is virtually isoenergetic with the 3,5-hydrogen-

transfer transition state mentioned earlier. Although a further,

lower energy hydrogen-transfer step may yield the CO-loss
precursor isomer at a barrier of 10.84 eV, this step is unlikely to

compete with the loss of ethene, yielding the methylketene
cation already at 10.76 eV. This process involves CO-transfer

and C2H4-rotation transition states at progressively higher barri-
ers (omitted in Figure 3, see dotted line), but none is higher in

Figure 2. A) The cyclopentanone breakdown diagram showing threshold
photoionization fractional parent and daughter ion abundances as a func-
tion of photon energy. Open symbols represent experimentally measured
values and continuous lines correspond to the RRKM model result. Loss of
both CO and C2H4 may contribute to the 28 amu product loss at high
photon energies, and the individual model contributions are shown (purple
and green) together with their sum (black). B) Illustrative threshold photo-
ionization TOF distributions between 10.55 and 11.14 eV. Dots correspond to
experimental data, continuous lines represent the statistical model fits.

Figure 3. Potential energy diagram displaying transition states and minima
in the dissociative photoionization of cyclopentanone. Energy levels ob-
tained using the CBS-QB3 method are shown relative to the neutral and are
italicized for transition states. Wavy arrows indicate tunneling contributions
in hydrogen-transfer isomerization steps. The dotted line in methylketene
formation represents several omitted transition states with increasing
energy but all below the energy of the products.
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energy than the products. It is likely that the pure hydrogen-
transfer transition state leading to loss of CO is more enhanced

by tunneling than the simultaneous opening of the carbon
ring and vicinal hydrogen transfer, therefore the product

formed from loss of 28 amu is probably mostly the 1-butene
cation, but methylketene contributions by loss of ethene

cannot be ruled out at energies exceeding 10.76 eV.
In addition to the 28 and 29 amu loss fragment ions, the

center-of-gravity analysis[19] of the parent ion peak revealed

trace amounts of hydrogen-loss fragments at around 10.8 eV
photon energy. This is much lower than the direct C@H bond
breaking dissociative photoionization energy (11.42 eV), which
implies isomerization to the enolic parent ion, which subse-
quently may lose a hydrogen atom already at 10.32 eV, making
this the lowest energy dissociative photoionization process dis-

cussed herein. The reason for its almost negligible abundance

lies in the enolization transition state, which, at 11.54 eV, is also
the highest energy structure that appears to play a role in the

studied energy range. Similar to the low-energy CO and C2H4

losses, enol formation followed by hydrogen loss may take

place predominantly by tunneling, and the small hydrogen-
loss abundance confirms negligible enol formation in dissocia-

tive photoionization.

The dissociative photoionization mechanism shown in
Figure 3 is put to the test by constructing a statistical RRKM

model based on the computed energetics, assuming that the
rate-determining step is the formation of the products for the

C2H5- and C2H4-loss channels, the latter yielding the cyclopro-
panone cation, and passing over or through the hydrogen-

transfer transition state for the CO-loss channel. Since the CO-

loss and the low-energy C2H4-loss channel are expected to
behave rather similarly with the former being the more domi-

nant one, we have not explicitly considered the latter in the
model. The hydrogen-atom tunneling rate constants in CO loss

were calculated using an Eckart barrier,[20] and only the transi-
tion state transitional mode frequencies were fitted in the
high-energy C2H4 and C2H5 loss, together with the critical tun-

neling frequency in CO-loss. As shown in Figures 2 A and B, the
model reproduces the observed ion abundances and dissocia-
tion rates quite well, thereby validating the dissociative photo-
ionization mechanism. Only the fitted critical frequency of H

tunneling is significantly higher than the calculated one, at
3500 cm@1 vs. 510 cm@1, which suggests a strongly anharmonic

barrier and possibly a significant contribution of the low-
energy C2H4-loss process. The mass spectra also establish the
55 and 56 amu ion signals as the sole dominant low-energy

dissociative photoionization products. While the 56 amu signal
is also a potential thermal decomposition product of cyclopen-

tanone (vide infra), mass-selected threshold photoelectron
spectroscopy (ms-TPES) is used to rule out significant 1-butene

neutral formation upon pyrolysis. Therefore, dissociative pho-

toionization products do not interfere with the neutral frag-
ments generated through pyrolysis.

