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An understanding of the activities of enzymes could help to elucidate the metabolic pathways of thousands of chemical reactions
that are catalyzed by enzymes in living systems. Sophisticated applications such as drug design and metabolic reconstruction
could be developed using accurate enzyme reaction annotation. Because accurate enzyme reaction annotation methods create
potential for enhanced production capacity in these applications, they have received greater attention in the global market. We
propose the enzyme reaction prediction (ERP) method as a novel tool to deduce enzyme reactions from domain architecture. We
used several frequency relationships between architectures and reactions to enhance the annotation rates for single and multiple
catalyzed reactions.The deluge of information which arose from high-throughput techniques in the postgenomic era has improved
our understanding of biological data, although it presents obstacles in the data-processing stage. The high computational capacity
provided by cloud computing has resulted in an exponential growth in the volume of incoming data. Cloud services also relieve
the requirement for large-scale memory space required by this approach to analyze enzyme kinetic data. Our tool is designed as a
single execution file; thus, it could be applied to any cloud platform in which multiple queries are supported.

1. Introduction

Enzymes are biochemical agents that efficiently catalyze
the conversion of substrates into products in organisms.
Enzymes are essential to the metabolic activity of living
systems, and they share 3 features: catalytic power, speci-
ficity, and regulation [1]. Catalytic power is the ratio of
the rate of an enzyme-catalyzed reaction to the rate of the
uncatalyzed reaction. Enzyme-catalyzed reactions provide
faster rates than traditional biochemical processes because
enzymes reduce the energy required for biochemical reac-
tions. Enzymes perform specific actions, and their selec-
tion should be specific to the desired reaction; thus, the
use of enzymes can avoid competing reactions from pro-
ducing side products. Consequently, enzyme applications
are increasingly being employed in industrial applications.
Enzyme activities can be optimized to provide metabolic
reaction rates that are appropriate to cellular require-
ments.

The catalytic power and specificity of enzymes can
enhance productivity in industrial applications. A recent
study published by the BBC research group estimated that
the global market for industrial enzymes was at $3.3 billion
in 2010 and was expected to reach $4.4 billion by 2015
[2]. Enzymes involved in digestion, such as lipase, protease,
and amylase, are classed as hydrolases. The Nomenclature
Committee of the International Union of Biochemistry and
Molecular Biology (NC-IUBMB) classified enzymes into
6 groups: oxidoreductases, transferases, hydrolases, lyases,
isomerases, and ligases. According to theNC-IUBMBscheme
and the Enzyme Commission’s (EC) system, an enzyme reac-
tion is assigned a 4-numerical-block number [3].Themethod
presented in our study can facilitate enzyme annotation,
and is also valuable in followups to biochemical studies and
applications, including metabolic process investigations and
drug discovery.

There are 3 main types of enzyme reaction annotations:
sequence similarity, chemical structure comparison, and
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domain architecture fingerprint. Certain annotation meth-
ods, such as profils pour l’identification automatique du
métabolisme (PRIAM) [4] and Catalytic Families (CatFam)
[5], are based on protein sequences. These methods gen-
erate high-level profiles from sequences to represent and
determine protein catalytic functions. The EnzymeDetector
[6] annotation method uses sequence similarity analysis and
a comprehensive enzyme database, BRaunschweig ENzyme
DAtabase (BRENDA) [7], which is manually extracted from
the literature. The Enzyme Function Inference by Combined
Approach (EFICAz) [8]method adopts and combines various
independent sequence-based methods.

The second type of enzyme reaction annotation is based
on chemical structure comparison because the conversion of
a particular reactant into a product with a specific molecular
structure in an uncatalyzed chemical reaction can often be
achieved by enzyme catalysis in an organism. Problems are
frequently encountered when an enzyme catalyzes several
reactions andwhen the same reaction is catalyzed by different
enzymes. Several reported computational methods exist for
assigning EC numbers that use the physicochemical and
topological properties of reactants, products, and bonds
involved in the reaction [9–12].

