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Abstract: We compared six methods for regression on log-normal heteroscedastic data 

with respect to the estimated associations with explanatory factors (bias and standard error) 

and the estimated expected outcome (bias and confidence interval). Method comparisons 

were based on results from a simulation study, and also the estimation of the association 

between abdominal adiposity and two biomarkers; C-Reactive Protein (CRP) (inflammation 

marker,) and Insulin Resistance (HOMA-IR) (marker of insulin resistance). Five of the 

methods provide unbiased estimates of the associations and the expected outcome; two of 

them provide confidence intervals with correct coverage. 

Keywords: linear regression model; log-normal distribution; heteroscedasticity; 
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1. Introduction 

A common objective in medical research is to identify and quantify associations. For example, this 

could include evaluating a biomarker or estimating personal exposure levels based on questionnaires 

and occupational history. In these cases regression analysis is often used. It can also be important to 

estimate the expected value, e.g., the expected exposure. A person’s risk of developing an  

exposure-caused disease is related to the dose, and the dose is usually estimated by the cumulative 

exposure. In group-based exposure assessment, the arithmetic mean is considered superior to  

the geometric mean, as a dose-related variable [1,2]. The arithmetic mean is also preferred, in the form 

of mean exposure for individuals over time, when assessing long-term effects of exposures [3]. 

Many biological variables (e.g., exposure and biomarkers) have a skewed distribution with  

a median smaller than the mean and only positive values. It is also common with heteroscedasticity, 

where the variance increases with the expected value. Such data can often be described by  

a log-normal or quasi-log-normal distribution [4–6]. A common way to analyze a log-normal variable 
Y is to log-transform (Z = ln(Y)) so that Z follows a normal distribution with expected value  and 

standard deviation . The geometric mean of Y is then found as exp( ), while the expected value of 

Y (the arithmetic mean) is found as μY = . In cases where the expected value μY 

depends on several predictors, regression analysis is often based on the log-transformed data,  

Z = , and the expected value of Y is estimated as . 

This produces effect-measures on the multiplicative scale and the interpretation is that Y is expected to 

increase 100(exp(δi) − 1) percent as xi increases one unit, see e.g. [7].  

We investigated the situation where we want an estimate of the absolute effect, thus we need the 
model to be linear on the original scale, Y 0 1 1β β ... β p pX X     , in order to produces  

effect-measures on the additive scale. This is of interest e.g., in exposure modeling, when exposure 

time is an important factor and it is reasonable that the effect of time on exposure is linear.  

Effect-measures on the additive scale have also been discussed in relation to statistical vs.biologic 

interaction. Biologic interaction occurs when the effect of one cause depends on the presence of 

another cause, e.g., environmental causes and genetic predisposition, and is often defined as departure 

from additivity [8,9]. 

Different regression methods, suitable for log-normal data, were investigated and the aim was to 

estimate the absolute effect βi of each predictor. Because of the heteroscedasticity, the ordinary least 

squares regression will produce erroneous tests and confidence intervals. One solution is to use  

a weighted least squares regression. Another way to handle non-normal distributions is to use a general 

linear model, GLM, in which the distribution of the response variable Y belongs to the natural 

exponential family and the expected value of Y is linked to a linear model by a link function,  

g(μY) = β0+ β1X1 + ...+ βpXp, see [10]. One example of a GLM that is suitable for the log-normal 

distribution is the gamma distribution with an identity link. Another possibility is the normal 

distribution and an exponential link, applied to Z = ln(Y). 

We compared the different regression methods using both large scale simulations and by applying 

them to a cross-sectional data set with the aim to quantify the association of abdominal adiposity with 

inflammation and insulin resistance (two well-known associations). 
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2. Linear Regression with a Lognormal Response  

We considered a regression model where the expected value of a continuous log-normal response 

variable Y is a linear function of the predictors X1,X2,..Xp : 

Y 0 1 1β β ... β p pX X      (1) 

The variance of Y depends on both the expected value of Y, , and the variance of Z = ln(Y), ; 

= = .  

Ordinary least squares regression (here denoted LSlin) can be used to obtain unbiased estimates 0β̂ , 

1β̂ , …, β̂ p  However, the estimates provided by LSlin assume homoscedasticity, which, as previously 

noted, is incorrect for a log-normal variable. This incorrect variance assumption leads to incorrect 

statistical inferences.  