Pyrolysis

The pyrolysis of cyclopentanone has been characterized by
photoionization mass spectrometry. Pyrolysis products are

identified by means of mass-selected threshold photoelectron
spectroscopy (ms-TPES) and chemical pathways leading to the

detected products are identified.

Mass spectrometry

A typical all-electron time-of-flight mass spectrum of the prod-
ucts and intermediates formed from the pyrolysis of cyclopen-
tanone at about 1100 K and ionized at 10.5 eV is shown in

Figure 4. Cyclopentanone is heavily diluted (ca. 0.1 %) in argon
and species with m/z+85 have not been observed, so contri-

butions by bimolecular chemistry are deemed unlikely. The

peaks at 55 and 56 amu are attributed to dissociative photo-
ionization of thermally excited cyclopentanone as described in

the previous section, while all other products are formed by
pyrolysis.

Product identifications

Photoion mass-selected threshold photoelectron spectra were
recorded to identify products and intermediates formed upon

pyrolysis of cyclopentanone. The ms-TPES of the main prod-
ucts at m/z 84, 54, 42, 41, 40, 39, 28 and 15 are shown in

Figure 5. The remaining product signals at m/z 27, 52, 80 and
82 that are apparent in Figure 4 are not intense enough for

constructing an ms-TPES with sufficient signal-to-noise, and

these products are discussed later in light of the overall chemi-
cal mechanism.

The most intense peak in Figure 4 corresponds to the pre-
cursor molecule as confirmed by the spectra in Figures 1 and

5. The main discrepancies between the two spectra are caused
by the difference in spectral resolution, compounded by the

Figure 4. Time-of-flight mass spectrum of cyclopentanone pyrolysis products
formed at about 1100 K and ionized at 10.5 eV constructed from coinciden-
ces of all photoelectrons regardless of their position on the detector (i.e. ,
energy) with photoions.
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broadening effect of the higher temperature of the neutrals in

the pyrolysis experiment. There is no clear sign of cyclopente-
nol that may be formed from keto–enol tautomerization and
has an ionization threshold at 8.4 eV,[21] nor is there a clear

spectroscopic signature of a linear C5H8O isomer that may
form upon ring opening.

The pyrolysis product detected at m/z 54 can have a compo-
sition of either C4H6 or C3H2O. The spectrum of 1,3-buta-

diene[22]—displayed in green on top of the m/z 54 TPES in

Figure 5—matches the measurement very well, leading us to
conclude that 1,3-butadiene is the only species contributing to

this mass channel. Significant contributions by other species
are ruled out based on the absence of spectroscopic signa-

tures (see Supporting Information for more details).[22–25]

The product detected at m/z 42 can have contributions by
isomers of C3H6 and C2H2O composition. The ms-TPES of this

product is compared with photoelectron spectroscopic data of
species that may contribute (Supporting Information).[26–28] The

photoelectron spectrum of ketene taken from reference [28]
fits our ms-TPES at m/z 42 best (see Figure 5). A small contribu-

tion of propene to the overall m/z 42 ms-TPES cannot be ruled
out. An additional resonance is observed at around 10 eV,

which could be a vibronic band of ketene, but there is a large

intensity mismatch. Alternatively, this band could be the result
of a vibronic transition of the C2H2O tautomer ethynol. In ab-
sence of an experimental photoelectron spectrum, the ioniza-
tion potential is computed at the CBS-QB3 level of theory to

be 9.75 eV. No transition is observed around 9.75 eV, rendering
contributions from ethynol very unlikely.

The ms-TPES at m/z 41 (Figure 5) exhibits a strong resonance

at around 8.2 eV and is in good agreement with the spectrum
of the allyl radical.[29] Cyclopropyl contributions[30] can be ruled

out. Allene, propyne, and cyclopropene can be responsible for
the fragment detected at m/z 40. While cyclopropene can be

excluded, due to the absence of a resonance at 9.66 eV,[31] con-
tributions from both allene and propyne are clearly observed,

indicating either two different formation channels or a rear-

rangement between the two isomers. The resonantly stabilized
propargyl radical is the only species responsible for the signal

observed at m/z 39. The photoelectron spectrum of propargyl
is also displayed in Figure 5.[32, 33] Indeed, its photoelectron

spectrum resembles that of the product detected here very
well. Due to the strong transition at 10.5 eV, the m/z 28 is as-

signed to ethylene.[34] Carbon monoxide could contribute to

this mass channel as well, but its ionization threshold is
14.01 eV,[35] beyond the photon energy range of this study. The

bottom trace in Figure 5 (m/z 15) is attributed to the methyl
radical. The ionization thresholds of the weak signals observed

in the mass spectrum (Figure 4) at m/z 52, and m/z 27 corre-
spond to vinylalcetylene[36] and vinyl radicals, respectively.

