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Abstract Fireflies and their luminous courtships have inspired centuries of scientific study. Today

firefly luciferase is widely used in biotechnology, but the evolutionary origin of bioluminescence

within beetles remains unclear. To shed light on this long-standing question, we sequenced the

genomes of two firefly species that diverged over 100 million-years-ago: the North American

Photinus pyralis and Japanese Aquatica lateralis. To compare bioluminescent origins, we also

sequenced the genome of a related click beetle, the Caribbean Ignelater luminosus, with

bioluminescent biochemistry near-identical to fireflies, but anatomically unique light organs,

suggesting the intriguing hypothesis of parallel gains of bioluminescence. Our analyses support

independent gains of bioluminescence in fireflies and click beetles, and provide new insights into

the genes, chemical defenses, and symbionts that evolved alongside their luminous lifestyle.

DOI: https://doi.org/10.7554/eLife.36495.001

Fallon et al. eLife 2018;7:e36495. DOI: https://doi.org/10.7554/eLife.36495 1 of 146

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.36495.001
https://doi.org/10.7554/eLife.36495
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Introduction
Fireflies (Coleoptera: Lampyridae) represent the best-studied case of bioluminescence. The coded

language of their luminous courtship displays (Figure 1A; Video 1) has been long studied for its role

in mate recognition (Lloyd, 1966; Lewis and Cratsley, 2008; Stanger-Hall and Lloyd, 2015), while

non-adult bioluminescence is likely a warning signal of their unpalatable chemical defenses (De Cock

and Matthysen, 1999), such as the cardiotoxic lucibufagins of Photinus fireflies (Meinwald et al.,

1979). The biochemical understanding of firefly luminescence: an ATP, Mg2+, and O2-dependent

luciferase-mediated oxidation of the substrate luciferin (Shimomura, 2012), along with the cloning

of the luciferase gene (de Wet et al., 1985; Ow et al., 1986), led to the widespread use of lucifer-

ase as a reporter with unique applications in biomedical research and industry (Fraga, 2008). With

>2000 species globally, fireflies are undoubtedly the most culturally appreciated bioluminescent

group, yet there are at least three other beetle families with bioluminescent species: click beetles

(Elateridae), American railroad worms (Phengodidae) and Asian starworms (Rhagophthalmidae)

(Martin et al., 2017). These four closely related families (superfamily Elateroidea) have homologous

luciferases and structurally identical luciferins (Shimomura, 2012), implying a single origin of beetle

bioluminescence. However, as Darwin recognized in his ‘Difficulties on Theory’ (Darwin, 1872), the

eLife digest Glowing fireflies dancing in the dark are one of the most enchanting sights of a

warm summer night. Their light signals are ‘love messages’ that help the insects find a mate – yet,

they also warn a potential predator that these beetles have powerful chemical defenses. The light

comes from a specialized organ of the firefly where a small molecule, luciferin, is broken down by

the enzyme luciferase.

Fireflies are an ancient group, with the common ancestor of the two main lineages originating

over 100 million years ago. But fireflies are not the only insects that produce light: certain click

beetles are also bioluminescent.

Fireflies and click beetles are closely related, and they both use identical luciferin and similar

luciferases to create light. This would suggest that bioluminescence was already present in the

common ancestor of the two families. However, the specialized organs in which the chemical

reactions take place are entirely different, which would indicate that the ability to produce light

arose independently in each group.

Here, Fallon, Lower et al. try to resolve this discrepancy and to find out how many times

bioluminescence evolved in beetles. This required using cutting-edge DNA sequencing to carefully

piece together the genomes of two species of fireflies (Photinus pyralis and Aquatica lateralis) and

one species of click beetle (Ignelater luminosus). The genetic analysis revealed that, in all species,

the genes for luciferases were very similar to the genetic sequences around them, which code for

proteins that break down fat. This indicates that the ancestral luciferase arose from one of these

metabolic genes getting duplicated, and then one of the copies evolving a new role.

However, the genes for luciferase were very different between the fireflies and the click beetles.

Further analyses suggested that bioluminescence evolved at least twice: once in an ancestor of

fireflies, and once in the ancestor of the bioluminescent click beetles.