Domain architecture fingerprint is the third type for
enzyme reaction annotation. Substrates bind to an enzyme
at its active site, where they undergo reaction. An enzyme
reaction is intimately linked to the compact protein structure
of a domain. As a general rule, enzymes of similar domain
architectures catalyze similar reactions; this creates a diffi-
cult mapping problem from the architecture space into the
reaction space. Variousmachine-learningmethods have been
applied to the mapping problem, including the association
rule algorithm [13], the decision tree method [14], support
vector machines [15], neural networks [16], and other clas-
sification schemes including domain teams [17], probabilistic
rule-based models [18], and a weighted domain architecture
comparison tool, the Feature Architecture Comparison Tool
(FACT) [19].

The advent of genomics technologies, including next-
generation sequencing and mass spectrometry-based flow
cytometry [20, 21], creates an exponential growth in the
volume of data. Cloud technologies provide large computing
capacity, and this allows for the integration of distributed
large-scale facilities formanaging user requests andproviding
cost-efficient responses. Platform as a Service (PaaS) is
provided by several companies, including Google, Microsoft,
and Amazon. Microsoft’s DryadLINQ execution engine and
its application to theAlu clustering problem and an expressed
sequencing tag (EST) assembling program inApacheHadoop
are extensions of the Google MapReduce platform [22]. Our
proposed scheme requires large-scale computer memory for
estimating and ranking each subset based on the domain
architecture enumeration phase measurements. The results
of queries when using this scheme are efficiently managed
by the cloud’s distributed architectures. Because adopting
cloud technology enables annotation schemes to provide new
architecture, the global enzyme market is expected to benefit
from the increases in production capacity made available by
the new architecture.

2. Materials and Methods

Proteins comprise polypeptide chains that form several
compact, occasionally loosely connected, global units called
structural domains. Regarding the protein structure, struc-
tural domains are considered fundamental units of pro-
tein function, folding, and evolution [23]. It is reasonable
to consider a protein as one type of domain architecture
consisting of a set of domains. The SUPERFAMILY struc-
tural domain database, integrated into the InterPro database
(release 33.0), is adopted for constructing the domain archi-
tectures of proteins. For example, a Q5VT25 protein con-
sists of the domain architecture with the SUPERFAMILY
domains SSF50729, SSF56112, and SSF57889, such that the set
{SSF50729, SSF56112, SSF57889} is considered to represent
Q5VT25. Moreover, different proteins may share the same
domain architecture of {SSF50729, SSF56112, SSF57889}, such
as Q9BZL6 and E0W264. A particular reaction may be
catalyzed by different enzymes, and an enzyme can often
mediate more than one reaction. The resulting complex
relationship between the set of domain architectures and the
set of enzyme reactions remains a difficult problem, even
after simplifying by considering a protein as one type of
domain architecture. In this study, we identified proteins
and recorded their corresponding domain architectures and
enzyme reactions in our database.

2.1. Data Sets. From the viewpoint of protein function,
enzymes are agents of metabolic function, which control the
rate of biochemical activities in living organisms [1]. The
first block of the EC number indicates to which of these 6
groups an enzyme belongs.The second and third blocks indi-
cate subclass and sub-subclasses according to the enzyme’s
associations with the chemical features of the reactants and
products of the reaction system.Thefinal block is a sequential
number. Enzymes are collected based on their corresponding
EC numbers from the UniProt Knowledgebase (UniProtKB),
such as Q5VT25 associated with EC 2.7.11.1, Q9BZL6 with
2.7.11.13, and E0W264 with 1.3.1.74 and 2.7.11.13.

UniProtKB [24] is a comprehensive protein sequence
and annotation resource. It comprises UniProtKB/Swiss-
Prot and UniProtKB/TrEMBL sections. The literature-based
records in the Swiss-Prot section are manually annotated and
analyzed computationally by curators. The TrEMBL section
contains records that are annotated automatically, using qual-
itative computational analysis methods. Enzyme reactions
described by either UniProtKB/Swiss-Prot or /TrEMBL are
collected.The InterPro [25] database is an integrated resource
of protein signatures in which protein domains held in
different member databases are cross-referenced. We used
the SUPERFAMILY member database [26] to investigate the
relationship between domain architectures and enzyme reac-
tions. All enzymes assigned EC numbers were collected from
the Swiss-Prot and TrEMBL sections of UniProtKB (release
2011 07). We extracted the proteins that (1) had specific EC
numbers and (2) were cross-referenced to SUPERFAMILY
(version 1.73) in the InterPro database (release 33.0). Based
on the integrated material we gathered from the UniProtKB
and SUPERFAMILY databases, there are totally 1,664,839
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Figure 1: Illustration of an entry.

proteins composed of 1,218 SUPERFAMILY domains and
3,306 related EC numbers.