Figure 5. Normalized threshold photoelectron spectra (TPES) of fragments
m/z 84, 54, 42, 41, 40, 39, 28, and 15 recorded at 920 K over a photon
energy range of 8 to 11 eV in steps of 0.05 eV. Plotted in green are the
(threshold) photoelectron spectra of the assigned species taken from the lit-
erature.

Figure 6. Normalized integrated ion signals as a function of pyrolysis tube
temperature for the parent and prominent closed-shell pyrolysis products.
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Temperature dependence

Figure 6 shows peak areas as taken from mass spectra at
10.5 eV photon energy as a function of pyrolysis tube tempera-

ture. The products at m/z 82 and 28 appear at relatively low
temperature, while the other channels open up when the tem-

perature is further increased. Note that the signal strengths
may not reflect the absolute abundances, as the intensities are

not scaled by absolute ionization cross sections. However, the

apparent trend does hold clues to the underlying chemical
mechanism.

The ms-TPES data presented in Figure 5 are found to be
largely insensitive to the pyrolysis temperature, with the ex-

ception of the spectrum taken at m/z 40. This peak is dominat-
ed by allene at low temperatures, while a transition/rearrange-
ment to the most stable isomer propyne is observed at higher

temperatures (see Supporting Information, Figure S3).

Decomposition mechanism of cyclopentanone

Cyclopentanone pyrolysis products are compared to those pre-

dicted in a previous computational study to pin down the un-
derlying dissociation mechanism. A summary of the relevant

reaction mechanisms leading to detected species and showing
only the rate-limiting transition states as computed by Zaras

et al.[11] is presented in Figure 7.

The fastest chemical reaction according to RRKM calculations
is a single-step decomposition leading to CO accompanied by

two equivalents of ethene [Eq. (1)] .[11]

c-C5H8O! 2 C2H4 þ CO ð1Þ

The barrier involved in this reaction is located at

325.1 kJ mol@1.[11] Alternatively, a-cleavage of cyclopentanone
followed by an isomerization was calculated to result in the

same products, albeit at a lower rate. Ethene is confirmed to
be one of the main pyrolysis products and its formation sets in

at the lowest temperatures (see Figure 6). Carbon monoxide
does not ionize in the studied photon energy range, but it is
fair to assume that CO is formed as co-product.

The product path to yield 1,3-butadiene and CO was com-

puted to have the lowest overall rate-limiting transition state
and proceeds through dehydrogenation to yield 3-cyclopent-

en-1-one, which subsequently decarbonylates [Eqs. (2) and
(3)] .[11]

c-C5H8O! c-C5H6Oþ H2 ð2Þ

c-C5H6O! 1,3-C4H6 þ CO ð3Þ

The dehydrogenation to yield 3-cyclopenten-1-one may pro-

ceed directly from cyclopentanone through loss of H2, but the
multi-step process involving keto–enol tautomerization to 1-

cyclopenten-1-ol shown in Figure 7 has a lower rate-limiting
barrier. The tautomerization comprises the rate limiting step of

303.8 kJ mol@1. Next, molecular hydrogen is lost to form 1,4-cy-

clopentadien-1-ol. A subsequent rearrangement via 2-cyclo-
penten-1-one produces 3-cyclopenten-1-one, from which CO

can be eliminated to form 1,3-butadiene. Indeed a signal is ob-
served at m/z 82 and could point to the stabilization of a frac-

tion of the formed c-C5H6O species. This signal grows in to-
gether with ethene (See Figure 6), but gets depleted quickly as
the 1,3-butadiene signal gains in intensity, confirming this reac-

tion pathway. Further dehydrogenation of 2-cyclopenten-1-one
may yield 2,4-cyclopentadien-1-one.