More results came from the reconstituted genomes. For example, Fallon, Lower et al. identified

the genes ‘turned on’ in the bioluminescent organ of the fireflies. This made it possible to list genes

that may be involved in creating luciferin, and enable flies to grow brightly for long periods. In

addition, the genetic information yielded sequences from bacteria that likely live inside firefly cells,

and which may participate in the light-making process or the production of potent chemical

defenses.

Better genetic knowledge of beetle bioluminescence could bring new advances for both insects

and humans. It may help researchers find and design better light-emitting molecules useful to track

and quantify proteins of interest in a cell. Ultimately, it would allow a detailed understanding of

firefly populations around the world, which could contribute to firefly ecotourism and help to

protect these glowing insects from increasing environmental threats.
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light organs amongst the luminous beetle families are clearly distinct (Figure 1B), implying indepen-

dent origins. Thus, whether beetle bioluminescence is derived from a single or multiple origin(s)

remains unresolved.

To address this long-standing question, we sequenced and analyzed the genomes of three biolu-

minescent beetle species. To represent the fireflies, we sequenced the widespread North American

‘Big Dipper Firefly’, P. pyralis (Figure 1A,C) and the Japanese ‘Heike-botaru’ firefly Aquatica lateralis

(Figure 1B). P. pyralis was used in classic studies of firefly bioluminescent biochemistry (Bitler and

McElroy, 1957) and the cloning of luciferase (de Wet et al., 1985), while A. lateralis, a species with

specialized aquatic larvae, is one of the few fireflies that can be reliably cultured in the laboratory

(Oba et al., 2013a). These two fireflies represent the two major firefly subfamilies, Lampyrinae and

Luciolinae, which diverged from a common ancestor over 100 Mya (Figure 1B) (Misof et al., 2014;
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Figure 1. Geographic and phylogenetic context of the Big Dipper firefly, Photinus pyralis. (A) P. pyralis males emitting their characteristic swooping ‘J’

patrol flashes over a field in Homer Lake, Illinois. Females cue in on these species-specific flash patterns and respond with their own species-specific

flash (Lloyd, 1966). Photo credit: Alex Wild. Inset: male and female P. pyralis in early stages of mating. Photo credit: Terry Priest. (B) Cladogram

depicting the hypothetical phylogenetic relationship between P. pyralis and related bioluminescent and non-bioluminescent taxa with Tribolium

castaneum and Drosophila melanogaster as outgroups. Numbers at nodes give approximate dates of divergence in millions of years ago (mya)

(Misof et al., 2014; Mckenna et al., 2015). Right: Dorsal and ventral photos of adult male specimens. Note the well-developed ventral light organs on

the true abdominal segments 6 and 7 of P. pyralis and A. lateralis. In contrast, the luminescent click beetle, I. luminosus, has paired dorsal light organs

at the base of its prothorax (arrowhead) and a lantern on the anterior surface of the ventral abdomen (not visible). (C) Empirical range of P. pyralis in

North America, extrapolated from 541 reported sightings (Appendix 1.2). Collection sites of individuals used for genome assembly are denoted with

circles and location codes. Cross hatches represent areas which likely have P. pyralis, but were not sampled. Diagonal hashes represent Ontario,

Canada.
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Mckenna et al., 2015). To facilitate evolutionary

comparisons, we also sequenced the ‘Cucubano’,

Ignelater luminosus (Figure 1B), a Caribbean bio-

luminescent click beetle, and member of the

‘Pyrophorus’ used by Raphaël Dubois (1849-

1929) to first establish the enzymatic basis of bio-

luminescence in the late 1800s (Dubois, 1885;

Dubois, 1886). Comparative analyses of the

genomes of these three species allowed us to

reconstruct the origin(s) and evolution of beetle

bioluminescence.

Results

Sequencing and assembly of firefly
and click-beetle genomes
Photinus pyralis adult males were collected from the Great Smoky Mountains National Park, USA

(GSMNP) and Mercer Meadows New Jersey, USA (MMNJ) (Figure 1C), and sequenced using short-

insert, mate-pair, Hi-C, and long-read Pacific Biosciences (PacBio) approaches (Appendix 4—table

1). These datasets were combined in a MaSuRCA (Zimin et al., 2013) hybrid genome assembly

(Appendix 1.5). The Aquatica lateralis genome was derived from an ALL-PATHs (Butler et al., 2008)

assembly of short insert and mate-pair reads from a single adult female from a laboratory-reared

population, whose lineage, dubbed ‘Ikeya-Y90’, was first collected 25 years ago from a now extinct

population in Yokohama, Japan (Appendix 2.5). A single Ignelater luminosus adult male, collected in

Mayagüez Puerto Rico, USA, was used to produce a high-coverage Supernova (Weisenfeld et al.,

2017) linked-read draft genome (Appendix 3.5), which was further manually scaffolded using low-

coverage long-read Oxford Nanopore MinION sequencing (Appendix 3.5.4).