Relying on the rationale that structural domains are
related to protein functions, we integrated enzymes sharing
the same domain architecture as a single entry. For exam-
ple, Q5VT25, Q9BZL6, and E0W264 share the {SSF50729,
SSF56112, SSF57889} architecture with EC numbers 2.7.11.1,
2.7.11.13, and 1.3.1.74 and are considered a single entry
(Figure 1). There are 5,203 entries collected in this study,
and each entry consists of one type of domain architecture
associated with several enzyme reactions.

Our proposedmethod accounts for the frequency of each
potential type of domain architecture from a set, and a rank is
assigned according to several criteria. After determining the
domain architecture that has the greatest score, we obtain the
corresponding enzyme reactions.

2.2. Methods. Because domains are fundamental structural
units that can fold into a compact block, we considered the
appearance of a domain in an enzyme and omitted the repe-
tition of domains. As a result, the number of domain architec-
tures is nearly 5 times the number of types of SUPERFAMILY
domains but does not grow exponentially. This shows a
tendency for one domain to accompany others to form one
type of domain architecture for a protein. The ERP method
is used to predict enzyme reactions from components of
domain architectures. In the model-building process, there
are 2 main phases: “domain architecture enumeration” and
“enzyme reaction ranking.”

Before building the prediction model, we divided 5,203
entries into 2 sets, the training set and the testing set. The
training set is used to establish the prediction model and
the testing set is adopted for verification. The details of the
model simulation are described in the 5-fold cross-validation
section.

2.2.1. The Enzyme Reaction Prediction Method. The first
phase of model building is based on the rationale that one
domain has a tendency to accompany others to form one type
of domain architecture. We enumerated all possible subsets
from domain architectures in the training set and estimated
each subset according to 4 measurements: comprising exis-
tence, succinctness, consistency, and simplicity. The domain
architecture candidate with the highest priority was thus
obtained. In the second phase, we ranked enzyme reactions
in a list according to their intensity values associated with one
specific type of domain architecture.

Domain Architecture Enumeration. After inspecting the set
of domain architectures, we learned that the number of
types of adjacent domains was considerably lower than
the numbers encountered when enumerating every possible
combination. Thousands of architectures are enumerated
exhaustively among all the possible subsets associated with
the domain architectures of proteins. A possibility of tandem
domains appearing with the expression of enzyme-catalyzed
reactions also exists. Thus, we propose the following 4 mea-
surements to sequentially estimate each domain’s architecture
during the domain architecture enumeration phase. For
example, if the domain architecture {SSF50729, SSF56112,
SSF57889} could not be found, 6 subarchitectures compris-
ing {SSF50729, SSF56112}, {SSF50729, SSF57889}, {SSF56112,
SSF57889}, {SSF50729}, {SSF56112}, and {SSF57889} are con-
sidered.