In a situation with heteroscedasticity, weighted least squares regression (here denoted WLS) can be 

used. WLS can account for the heteroscedasticity by weighting each observation, Yi, with the inverse 
of its variance, . For a log-normal distribution, the weight for Yi is , where LSlin can 

provide estimates of . Unlike LSlin, WLS provides an estimate of the variance .  

When the response Y is log-normally distributed, data are often log-transformed, ln(Y) = Z, and  

a log-linear model is estimated:  

ppZ|X X...Xμ   110  (2) 

where the expected value of Y is . Ordinary least squares regression on Z 

(here denoted LSexp) provides estimates of the relative effect ( 0δ̂ , 1δ̂ , …, δ̂ p ) as well as an estimate of 

the variance  but no estimates of the absolute effects. Thus, both (1) and (2) can be used to estimate 

Y X and . The reason for including LSexp, even if the linear model in (1) is assumed, is that LSexp is 

commonly used for log-normal data. 

The log-normal distribution is often approximated by the gamma distribution, with parameters μ 

(expected value) and ν (scale parameter, Var[Y] = μ2/ν). A generalized linear model (GLM) with 

gamma distribution and the identity link (denoted GLMG), provides estimates 0β̂ , 1β̂ , …, β̂ p  and an 

estimate of  can be found through the transformation .  

Another GLM that can be used to estimate the absolute effects is one with a normal distribution and 

the link function exp(*), applied to Z = ln(Y), here denoted GLMN, such that  

 (3) 

The expected value of Y is then found as . 

The method GLMN, does not, however, take into account the stochastic variation due to estimating 
. Therefore we also used a maximum likelihood method (MLLN, see [11,12]) based on the 

likelihood function of the log-normal distribution: 

 (4) 
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where 2
0 1 1= ln(β β ... β ) / 2z i p ip zX X     . The estimates 0β̂ , 1β̂ , …, β̂ p  and  are found using 

iterations, for example the Newton-Raphson iteration used here [13].  

2.1. Confidence Intervals  

For LSlin, WLS, GLMG and MLLN, a 95% confidence interval for Y X  is estimated as 

/2Y Y X
ˆvar( )X z  , where the sample-specific variance is estimated as: 

0

2
1 0 1 1 1 1Y X

0

ˆ ˆ ˆ ˆ ˆˆvar( ) var(β ) 2 cov(β ,β ) ... 2 cov(β ,β )
p

i i p p p
i

x x x x x  


        (5) 

where x0 = 1, ˆvar(β )i  
 and ˆ ˆcov(β ,β )i j  are the sample-specific estimates of the variance and the 

covariance (the sample-specific standard error is ˆ ˆ(β ) var(β )i ise  ).  

For GLMN, a confidence interval is estimated as 2
/2Y X Y X

ˆ ˆ(exp( ) var(exp( ))) exp( / 2)zz    , 

where the sample-specific variance of the linear estimator is estimated as:   

=  (6) 

For LSexp, a confidence interval for  is estimated as 

, using the modified Cox method [14].  

The sample-specific variance is estimated as: 

0

2
1 0 1 1 1 1X
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ˆ ˆ ˆ ˆ ˆˆvar( ) var(δ ) 2 cov(δ ,δ ) ... 2 cov(δ ,δ )
p

i i p p pZ
i
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        (7) 

where x0 = 1, ˆvar(δ )i  and ˆ ˆcov(δ ,δ )i j  are the sample-specific estimates of the variance and  

the covariance.  

2.2. Simulation Model  

In a simulation study we compared the large-sample properties of the methods for estimating the 

expected value of Y and the effect of each predictor, when data follow a log-normal distribution. To 

obtain a realistic scenario, a simulation model was estimated from a real-life data set on personal 

exposure to PM2.5-particles in Sweden. These data are described in [15]. PM2.5 is the mass 

(microgram/m3) of particles smaller than 2.5 micrometers, which implies that they are small enough to 

bypass the respiratory defenses and enter into the lungs. Increased levels of PM2.5 have been associated 

with increased mortality from cardiovascular disease and lung cancer [16,17]. Several sources 

contribute to the personal exposure to PM2.5, two of them are tobacco smoke and traffic exhaust [18]. 