In this study, ketene, allene, and propyne as well as the radi-

cals allyl, propargyl, vinyl and methyl have also been identified.
However, their formation has neither been predicted computa-

tionally previously, nor were these species detected experimen-
tally before.[9, 11] Ketene and allene may be formed from diradi-
cals that form through the a-, b-, or g-cleavage of cyclopenta-
none as shown in Figure 8, analogous to the unimolecular de-

composition of cyclohexanone.[10] Both a- and b-cleavage may
yield ketene. The accompanying CCH2CH2CH2C diradical further
dissociates by means of hydrogen-atom loss to allyl and even-

tually allene. The detection of allene as a product indicates
that ketene, allene, and allyl can be direct decomposition

products of cyclopentanone. The mechanism in Figure 8 sug-
gests that a and g scission may also yield propadienal. Howev-

er, no clear signature is found in the ms-TPES, suggesting that

alternative decomposition processes proceed at a higher rate.
Further unimolecular dissociation and isomerization of prod-

ucts formed from the initial pyrolysis of cyclopentanone also
need to be considered as possible contributors to signals ob-

served in the mass spectrum that have not been assigned so
far. First, C3H3

+ can form through dissociative ionization of allyl

Figure 7. Main low-energy cyclopentanone decomposition pathways report-
ed by Zaras et al.[11] and confirmed in this work. Arrow labels indicate the
energy of the rate-limiting transition state and minimum energies of the pic-
tured structures are also shown in kJ mol@1 relative to cyclopentanone.
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[Eq. (4)] or, alternatively, through thermal dissociation of allyl
followed by ionization [Eqs. (5) and (6)] .[17, 29]

C3H5C
hnK!C3H3

þ þ H2 þ e@ ð4Þ

C3H5C
DTK!C3H3C þ H2 ð5Þ

C3H3C
hnK!C3H3

þ þ e@ ð6Þ

Another possible channel to allyl proceeds via cyclopenta-

none. The formation of cyclopentenone + H2 was computed to

be one of the lowest energy pathways for dissociation of cy-
clopentanone (Figure 7) and its subsequent dissociation

through a-, b-, and g-cleavage is summarized in Figure 8. The
detection of propargyl could point to cyclopentenone also

being an intermediate species in ketene formation. A TOF mass
spectrum recorded at 11.5 eV (i.e. , above the ionization poten-

tial of acetylene, see Supporting Information) reveals a signal
at m/z 26, confirming that subsequent dissociation of cyclo-

pentenone indeed contributes to the detected products, as no
alternative pathway can explain the formation of acetylene.

Pyrolysis of 1,3-butadiene as formed from dissociation of cy-
clopentanone could also contribute to the detected products.
Its pyrolysis has been studied in the past[37] and was found to
proceed mostly by means of the reaction shown in Equa-
tion (7).

C4H6 ! CH3C þ C3H3C ð7Þ

In the photoionization mass spectra reported by Chambreau
et al. ,[37] products are also seen in the mass channels corre-

sponding to vinylacetylene (C4H4) and vinyl (C2H3). Thus, ther-
mal decomposition of 1,3-butadiene could also explain the for-

mation of these products, although the temperatures reported
for the decomposition of butadiene exceed 1000 K and are

thus rather high compared to the temperatures used herein.

The formation of vinyl and methyl radicals can alternatively
proceed by diradical driven disproportionation reactions,

which are summarized in the Supporting Information. Atomic
hydrogen is abundantly formed according to the proposed cy-

clopentanone dissociation mechanism and, although the den-
sity of the parent molecule in the reactor is kept low (ca.

0.1 %), secondary reactions initiated by atomic hydrogen may

have a small contribution to the formation of the observed
products, or isomerization thereof.

The m/z 40 peak is the only one to exhibit a clearly tempera-

ture-dependent isomer composition. Allene is the dominant

isomer at low temperatures and is converted to propyne at
the highest temperature. The formation of allene is expected

from the mechanisms proposed in Figure 8. Isomerization of
allene to propyne has been studied extensively in the past and

propyne is the most stable isomer.[38, 39] Alternatively, propyne
formation can already be initiated in the thermally excited
C5H8O by the increased hydrogen mobility. These two mecha-

nisms cannot be discerned in the current experiments.