(1) Existence of the Protein Consisting of a Given Domain
Subset. In the process of enumerating all possible subsets
of domain architectures, many putative subsets may be pro-
duced. If one subset matches one type of domain architecture
of an enzyme, it is reasonable that this domain subset
contributes directly to its catalyzed reactions and is awarded
higher priority than other subsets are.
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(2) Succinctness Measurement of the Domain Architecture
of Enzymes. One reaction can be catalyzed by various
enzymes that can comprise a variety of domain architectures.
Among them, each subset of one type of domain archi-
tecture could also include another type of an enzyme. The
Succinctnessdomain arch equation (1) is designed to identify
the most relevant architecture. Given an enumerated domain
subset called domain arch, we collected a set of entries,
Entriesdomain arch, that have domain architectures containing
domains in domain arch. The number of reactions associ-
ated with the entries which have domain architecture that
exactly match domain arch is denoted as |ECsexact|. The
number of reactions associated with the entries that have
architectures containing domains in domain arch is denoted
as |ECsincluded|. The Succinctnessdomain arch measurement is
calculated as the ratio of |ECsexact| to |ECsincluded|. The type
of domain subset with a greater Succinctnessdomain arch value
is assigned higher priority among a set of architecture
candidates for the query domain architecture. For example,
a query architecture domain arch consisting of domains
SSF56112 and SSF57889 is involved in 10 entries involving
5 types of enzyme reactions, comprising 2.7.10.2, 2.7.11.1,
2.7.11.13, 2.7.1.107, and 1.3.1.74 (|ECsincluded| = 5) in Figure 2.
The exactly matched architecture {SSF56112, SSF57889} is
associated with 3 reactions, 2.7.10.2, 2.7.11.1, and 2.7.11.13, such
that the Succinctness{SSF56112, SSF57889} is estimated as 0.6. We
assign priority to the candidate with the greatest succinctness
value because the corresponding chemical reactions proceed
without requiring auxiliary domains as follows:

Succinctnessdomain arch =

ECsexact


ECsincluded

. (1)

(3)Multiplicity of EnzymeReactions fromOneType ofDomain
Architecture. An enzyme can catalyze different reactions;
alternatively, different enzymes may share the same domain
architecture. Considering a domain subset domain arch, we
collected all entries that have domain architectures con-
taining domains of domain arch. Among these entries, the
number of involved reactions is defined similarly to the
definition of |ECsincluded| in the previous paragraph, but we
denoted it as 𝑘 for simplicity. To clearly observe the expression
of one specific reaction among various architectures, we
separated an entry withmultiple reactions into several entries
with a single reaction, and the number of entries with a
single reaction is counted as 𝑁 (Figure 3). Furthermore,
we also mark the number of entries associated with each
reaction EC𝑖 as 𝑛𝑖 (𝑖 = 1, . . . , 𝑘), such that 𝑁 = ∑𝑘𝑖=1 𝑛𝑖.
The mean value 𝑛 = 𝑁/𝑘 is calculated as the average
number of entries, and the difference (𝑛𝑖 − 𝑛) is estimated
for each reaction EC𝑖. Because 𝑘 and Entriesdomain arch are
variables dependent on the set of domains in domain arch,
we provided Consistencydomain arch (2), which summarizes
the different terms and is normalized by 𝑁 and weighted
with (𝑛𝑖/𝑁) for each reaction for comparison with other
architecture candidates.

If the expression of each reaction is equal, then 𝑛𝑖
approaches the mean value, such that the consistency value
becomes smaller. As the consistency value approaches zero,

it unambiguously indicates a strong relationship between
enzyme-catalyzed reactions and the corresponding domain
architecture:

Consistencydomain arch =
𝑛1

𝑁
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𝑁
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𝑁
(
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(4)

(4) Simplicity of Domain Architecture. In the case that no
protein matching the query architecture domain arch is
found, the fewest number of domains in an architecture
candidate is preferred.

The aforementioned 4 measurements for 6 subsets of
the domain architecture {SSF50729, SSF561112, SSF57889}
are listed in Table 1. Because each subset has the same
domain architecture as another protein, the subset {SSF56112,
SSF57889} with the highest succinctness value of 0.6 has the
highest priority.