The expected outcome, personal exposure to PM2.5-particles (μg/m3), was assumed to be a linear 

function of the number of cigarettes per day, Smoke, and residential outdoor concentration of PM2.5 

(μg/m3), ConcOut:  
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YE[Y] 1.564 0.122 0.075Smoke ConcOut       (8) 

Observations were then simulated according to the model Z = ln( )-0.3832/2 + , where               

ε~N(0, σZ = 0.383). In order to facilitate interpretation and comparison without the introduction of 

unnecessary variation, balanced data were used in the simulations, with the following values of the 

explanatory variables: ConcOut = {2, 8, 14}, Smoke = {0, 7, 14}. Thus we estimated the expected 

PM2.5 exposure for 9 combinations of outdoor concentration and cigarettes smoked. Simulations with 

10,000 replicates were used to evaluate the potential bias in the estimates of β0, β1 and β2, the sample-

specific standard error ˆ ˆ(β) var(β)se   as well as the true standard deviation ]β̂Var[]β̂SD[  and 

also the properties of confidence intervals for μY.  

2.3. The DIWA Data Set  

The DIWA dataset is a population-based cohort of 64-year-old women from the city Gothenburg in 

Sweden and has previously been described in detail in [19]. Of the 2,595 women who was screened 

9.5% had diabetes mellitus (DM) [20], and of these 230 participated in the study, together with similar 

sized, randomly-selected groups of women with impaired glucose tolerance (IGT, n = 209) and normal 

glucose tolerance (NGT, n = 190). The World Health Organization criteria for capillary glucose cut-off 

values were used to define diabetes and impaired glucose tolerance [21]. Insulin resistance was also 

assessed, as well as a large number of biomarkers including high sensitivity C-reactive protein  

(hS-CRP). The examination also included a questionnaire regarding medical history and lifestyle 

factors, including smoking habits (never smoker, past smoker and smoker) and recreational physical 

activity (<2 h/week and ≥2 h/week). Body weight and waist circumference were also measured.  

CRP is an acute-phase protein found in blood serum and its levels increase during an inflammatory 

process. CRP is mainly used as an inflammatory marker in clinical practice and should, for a healthy 

person, be less than 5 mg/L. Diabetes, smoking, obesity and insulin resistance are all been associated 

with small increases in CRP-levels as assessed by high sensitivity methods [22–25].  

Insulin resistance is a condition where the body has a reduced ability to respond to the insulin 

hormone which can cause blood glucose to rise above normal levels. Insulin resistance can lead to type 

2 diabetes and cardiovascular disease. Even if insulin resistance is most common among persons with 

diabetes mellitus of type 2 or impaired glucose tolerance, it is also present in about 25% of non-obese 

persons with normal glucose tolerance, [26]. Obesity, and in particular abdominal obesity, is associated 

with increased insulin resistance [27,28]. Other factors are smoking and low physical activity [29,30]. 

In our study, insulin resistance was measured using the homeostasis model assessment of insulin 

resistance (HOMA-IR), which is a mathematical formula for quantifying insulin resistance [31]; 

HOMA-IR is the product of fasting serum glucose and fasting serum insulin (fasting serum glucose 

(mmol/L)·fasting serum insulin/22.5). A cut-off value around 2.5 is often used as an upper limit for 

normal HOMA-IR [32–35]. 
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3. Results  

3.1. Bias and Standard Deviation of the Regression Coefficients (Simulation Study)  

In the simulation study, balanced data sets were computer-generated using the model in Section 2.2, 

with two explanatory variables (Smoke and ConcOut) each with three levels. To obtain a balanced 

sample with at least 100 observations, the sample size n = 108 was used. For each sample, coefficients 

of the regression model were estimated, along with the expected outcome (personal exposure) and its 

confidence interval.  

Table 1. Estimates of the regression coefficients; expected value of the estimate, E[*], true 

standard deviation of the estimated coefficient, SD[*], and expected sample specific 

standard error, E[se(*)]. The true coefficient values are β0 = 1.564, β1 = 0.122, β2 = 0.075, 

σZ = 0.383. Results of the simulation study for sample size n = 108 (r = 10,000 replicates). 