Discussion and Conclusions

The dissociative ionization and pyrolysis of cyclopentanone
have been studied on the iPEPICO (imaging photoion photo-

electron coincidence) instrument at the VUV beamline of the
Swiss Light Source. The dissociative ionization between 10.3
and 11.7 eV yields product ions at m/z 56 and 55 that are
formed through loss of CO, C2H4 and C2H5C. The potential
energy surface has been characterized and it is found that the

formation of the m/z 56 product proceeds by means of hydro-
gen tunneling and results in the 1-butene cation and CO and

also the methylketene cation plus ethylene for energies ex-

ceeding 10.76 eV. The high-energy ethene loss yielding the cy-
clopropanone cation starts to contribute to this mass channel

at energies exceeding 11.26 eV. The m/z 55 product is formed
through loss of C2H5 with a barrier at 11.14 eV. An RRKM model

is employed to support the validity of the proposed hydrogen-
tunneling mechanism.

Figure 8. Decomposition pathways of cyclopentanone and cyclopentenone
through a-, b-, and g-cleavage. Computed bond dissociation energies (BDE)
are taken from Zaras et al.[11]
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The potential energy surface of the dissociative ionization of
C5H8O presented here differs slightly from that reported previ-

ously.[12] First, the lowest energy pathway leading to the
C3H4O + C2H4 reported by Wang et al.[12] yields cyclopropanone

at an energy of 170.7 kJ mol@1 (1.77 eV) relative to the cation.
In this work, we find that this channel is significantly higher

(by 0.2 eV) in energy at 1.97 eV with respect to the cation
(11.26 eV w.r.t. to the neutral). In addition, the calculations pre-
sented here provide an additional pathway to an alternative

C3H4O product, methylketene. This channel requires 0.5 eV less
energy than the cyclopropanone pathway with a rate-limiting
barrier located at 11.17 eV and all other barriers below the
thermochemical threshold. Moreover, this rate-limiting barrier

is subject to tunneling, making this a viable contributor to dis-
sociation for energies exceeding 10.76 eV. Lastly, a noticeable

difference lies in the CO-loss channel. In addition to the con-

certed ring opening and hydrogen shift at a barrier of 11.17 eV
reported here and by Wang et al. ,[12] we also located a practi-

cally isoenergetic transition state (at 11.18 eV) that involves
ring opening followed by migration of a hydrogen (i.e. , a non-

concerted channel), making it somewhat more likely to domi-
nate the CO-loss mechanism. The detection of a very weak

signal at m/z 83 indicates that keto–enol tautomerization only

plays a minor role in dissociative photoionization.
Cyclopentanone pyrolysis products formed at a temperature

ranging from 800 to 1100 K have been identified by means of
ms-TPES of the species sampled directly from the pyrolysis

tube reactor. The main identified product species are ethene,
1,3-butadiene, ketene, allene, propyne, allyl, propargyl, and

methyl. Vinylacetylene, acetylene, and vinyl radicals have also

been observed, but only as trace species. Allene and propyne
are found to be the only isobaric products that are sensitive to

the reactor temperature, with allene being the dominant C3H4

isomer at low and propyne at high temperature.

Previous experimental studies on cyclopentanone pyrolysis
identified 2-cyclopenten-1-one, 1-butene, ethene, carbon mon-
oxide, 4-pentenal, and hydrogen as products. Of these species,

only C2H4 is positively identified and CO and H2 are likely pres-
ent, but evade detection at the photon energies used. The
non-detection of 1-butene in our experiments can be caused
by the fact that it dissociates further at the temperatures ap-

plied in our study, or a small fraction of 1-butene could be
hidden in the large signal at m/z 56 caused by dissociative ion-

ization. However, close inspection of this signal does not reveal
indications of a significant fraction of 1-butene. The non-detec-
tion of 1-butene in this study could be due to 1-butene’s

prompt dissociation by C@C fission [Eq. (8)] .

C4H8 ! CH3C þ C3H5C ð8Þ

An alternative and more likely explanation is that in the pre-

vious pyrolysis experiments 1-butene is formed from bimolecu-
lar reactions in the pyrolysis tube, rather than through direct

pyrolysis of cyclopentanone. The fact that 1-butene formation
has been computed to have a rate-limiting barrier of

462.8 kJ mol@1 and that an RRKM model predicts low formation
rate[11] supports this explanation.