Enzyme Reaction Ranking. After determining the domain
architecture for a nonannotated enzyme, various related
enzyme reactions can be retrieved from the universe data set
(Figure 4).The IntensityEC𝑖 (5) is calculated based on the ratio
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Figure 2: Entries containing domains SSF56112 and SSF57889.

of the mean value to the number of entries associated with
EC𝑖 to evaluate the strength of the relationship between the
reaction EC𝑖 and the determined domain architecture. An
IntensityEC𝑖 value of less than 1 indicates that the expression
of EC𝑖 is greater than the mean value; thus, low values are
preferred. The intensity values corresponding to reactions of
the domain architecture {SSF56112, SSF57889} are calculated
as follows:

IntensityEC𝑖 =
𝑛

𝑛𝑖
=
𝑁

𝑛𝑖 × 𝑘
, (5)
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(6)

2.2.2. The Association Rule Method. In the field of data
mining, the association rule (AR) method is an established
method for detecting the relationship between items, partic-
ularly for a large database, 𝑇. Given a large transaction set, if
2 sets,𝑋 and 𝑌, are involved in a rule,𝑋 → 𝑌, 2 constraints
must be met: (1) the union of item sets 𝑋 and 𝑌must appear

frequently in 𝑇, and (2) the relationship between item sets
𝑋 and 𝑌 is close. A frequent set satisfies the condition that
the number of transactions containing that set is higher than
the support threshold. If set 𝑌 accompanies set 𝑋 in various
transactions, a close relationship exists between sets 𝑋 and
𝑌. The confidence value can be estimated as the ratio of the
number of transactions containing both item sets (𝑋 and 𝑌)
to that containing item set 𝑋 alone. If the confidence value
of the item sets in a rule is higher than the given confidence
threshold, it is placed into the rule set.

2.2.3. Fivefold Cross-Validation. In a classification model, the
parameters of the model are optimized to fit the training set
as much as possible during the fitting process. An overfitting
problem results when another independent validation data
set (from the same population) is used to test the model and
does not fit as well as the training set did. Cross-validation
is a technique used to infer the goodness of fit of a model
to a validation set. We used 5-fold cross-validation, in which
the sample is randomly divided into 5 subsets: one subset is
retained as the testing set, and the other subsets are assigned
to the training set.The numbers of entries in each fold for the
4-numerical-block EC number set are shown in Table 2. One
round of 5-fold cross-validation involves taking one part as
the testing set and the remainder as the training sets, resulting
in 20 total rounds of testing.

3. Results and Discussion

A chemical reaction may be catalyzed by more than one
enzyme, and an enzymemay catalyzemore than one reaction.
By considering the relationship between enzymes and chem-
ical reactions as a mapping problem, we create a many-to-
manymapping problem. Although there are variousmethods
available that approach this type of problem from different
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Figure 3: Separating entries into certain types of an architecture with one EC number.

Table 1: Four measurement values for the six subsets of the domain architecture {SSF50729, SSF56112, SSF57889}.

Domain architecture Existence Succinctness Consistency Number (domains)
{SSF50729, SSF56112} 1 0.45 0.0688271604938272 2
{SSF50729, SSF57889} 1 0.5 0.058641975308642 2
{SSF56112, SSF57889} 1 0.6 0.114878892733564 2
{SSF50729} 1 0.191489361702128 0.0559722260571086 1
{SSF56112} 1 0.595744680851064 0.0765587606003442 1
{SSF57889} 1 0.4 0.11141975308642 1

Table 2: The number of entries in each fold.

Data set Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total
4-numerical-block EC number set 1,041 1,041 1,041 1,040 1,040 5,203
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Figure 4: EC numbers connected with the architecture {SSF56112,
SSF47889} by the ERP method.
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Figure 5: Population of EC numbers in the universe data set
according to the six NC-IUBMB classes.

viewpoints, we present this intuitive method, which is based
on the frequency of domain architecture and, in an enzyme,
the associated catalyzed reactions.

To examine the feasibility of our method, we compiled
data from the UniProtKB and SUPERFAMILY domains of
the InterPro database. A total of 1,664,839 proteins are
associated with 1,218 SUPERFAMILY domains and 3,306 4-
numerical-block EC numbers. The population of the 6 NC-
IUBMB classes is shown in Figure 5. If one type of domain
architecture was only associated with one enzyme reaction,
then we collect these entries as a single-EC set. Entries
associated with more than one enzyme-catalyzed reaction
were assigned to a multiple-EC set. There were single-EC
entries and multiple-EC entries in both the training set and
the testing set. The ratio of the number of single-EC entries
to the number of the multiple-EC entries in the testing set
was approximately 6 : 4. Detailed information is shown in the
“Testing set” column in Table 3.