 LSlin WLS MLLN GLMG GLMN
1 LSexp 2 

Intercept         
 E[*] 1.566 1.560 1.563 1.565 1.567 0.487 

SD[*] 0.226 0.190 0.183 0.187 0.180 0.083 
E[se(*)] 0.269 0.187 0.180 0.178 0.179 0.084 

Parameter for X1       
 E[*] 0.121 0.122 0.122 0.122 0.121 0.042 

SD[*] 0.021 0.019 0.019 0.020 0.019 0.006 
E[se(*)] 0.021 0.019 0.018 0.018 0.018 0.006 

Parameter for X2       
 E[*] 0.075 0.075 0.075 0.075 0.075 0.027 

SD[*] 0.024 0.021 0.021 0.021 0.02 0.008 
E[se(*)] 0.024 0.021 0.020 0.020 0.02 0.008 

E[ ] 1.229 
SD[ ] 0.143 

Scale parameter    7.330 0.377  
SD[scale parameter]    1.015 0.026  

       
E[ ] 0.379 0.376 0.358 3 0.377 0.384 

SD[ ] 0.031 0.026 - 0.026 0.026 
1 After transformation of the coefficients in eq (3):  and ;  
2 Coefficients  estimated under assumption of a log-linear model; 
3 After transformation: . 

All methods except LSexp provided unbiased estimates of the regression coefficients. Among the 

absolute-effects methods, GLMN tended to have the best precision (smallest SD). The sample-specific 

standard errors, se, were close to the true standard deviations, SD. All methods except LSlin provided 
reasonable estimates of , although the transformed scale parameter from GLMG was too small 

(Table 1). 
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All methods except LSexp provided an unbiased estimate of the expected value. The interval length 

was similar between WLS, MLLN, GLMG and GLMN, but tended to be smaller for the two GLM 

methods (Table 2). 

Table 2. Estimated expected value and expected length of 95% confidence interval for , 

for a sample of n = 108 observations (results from simulation with r = 10,000 replicates). 

Expected 

value 
E[ ] E[length] 

μY LSlin WLS MLLN GLMG GLMN LSexp LSlin WLS MLLN GLMG GLMN LSexp 

1.714 1.72 1.71 1.71 1.72 1.72 1.85 0.927 0.631 0.609 0.594 0.6 0.544

2.164 2.17 2.16 2.16 2.17 2.17 2.17 0.733 0.533 0.518 0.501 0.507 0.506

2.614 2.62 2.61 2.61 2.62 2.62 2.55 0.927 0.825 0.797 0.774 0.783 0.749

2.568 2.57 2.57 2.57 2.57 2.57 2.49 0.733 0.605 0.588 0.567 0.574 0.58 

3.018 3.02 3.02 3.02 3.02 3.02 2.91 0.464 0.467 0.462 0.437 0.443 0.439

3.468 3.47 3.47 3.47 3.47 3.47 3.42 0.733 0.763 0.743 0.715 0.723 0.798

3.422 3.42 3.42 3.42 3.42 3.42 3.34 0.927 0.950 0.920 0.89 0.9 0.982

3.872 3.87 3.87 3.87 3.87 3.87 3.92 0.733 0.850 0.827 0.796 0.804 0.914

4.322 4.32 4.32 4.32 4.32 4.32 4.60 0.927 1.026 0.997 0.962 0.972 1.351

LSlin had the largest standard deviation, especially for small and large values of μY. Among  

the methods that provided an unbiased estimate of μY, GLMN had the smallest standard deviation. For 

all methods except LSlin, the sample-specific standard error tended to be an underestimation  
(  > E[se( )]), Table 3. 

Table 3. True standard deviation and sample-specific standard error for the -values; 

SD[ ] = ]ˆVar[ Y  and se( ) = )ˆvar( Y . Results from simulation with n = 108 

observations, r = 10,000 replicates. 

Expected 

value 
SD[ ] E[se( )] 

μY LSlin WLS MLLN GLMG GLMN LSexp LSlin WLS MLLN GLMG GLMN LSexp 

1.714 0.191 0.161 0.156 0.159 0.154 0.136 0.238 0.159 0.154 0.152 0.154 - 

2.164 0.145 0.135 0.132 0.135 0.132 0.128 0.188 0.135 0.131 0.128 0.13 - 

2.614 0.220 0.209 0.202 0.211 0.205 0.190 0.238 0.208 0.201 0.198 0.201 - 

2.568 0.167 0.153 0.150 0.154 0.151 0.147 0.188 0.153 0.148 0.145 0.147 - 

3.018 0.121 0.118 0.118 0.120 0.120 0.112 0.119 0.118 0.117 0.112 0.113 - 

3.468 0.210 0.195 0.190 0.196 0.192 0.204 0.188 0.192 0.187 0.183 0.185 - 

3.422 0.251 0.241 0.234 0.244 0.238 0.251 0.238 0.240 0.232 0.228 0.231 - 

3.872 0.228 0.217 0.212 0.219 0.215 0.235 0.188 0.214 0.209 0.204 0.206 - 

4.322 0.290 0.263 0.256 0.264 0.258 0.345 0.238 0.259 0.251 0.246 0.249 - 

All methods except LSlin and LSexp provided coverage close to the nominal, but both GLMG and 

GLMN tended to give too low coverage, whereas MLLN was slightly better. Using LSlin resulted in too 

high coverage for low values of μY, and too low coverage for large values. LSexp provided too low 

coverage both for low and high values (Table 4). 