Ketene and allene had not been detected in previous experi-
mental studies, nor had they been predicted from computa-
tions. Zaras et al.[11] did not identify pathways through b-cleav-
age, although it was established that this is the weakest C@C

bond in the molecule. The unambiguous identification of
ketene and allene from this study clearly points to the impor-

tance of b-cleavage in the pyrolysis of cyclopentanone and a
more detailed computational study needs to be undertaken to

characterize the energetics and kinetics of this reaction path-

way. It is interesting to note that the decomposition in our py-
rolytic microreactor and upon dissociative ionization share sim-

ilar reaction products, such as CO, C2H4 and C2H5C. Thus, under-
standing the dissociative photoionization mechanism is impor-

tant, because the onset of dissociative ionization can be shift-
ed towards lower photon energies at elevated temperatures,

which may be wrongly assigned to decomposition upon pyro-

lyis.[40, 41] In addition, similar fragmentation connects both the
neutral molecules’ and ions’ potential energy surface, which

can be used to derive heats of formation of reactive intermedi-
ates in the absence of a reverse barrier.[42] It is also interesting

to note an important difference between dissociative photo-
ionization process and pyrolysis mechanisms. Keto–enol tauto-

merization appears to play a crucial role in the formation of

butadiene on the neutral PES, while tautomerization is out-
competed by other product channels on the ionic surface.

However, even on the neutral surface, tautomerization involves
a higher barrier than subsequent hydrogen abstraction, which

means that the enol only acts as a short-lived intermediate
and dissociates promptly.

The findings reported here can also be compared to experi-

mental work reported on cyclohexanone. Porterfield et al.[10]

found that keto–enol tautomerization followed by a retro

Diels–Alder fragmentation is responsible for the formation of
CH2=C(OH)@CH=CH2 + C2H4. Ring cleavage reactions and sub-

sequent decomposition reactions had been proposed to yield
the other observed products, among which species also ob-

served in the pyrolysis of cyclopentanone reported here, such

as 1,3-butadiene, ketene and allene, allyl. In contrast with their
work, enols have not been detected in our study. Furthermore,
analogous to the retro Diels–Alder reaction proposed by Por-
terfield, a retro [2++2] cycloaddition reaction yielding ketene
and allene could occur for cyclopentanone after reorganization
to a four-membered ring; however, this processes is energeti-

cally unfavorable in cyclopentanone and it is more likely that
ketene and allene are formed upon a- or b-ring cleavage reac-
tions instead.

Our results exemplify the power of isomer-resolved product
detection in flash pyrolysis using ms-TPES recorded by iPEPICO.

Reactive product species, such as ketene and a number of radi-
cals, have been sampled directly from the reactor and have

been identified unambiguously. The multiplexed nature of ms-
TPES offers a clear advantage over the use of FTIR matrix isola-
tion spectroscopy to assign products; spectral information is

obtained mass selectively and isomer specific identification of
the products are readily made.[22] The detection of the first

generation of species from the reactor reveals the true under-
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lying chemical mechanism and supplies crucial information
that is needed for modeling the combustion of biofuels.

Experimental Section

The experiments were performed on the iPEPICO instrument at the
vacuum ultraviolet (VUV) beamline of the Swiss Light Source. A
short description of the experimental setup is presented here and
a more extensive description of the apparatus can be found else-
where.[43] Synchrotron VUV radiation produced by a bending
magnet was collimated, dispersed in grazing incidence by a gra-
ting, and focused at the exit slit in a differentially pumped noble
gas filter, which serves to remove higher order radiation. The ion-
ization and detection chamber was flanged onto the exit port of
the gas filter, and the photon beam size was about 4 V 2 mm in the
interaction region. Dissociative photoionization measurements
were recorded using a 600 grooves mm@1 grating. A grating with
150 grooves mm@1 was used for recording mass-selected threshold
photoelectron spectra (ms-TPES) of the pyrolysis products. This
grating was selected to enhance the VUV photon flux in the inter-
action region and, thus, signal levels by an order of magnitude at
a reduced photon energy resolution. The photon energy was
tuned from 8.0 to 11.7 eV in steps of 0.05 eV for pyrolysis measure-
ments and in steps of 0.025 eV for the dissociative photoionization
experiments.