To avoid the bias caused by the selection of the training
data set, we used 20 runs of 5-fold cross-validation. From
5,203 entries, approximately 4,160 entries were used for
model building, and the remaining 1,040 entries were used
for verification. According to the complexity of classification
problems, it is difficult to predict multiple reactions of entries
from domain architectures. We separated 1,040 entries into 2
sets: 624 entries for the single-EC set and 416 entries for the
multiple-EC set; hence, there are 2 main rows in Table 3. If an

entry’s domain architecture could be determined by a model,
it indicated that the entry could be predicted by the model
and it would be counted in the “Match” column. The “Hit”
column records the number of entries that were predicted
correctly.

For comparisonwith our ERPmethod, we used the estab-
lishedApriori algorithm [27] tomine forARs implemented in
a data mining package, Data-Mining-AssociationRules-0.10,
of the Comprehensive Perl Archive Network (CPAN) [28].
The support and confidence threshold values used according
to Chiu’s settings [13] were 3 and 0.6, respectively. Table 3
shows that entries that were predicted using the AR method
were considerably fewer than those predicted using the ERP
method. To compare the 2 methods fairly, the same testing
sets were used in the “AR” and “ERP1” rows, and entry sets
that could be matched using the ARmethod were used as the
testing set in row “ERP2.” When more entries were predicted
using the ERP method (the “ERP1” column), it resulted in
a lower prediction rate than when using the AR method
(the “AR” column) in Table 4. However, the ERP method is
slightly more effective when considering entries that could be
predicted using the AR method (the “ERP2” column).

The accuracy is provided by the ratio of the number of
entries predicted correctly to the number of entry-matching
rules of eachmethod in Table 4. After 20 runs of 5-fold cross-
validation, the mean accuracy values for 100 simulations
were estimated. In a single-EC case, both the AR and ERP
results reached 90%. However, estimation was less accurate
for multiple-EC reactions. It is worth mentioning that both
the ERP1 and ERP2 results are higher than the ARmethod in
the multiple-EC set.

In the model-building phase, we implemented the AR
method in a server equipped with 12 CPUs (4 cores, 3
packages) and 128GB of memory, and the server used for the
ERP method was equipped with 2 CPUs (2 cores, 1 package)
and 8GB of memory. The average model-building time was
over 1 hour for the AR method and 15 minutes for the ERP
method. The reasons may be that the AR method needed to
produce frequent item sets and many redundant rules was
generated. Furthermore, estimates of the prediction time for
a batch of query domain architectures are shown in Figure 6.
The vertical axis indicates the execution time in seconds, and
the horizontal axis marks the number of entries in a batch
query.

A substantial demand exists for enzymes for indus-
trial and medical applications in the global market; thus,
enzyme function annotation is receiving considerable atten-
tion because it offers reductions in the cost of chemical
processes. In this study, we proposed the ERP tool for
annotating enzyme reactions based on the query domain
architecture (Figure 7). After providing the domain archi-
tecture of a protein, the tool is used to determine whether
available enzyme reactions exist; if not, an absence message
is displayed. If enzyme reactions are available, the ERP tool is
used to locate one type of the same domain architecture such
that the corresponding enzyme reactions could be obtained
with confidence. If the same architecture is not found, the
next most promising subset is chosen from the given domain
architecture, and its corresponding enzyme reactions are
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Table 3: The average number of entries for 100 simulations.

Data set Method Hit Match Testing set

Single EC
AR 25.36 ± 4.49 27.92 ± 4.43 624.60 ± 15.15

ERP1 298.95 ± 13.12 592.53 ± 14.93 624.60 ± 15.15

ERP2 25.82 ± 4.47 27.92 ± 4.43 27.92 ± 4.43

Multiple ECs
AR 3.76 ± 1.81 44.44 ± 5.02 416.00 ± 15.24

ERP1 137.35 ± 11.72 378.61 ± 14.87 416.00 ± 15.24

ERP2 18.47 ± 3.37 44.44 ± 5.02 44.44 ± 5.02

Table 4: Accuracy of the AR and ERP models.