Ŷ
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Table 4. Actual coverage of the 95% confidence interval for Y based on the  

sample-specific standard error (results from simulation with n = 108 observations and  

r = 10,000 replicates). 

Expected value Coverage 1 

μY LSlin WLS MLLN GLMG GLMN LSexp 
1.714 0.98 0.94 0.95 0.93 0.94 0.83 
2.164 0.99 0.95 0.95 0.93 0.94 0.95 
2.614 0.96 0.95 0.95 0.93 0.94 0.93 
2.568 0.97 0.95 0.95 0.93 0.94 0.90 
3.018 0.94 0.95 0.95 0.93 0.93 0.83 
3.468 0.92 0.95 0.95 0.93 0.94 0.94 
3.422 0.93 0.95 0.95 0.92 0.93 0.93 
3.872 0.89 0.94 0.95 0.93 0.94 0.95 
4.322 0.89 0.94 0.94 0.93 0.94 0.87 

1 Proportion of replicates where 95% confidence interval covers true expected value   

3.2. Application of the Regression Methods to the DIWA Dataset  

The DIWA dataset consists of data from approximately 600 women for which a large amount of 

data, related to diabetes and obesity, were collected. Descriptive statistics for CRP, waist 

circumference and HOMA-IR are presented in Table 5, separate for each glucose tolerance group.  

Table 5. Descriptive statistics for C-reactive protein (CRP), insulin resistance (HOMA-IR) 

and waist circumference. 

Group 
 CRP HOMA-IR Waist circumference (cm) 

n Mean Median SD Mean Median SD Mean Median SD 

NGT 1 185 2.107 1.184 2.550 1.141 0.960 0.647 88.295 88.50 8.948 

IGT 1 195 2.583 1.380 3.783 1.816 1.430 1.268 92.677 92.50 11.882 

DM 1 218 4.468 1.856 10.255 4.677 2.835 5.842 98.083 98.00 12.631 
1 Results for women with normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and diabetes 

mellitus (DM). 

3.2.1. Regression Models for C-Reactive Protein (CRP) and Insulin Resistance (HOMA-IR) 

For CRP, the start model in the multivariable regression analysis included smoking, physical 

activity, waist circumference (WC), insulin resistance (HOMA-IR) and glucose tolerance (GT), where 

GT was classified into three categories: normal glucose tolerance, impaired glucose tolerance and 

diabetes mellitus. We used a model that allowed for different associations for the GT groups, by 

including the interaction terms WC·DM and WC·IGT. The final model, based on backward elimination 

using MLLN, contained WC and HOMA-IR, but no interaction term, thereby implying that the 

association with WC could be similar for the three GT groups (Figure 1). 

For HOMA-IR, the start model in the multivariable regression analysis included WC, physical 

activity and smoking, and we allowed for possible different association with WC for the different 

glucose groups by including the interaction between waist circumference and glucose tolerance.  

Y
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The final model, based on backward elimination using MLLN, contained WC and the interaction 

between WC·GT, thus allowing different WC parameters for each GT group (Figure 2).  

Figure 1. The parameter estimates and 95% confidence intervals for the different 

regression methods, when estimating CRP as a function of waist circumference (WC) and 

HOMA-IR, using n = 598 observations.  
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Figure 2. The parameter estimates and 95% confidence intervals for the different 

regression methods, when estimating HOMA-IR as a function of waist circumference (WC) 

and the interaction between WC and glucose tolerance group (normal glucose tolerance, 

impaired glucose tolerance and diabetes mellitus), using n = 598 observations.  