Cyclopentanone (Sigma–Aldrich, >99 %) was seeded in argon carri-
er gas at a concentration of 0.1 % and a backing pressure of
1.1 bar. The mixture entered a resistively heated microtubular reac-
tor of about 4 cm in length and 1 mm inner diameter through a
100 mm orifice. The temperature on the outer surface of the reactor
is monitored by means of a “type C” thermocouple. Based on the
extensive simulations by Guan et al. ,[44] the temperature on the
centerline of the reactor may be 25 % lower than that measured
on the outside. The pressure at the entrance of the microreactor
was only a few mbar and dropped in the heated zone towards the
exit of the tube. The sample expanded into the source chamber,
which was maintained at about 1 V 10@4 mbar. The residence time
was estimated to be of the order of 10 to 100 ms.

The gas mixture containing the pyrolysis products exited the reac-
tor tube and was skimmed by a 1 mm diameter skimmer, allowing
only the central part of the expansion to reach the ionization
volume in the iPEPICO detection chamber, in which the molecular
beam intersects the monochromatic ionizing radiation from the
VUV beamline. A constant 120 V cm@1 electric field accelerated the
photoelectrons towards a RoentDek delay line detector, where
they were velocity map imaged. The positions of the electrons on
the detector contained information on their kinetic energy and
their arrival time served as the start signals for the TOF measure-
ments of the cations. Threshold photoelectron spectra were plot-
ted by selecting only the central spot on the electron detector and
subtracting the “hot” electron background.[45] Cations were acceler-
ated in the opposite direction in a Wiley-McLaren type TOF config-
uration and detected with a microchannel plate (MCP) detector.
The mass resolution achieved in the experimental system was
m/Dm = 125.

Coincidences between electrons and cations were plotted as a
function of delay time to yield the TOF mass spectra. Those ob-
tained by considering coincidences between all electrons and ions,
regardless of the electron energies, are referred to as all-electron
mass spectra. Isomer selective product identification is based on
ms-TPES, for which only coincidences between threshold electrons
(kinetic energy <10 meV) and ions of a specific time of flight, and

hence mass, were used. Internal energy selection was also achiev-
ed by threshold photoionization, because the photon energy
minus the adiabatic ionization energy was quantitatively converted
to the internal energy of the parent ion. This excess energy and
the original thermal energy of the sample was available for frag-
mentation. When studying dissociative photoionization processes,
the threshold ionization fractional parent and daughter ion abun-
dances were plotted in the breakdown diagram, which often con-
tains clues as to the fragmentation mechanism,[46] and can be mod-
eled quantitatively using statistical thermodynamics approaches to
determine accurate dissociative photoionization thresholds.[47] Fur-
thermore, owing to the long acceleration region and low extrac-
tion field, it took several microseconds for the photoions to reach
their terminal velocity in the mass spectrometer. If a dissociation
process occurs during this time, the fragment ion will have a lower
than nominal kinetic energy, and a higher time of flight than
promptly formed ions of the same mass. This results in TOF peak
profiles that are broadened towards higher TOF, and were modeled
to extract unimolecular dissociation rate constants in the 104 s@1<

k(E)<107 s@1 range. The experimental rate curves were also mod-
eled to take kinetic shifts into account.

Computational methods

Quantum chemical calculations using the Gaussian 09[48] suite of
programs were performed to explore the C5H8OC+ PES to yield in-
sights into the chemical pathways leading to the products formed
from dissociative ionization. Reaction coordinates were scanned at
the B3LYP/6-311 + + G(d,p) level of theory to locate transition
states and intermediates. Subsequent re-optimizations at the CBS-
QB3 level of theory were performed to compute accurate energies.
These energies and the B3LYP computed vibrational frequencies
were used as input for a statistical model to fit both the break-
down diagram and the time-of-flight profiles using the PEPICO pro-
gram.[47]

The B3LYP/6-311 + + G(d,p) optimized geometries and vibrational
normal modes of the electronic ground state of the neutral and
cation were used as input for Franck–Condon simulations of the
photoionization spectrum. The program ezSpectrum[49] was em-
ployed to compute the spectral intensities of the vibronic transi-
tions and the resulting stick diagram was convoluted with a Gaus-
sian profile with a full-width-at-half-maximum (FWHM) of 100 cm@1

to account for the rotational envelope and to facilitate comparison
with the experimental data.
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