The gene completeness and contiguity statistics of our P. pyralis (Ppyr1.3) and A. lateralis

(Alat1.3) genome assemblies are comparable to the genome of the model beetle Tribolium casta-

neum (Figure 2F; Appendix 4.1). The I. luminosus genome assembly (Ilumi1.2) is less complete, but

is comparable to other published insect genomes (Figure 2F; Appendix 4.1). Protein-coding gene-

sets for our study species were produced via an EvidenceModeler-mediated combination of homol-

ogy alignments, ab initio predictions, and de novo and reference-guided RNA-seq assemblies

followed by manual gene curation for gene families of interest (Appendix 1.10; 2.8; 3.8). These cod-

ing gene annotation sets for P. pyralis, A. lateralis, and I. luminosus are comprised of 15,773, 14,285,

and 27,557 genes containing 94.2%, 90.0%, and 91.8% of the Endopterygota Benchmarking Univer-

sal Single-Copy Orthologs (BUSCOs) (Simão et al., 2015), respectively. Protein clustering via pre-

dicted orthology indicated 77% of genes were found in orthogroups with at least one other species

(Figure 2E; Appendix 4—figure 1). We found the greatest orthogroup overlap between the P. pyra-

lis and A. lateralis genesets, as expected given the more recent phylogenetic divergence of these

species. Remaining redundancy in the P. pyralis assembly and annotation, as indicated by duplicates

of the BUSCOs and the assembly size (Figure 2F; Appendix 4—table 2) is likely due to the hetero-

zygosity of the outbred input libraries (Appendix 1). The higher BUSCO completeness of the assem-

blies as compared to the genesets (Appendix 4—table 3), suggests that future manual curation

efforts will lead to improved annotation completeness.

To enable the characterization of long-range genetic structure, we super-scaffolded the P. pyralis

genome assembly into 11 pseudo-chromosomal linkage groups using a Hi-C proximity-ligation link-

age approach (Figure 2A; Appendix 1.5.3). These linkage groups contain 95% of the assembly

(448.8 Mbp). Linkage group LG3a corresponds to the X-chromosome based on expected adult XO

male read coverage and gene content (Appendix 1.6.4.1) and its size (22.2 Mbp) is comparable to

the expected X-chromosome size based on sex-specific genome size estimates using flow cytometry

(~26 Mbp) (Lower et al., 2017). Homologs to T. castaneum X-chromosome genes were enriched on

LG3a over every other linkage group, suggesting that the X-chromosomes of these distantly related

beetles are homologous, and that their content has been reasonably conserved for >200 MY

(Appendix 1.6.4.1) (Mckenna et al., 2015). We hypothesized that the P. pyralis orthologs of known

Video 1. A Photinus pyralis courtship dialogue.
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bioluminescence genes, including the canonical luciferase Luc1 (de Wet et al., 1985) and the
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Figure 2. Photinus pyralis genome assembly and analysis. (A) Assembled Ppyr1.3 linkage groups with annotation of the location of known

luminescence-related genes, combined with Hi-C linkage density maps. Linkage group 3a (box with black arrow) corresponds to the X chromosome

(Appendix 1.6.4.1). (B) Fluorescence in situ hybridization (FISH) on mitotic chromosomes of a P. pyralis larvae. The telomeric repeats TTAGG (green)

localize to the ends of chromosomes stained with DAPI (blue). 20 paired chromosomes indicates that this individual was an XX female (Appendix 1.13).