 



Int. J. Environ. Res. Public Health 2014, 11 3531 

 

 

The estimated standard deviation, , and the average length of the confidence intervals for μY, 

(estimated from the models presented in Figures 1 and 2), are given in Table 6. MLLN, GLMN and 

LSexp gave similar estimates of σZ (this parameter cannot be estimated by LSlin). WLS provided the 

largest estimate whereas GLMG gave the smallest. MLLN and GLMG had similar confidence intervals 

for the expected value, μY, GLMN had the shortest intervals, whereas LSlin had the longest intervals. 

Table 6. The σZ-estimates and mean length of 95% confidence intervals for μY, for CRP 

and HOMA-IR, n = 598. 

Method 
CRP HOMA-IR 

 Length CI (mean, SD)  Length CI (mean, SD)

LSlin - 1.61 (0.89) - 1.10 (0.19) 
WLS 1.22 1.51 (2.07) 0.73 0.64 (0.35) 
MLLN 1.04 0.82 (0.86) 0.61 0.43 (0.19) 

GLMG 0.71 (0.974 1) 0.85 (1.26) 0.33 (2.52 1) 0.47 (0.26) 

GLMN 1.04 0.43 (0.23) 0.61 0.23 (0.06) 

LSexp 1.04 1.19 (5.40)  0.60 0.50 (0.45) 
1 Estimated scale parameter 

3.2.2. Quantification of Factors Associated with CRP and HOMA-OR (Method Comparison) 

All of the methods demonstrated that WC was a significant predictor for CRP. According to the 

absolute-effects methods (LSlin, WLS, GLMG, GLMN and MLLN), the CRP was expected to increase 

about 1 mg/L (between 0.74 and 1.07 mg/L) for every 10 cm in WC and, according to the  

relative-effects method (LSexp), the expected increase was 49% for every 10 cm in WC  

(exp(0.40) – 1 = 0.49), Figure 1. All methods showed a positive association between HOMA-IR and 

CRP. The expected increase in CRP was between 0.12 and 0.42 mg/L for every unit increase of 

HOMA-IR in the absolute-effects methods and 3% per unit of HOMA-IR for the relative-effects 

method. The association with HOMA-IR was not significant for LSlin and very high for GLMG and 

WLS (0.41 and 0.42, respectively). The point estimates from all methods had the same sign and for the 

absolute-effects methods the confidence intervals for βWC overlapped, as did the intervals for βHOMAIR, 

Figure 1. 

All methods found a positive association between HOMA-IR and WC in all glucose tolerance 

groups, Figure 2. Further, the results showed that women with DM had a significantly stronger 

association with WC than women with NGT, and this was significant for all methods. The results also 

indicated a stronger association with WC for women with IGT, compared to women with NGT;  

the interaction term for WC•IGT was significant for all absolute-effects methods except LSlin. Among 

the absolute-effects methods, HOMA-IR was expected to increase 0.64–1.00 per 10 cm WC for 

women with DM, 0.42–0.74 for women with IGT and 0.39–0.70 for women with NGT. The relative-

effects method showed an expected increase in HOMA-IR of 39% per 10 cm for women with DM, 

31% for women with IGT and 27% for women with NGT. 
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4. Discussion  

Several methods for estimating a linear regression on log-normal data were compared. Much 

research has investigated making inferences, including confidence interval, of the expected value of  

a log-normal distribution, e.g. [36–40]. Here we considered the situation where the systematic part of 
the model for the outcome Y should be additive on the original scale 0 1 1Y X( β β ... β )p pX X     . 

Had we made the assumption that the systematic part was multiplicative, the regression coefficients 

could have been estimated either with a GLM using gamma distribution and the log link, or by a GLM 

using a normal distribution and identity link for Z = ln(Y), which give similar results [41,42]. But we 

wanted a model for estimating the absolute effect of each explanatory factor. In exposure assessment, 

we often want to assess the personal exposure to e.g., a specific compound in the air, by using a model 

that includes the important exposure determinants. Here the quantity is an important factor (e.g., time 

spent in different micro-environments, number of cigarettes smoked) and it is reasonable that the effect is 

linear. A linear model can also be used to estimate biologic interaction, discussed in Section 4.3 below. 

Six methods were compared; four of them directly modeled the expected value of Y as a linear 
function of the explanatory variables, 0 1 1Y X β β ... β p pX X     one method transformed the 

estimated coefficients, 2
0 1 1Y X ( ... ) exp( / 2)p p zX X          and finally the common method based 

on log-transformation was included for comparison, 0 1 1X δ δ ... δ p pZ X X     . Evaluation was made 

both using simulations and by applying the methods to a large data set to estimate well-known 

associations of abdominal adiposity (waist circumference, WC) on inflammation (measured using  

C-reactive protein, CRP) and insulin resistance (measured using HOMA-IR), respectively. 