AR ERP1 ERP2
Single EC 90.72% ± 5.71% 50.45% ± 1.85% 92.39% ± 5.22%
Multiple ECs 8.36% ± 3.80% 36.28% ± 2.74% 41.66% ± 6.62%
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Figure 6: The average execution time of the ERP method for 100
simulations.

provided. If a similar domain architecture or a domain subset
exists, proteins consisting of this architecture are displayed.

To implement the deduction of enzyme reactions from
the domain architectures of enzymes, we designed a tool by
using the Perl script language as follows. The set of domains
in a protein must be listed before applying the ERP method.
In the “Domain set” dialog, the domain setmay be comma-or
space-delimited. When the domain set is ready, pressing the
“Predict” button starts processing according to the flowchart
in Figure 7.

Two main situations in which analysis of the entered
domain set could fail are described as follows.

(1) If the ERP tool cannot deduce the corresponding
enzyme reactions from the ERP integrated universe
set, a failure message, such as the domain architecture
failure notice {SSF54211, SSF54236} shown in Figure 8
is displayed in the results dialog, indicating that
enzyme reactions associated with the query domain
architecture could not be deduced from the universe
data set.

(2) In deducible cases, the existence of enzymes sharing
the same architecture is considered. If the corre-
sponding protein exists, succinctness and consistency

values expressing the strength of the domain architec-
ture are listed. If no enzyme sharing the same archi-
tecture is located, subsets of the domain architecture
are evaluated, and the domain subset with the highest
priority is selected.

In the event that the same architecture protein (Figure 9)
is found, a confirmationmessage is displayed and the domain
architecture (Figure 9, {SSF51110, SSF55486}) is identified.
The succinctness value of 1 indicates that an enzyme with
this type of domain architecture is capable of catalyzing the
reaction denoted as 3.4.24.21 without any auxiliary domains.
The consistency value of 0 indicates that a strong relationship
between the domain architecture {SSF51110, SSF55486} and
enzyme reaction 3.4.24.21 exists and that an association with
other enzyme reactions does not exist. Because only one
associated enzyme reaction exists, the strength measurement
Intensity3.4.24.21 is calculated as 1. The protein consisting of
the architecture {SSF51110, SSF55486} is shown in Figure 9 as
accession number F4KTN6 andUniProt ID F4KTN6 9SPHI.

In the absence of a protein consisting of the same
architecture (Figure 10), the subsets of domain architecture
{SSF54211, SSF54814} are enumerated as {SSF54211} and
{SSF54814}. After evaluating the 4 measurements used for
enumerating the domain architecture, the candidate with the
highest priority {SSF54814} is obtained. Similarly, an enzyme
with this architecture is capable of catalyzing the reaction
2.7.7.8 independently and with succinctness value of 1. The
relationship between the domain set {SSF54814} and enzyme
reaction 2.7.7.8 is strong according to the consistency value
of 0. Only one reaction, 2.7.7.8, is related to {SSF54814}; thus,
Intensity2.7.7.8 is calculated as 1.Theproteinwith the accession
number D9PMT6 and UniProt ID D9PMT6 9ZZZZ consist-
ing of this type of domain architecture {SSF54814} is listed in
Figure 10.

4. Conclusion

In this study, we investigated the intimate relationship
between domain architecture and enzyme-catalyzed reac-
tions by applying various criteria to the compiled uni-
verse data set of domains and EC numbers. The advent of
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Figure 7: Workflow of querying a domain architecture in the ERP model.

Figure 8: Message of the failure case for the domain architecture {SSF54211, SSF54236}.

Figure 9: The case of existence of the same architecture protein for the domain architecture {SSF51110, SSF55486}.
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Figure 10: The report displayed in the case of an absence of any protein for the domain architecture {SSF54211, SSF54814}.

high-throughput techniques has produced numerous gene
sequences, and annotating each enzyme reaction based on
experimental results is difficult. However, we can consider
domains as segments of sequences that fold into compact
structural units; thus, we can model protein sequences and
structures as these folded domains. We can identify and
retrieve domains by integrating established sequence align-
ment tools with the proposed ERP tool.
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