4.1. Method Comparison  

In a simulation study we evaluated the regression methods in a situation where the expected 

outcome is a linear function of two explanatory variables. All methods except LSexp provided unbiased 

estimates of the regression coefficients and the expected outcome, but the sample-specific standard 

error, ˆ(β )ise , tended to be too small, thus overestimating the power. For LSlin, the assumption of  

a constant variance for Y resulted in confidence intervals for μY with unnecessary high coverage for 

small μY-values and too low coverage at large μY-values. LSexp does estimate the relative effect rather 

than the absolute and as a result the estimated expected values were biased and the coverage of  

the confidence intervals was erroneous. The confidence intervals from the GLMG method had too low 
coverage, as a result of the underestimation of the variance . This is contrary to the situation with  

a multiplicative model, where the gamma distribution often provide reasonable estimates when applied 

to a log-normal variable [41,42]. MLLN, WLS and GLMN provided approximately correct coverage, 
although GLMN had a tendency to underestimate, as a result of using the estimate , thus not 

including the stochastic variation of  in the interval estimation. An approximate confidence interval 

taking into account its stochastic variation could be derived using Taylor expansion, see e.g. [43]. 

The methods were applied to two approximately log-normal response variables, CRP and 

HOMA-IR (almost 600 observations). The model for CRP contained WC and HOMA-IR, and the 

model for HOMA-IR contained WC and the interaction between WC and glucose tolerance groups 

2
Z

Ẑ
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(normal glucose tolerance [NGT], impaired glucose tolerance [IGT] and diabetes mellitus [DM]). 

When comparing confidence intervals for β and for μY, MLLN and GLMN consistently had narrower 

confidence intervals than WLS (and LSlin). From the simulation we saw that WLS tends to 
overestimate the variance. Because of underestimation of , GLMG had narrower intervals than 

MLLN and GLMN for μY, but from the simulation we know that the coverage will be too low. Thus 

MLLN will have a higher power and for lognormal data the probability of detecting a true explanatory 

variable is higher. The smaller interval lengths of MLLN corroborate the results of a previous 

simulation study [11].  

4.2. Factors Associated with CRP and HOMA-IR, Respectively  

Using all methods, the analysis demonstrated a significant positive association between CRP and 

WC. Associations between CRP and several measures of obesity and abdominal adiposity have been 

shown in a number of studies [44–47], and some studies indicate that abdominal adiposity has  

a stronger association with inflammation than total adiposity [48–50]. For CRP we could not find any 

significant interaction between glucose tolerance group and waist circumference, thus our results did 

not indicate that the association between obesity and the inflammation marker depends on the degree 

of glucose tolerance. Many studies have been based on only one or two of the GT groups, [24,51–53]. 

Our study showed an expected increase in CRP of between 0.74 and 1.07 mg/L per 10 cm increase in 

WC for the absolute-effects methods and 49% per 10 cm for the relative-effects method. All methods, 

with the exception of LSlin, showed a significant positive association between CRP and HOMA-IR. 

The lack of significant association using LSlin can probably be explained by the estimates of the 

variance. In the LSlin method the heteroscedasticity is not taken into account.  

In the analysis of HOMA-IR, all methods identified WC as a significant predictor for HOMA-IR. 

There was also a significant interaction between glucose tolerance group and waist circumference, thus 

the absolute-effects models showed a departure from additivity. These results cannot be interpreted 

causally, but the interaction indicates that obesity might affect insulin resistance more for women who 

have diabetes mellitus compared to those with normal glucose tolerance. All models methods found a 

significantly stronger WC-association for women with DM compared to women with NGT, and all 

methods (apart from LSlin) also had a significantly stronger WC-association for women with IGT 

compared to NGT. From the simulation we know that LSlin has larger standard errors than the other 

methods and thus lower power. The relative-effects method LSexp also showed a significant interaction 

between glucose tolerance group and waist circumference, i.e., departure from multiplicativity. 

Even if HOMA-IR typically has a skewed non-normal distribution, regression analyses have been 

performed using both untransformed and log-transformed HOMA-IR values, see [54,55] shows  

an expected increase in HOMA-IR with 3.5 units per 10 cm WC, using LSlin on persons with DM, to 

be compared with 0.64–1.00 units in our study. The difference in association might be explained by  

the fact that the previous study included both men and women of different ages [56] uses the method 

here denoted LSexp and finds a positive association; about 22% per 10 cm WC, while we found  

the association to be stronger; 27%–39%. 
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4.3. Model Choice  

The choice between an additive or multiplicative model affects the interpretation of the estimated 

coefficients. The aim of a regression analysis might be simply to test whether there is a significant 

association between an outcome and a potential explanatory variable. Another aim can be to quantify  

a specific association (e.g., the absolute or relative effect), or assess the biologic interaction. If  

the study is purely exploratory, using epidemiological data, residual analysis can be used to decide 

which model that fits the data best. The model choice might be based on previous knowledge, e.g., 

about the biological process, from experimental studies. 

In risk-modeling, a log-linear model is often used, φ(Z, β) = exp(α0 + α1X1 + … + αkXk + βZ), 

where φ can be the odds ratio or rate ratio function, X1-Xk are covariates and Z is the exposure variable 

of interest. In this model the ratio has an exponential dependence on Z; exp(βZ). However, linear 

models have also been discussed, see [57], for example in radiation epidemiology, where the linear 

relative rate model φ(Z,β) = exp(α0 + α1X1 + … + αkXk)(1–βZ) allows the rate ratio to increase linearly 

with the dose Z [58].  

Not only the main effects but also potential interactions can be of interest. Interaction in a statistical 

sense is scale dependent, e.g., an absence of interaction in absolute-scale will lead to interaction in  

log-scale. An interaction in a linear absolute-effects model is additive, while an interaction in  

a log-linear relative-effects model is multiplicative. In epidemiology, an additive interaction  

(effect-modification on the absolute scale) is often considered more important when assessing public 

health impact, and seems to correspond more to biologically based notions of interaction [9,59,60]. 

There is a need for regression methods that can assess biologic interaction, as discussed in several 

articles. In logistic regression it is implicit that we have a multiplicative statistical relation and if an 

additive biological model holds, the logistic analysis would require three parameters to summaries the 

joint effects of only two variables, [61]. Additive interactions are given directly in a linear model, 

however a logistic regression model can be defined in such a way that additive interactions (e.g., 

biologic interaction) can be assessed [62]. 

4.4. Strengths and Weaknesses  

Five regression methods for estimating associations on the absolute scale of the explanatory 

variables were compared, with regard to bias and standard deviation for the estimated coefficients and 

also with regard to the estimated expected outcome and its confidence interval. In addition,  

the standard method for log-normal data (log-transformation) was evaluated. The comparison of  

the methods was made both in a simulation study and using two examples. The absolute-effects 

methods provide similar results for the association with the predictors for CRP and HOMA-IR, 

respectively. The results from the examples are consistent with those from the simulations.  

The aim of this study was not to provide a complete statistical model of which factors that are 

associated with CRP and HOMA-IR, but to compare the statistical methods. The number of factors in 

the regression models was therefore kept small; the simulation model only included two explanatory 

variables and in the models for CRP and HOMA-IR, only those variables that were significant after 

backward elimination using MLLN were included. Thus, all factors were significant for MLLN (and also 
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for GLMN). This could be seen as an advantage for these methods, compared to for example a situation 

in which LSexp had been used to select the model. However, since we assume a linear model (i.e., 

absolute effects) it is natural to use a method that can estimate the absolute effects in the model 

selection process. We also wanted the method that was expected to have a high power, and based on 

previous studies, [11], MLLN was expected to have higher power than e.g., WLS and LSlin. 

5. Conclusions  

In medical research we often want to identify and quantify associations using regression analysis. 

Log-normal data are common and there are situations when the absolute effects are of interest (rather 

than the relative) and thus there is a need for linear regression methods on untransformed log-normal 

data. We have evaluated several regression methods using both large scale simulations of personal 

exposure to PM, and by applying the methods to data on biomarkers (CRP and HOMA-IR). The LSexp 

does not provide estimates of the absolute effects and the expected outcome can be biased. The LSlin 

and GLMG provide correct point estimates of the expected outcome, but confidence intervals with 

incorrect coverage. The MLLN and GLMN worked best (unbiased estimates, narrow confidence 

intervals), although MLLN tends to have a slightly more correct coverage for the confidence intervals. 
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