(C) Genome schematic of P. pyralis mitochondrial genome (mtDNA). Like other firefly mtDNAs, it has a tandem repetitive unit (TRU) (Appendix 1.8). (D)

mCG is enriched across gene bodies of P. pyralis and shows methylation levels that are at least two times higher than other holometabolous insects

(Appendix 1.12). (E) Orthogroup (OGs) clustering analysis of genes with Orthofinder (Emms and Kelly, 2015) shows a high degree of overlap of the P.

pyralis, A. lateralis, and I. luminosus genesets with the geneset of Tribolium castaneum. Numbers within curved brackets (colored by species) represent

gene count from specific species within the shared orthogroups. Numbers with square brackets (black color) represent total gene count amongst

shared orthogroups. OGs = orthogroups, *=Not fully filtered to single isoform per gene. See Appendix 4.2.1 for more detail. Intermediate scripts and

species-specific overlaps are available as Figure 2—source data 1. (F) Assembly statistics for presented genomes. *=Tribolium castaneum model

beetle genome assembly (Tribolium Genome Sequencing Consortium et al., 2008) **=Genome size estimated by FC: flow cytometry. P. pyralis n = 5

females (SEM) I. luminosus n = 5 males (SEM), A. lateralis n = 3 technical-replicates of one female (SD). ***=Complete (C), and Duplicated (D),

percentages for the Endopterygota BUSCO (Simão et al., 2015) profile (Appendix 1.4, 2.4, 3.4, 4.1).

DOI: https://doi.org/10.7554/eLife.36495.005

The following source data is available for figure 2:

Source data 1. Figure 2E. Orthogroup clustering analysis.

DOI: https://doi.org/10.7554/eLife.36495.006

Source data 2. Excel file of Figure 2F table.

DOI: https://doi.org/10.7554/eLife.36495.007
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Figure 3. A genomic view of luciferase evolution. (A) The reaction scheme of firefly luciferase is related to that of fatty acyl-CoA synthetases. (B) Model

for genomic evolution of firefly luciferases. Ranging from genome structures of luciferase loci in extant fireflies (top), to inferred genomic structures in

ancestral species (bottom). Arrow (left) represents ascending time. Not all adjacent genes within the same clade are shown. (C) Maximum likelihood

tree of luciferase homologs. Grey circles above gene names indicate the presence of peroxisomal targeting signal 1 (PTS1). Color gradients indicate the

transcript per million (TPM) values of whole body in each sex/stage (grey to blue) and in the prothorax or abdominal lantern (grey to orange to green).

Tree and annotation visualized using iTOL (Letunic and Bork, 2016). Prothorax and abdominal lantern expression values for I. luminosus are from

whole prothorax plus head, and metathorax plus the two most anterior abdominal segments. Fluc = firefly luciferases, Eluc = elaterid luciferases, R/

PLuc = rhagophthalmid/phengodid luciferases. (Appendix 4.3.2) Gene tree, gene accession numbers, annotation, and expression values are available as

Figure 3—source data 1. (D) Synteny analysis of beetle luciferase homologs. Nine of the 14 A. lateralis PACS/ACS genes closely flank AlatLuc1 on
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specialized luciferin sulfotransferase LST (Fallon et al., 2016), would be located on the same linkage

group to facilitate chromosomal looping and enhancer assisted co-expression within the light organ.

We, however, found these genes on separate linkage groups (Figure 2A).

In addition to nuclear genome assembly and coding gene annotation, we also assembled the

complete mitochondrial genomes (mtDNA) of P. pyralis (Figure 2C; Appendix 1.8) and I. luminosus

(Appendix 3.10), while the mtDNA sequence of A. lateralis was recently published (Maeda et al.,

2017). These mtDNA assemblies show high conservation of gene content and synteny, with the

exception of the variable ~1 Kbp tandem repeat unit (TRU) found in the firefly mtDNAs.

As repetitive elements are common participants and drivers of genome evolution (Feschotte and

Pritham, 2007), we next sought to characterize the repeat content of our genome assemblies. Over-

all, 42.6%, 19.8%, and 34.1% of the P. pyralis, A. lateralis, and I. luminosus assemblies were found to

be repetitive, respectively (Appendix 1.11; 2.9; 3.9). Of these repeats 66.7%, 39.4%, and 55% could

not be classified as any known repetitive sequence, respectively. Helitrons, DNA transposons that

transpose through rolling circle replication (Kapitonov and Jurka, 2001), are among the most abun-

dant individual repeat elements in the P. pyralis assembly. Via in situ hybridization, we identified that

P. pyralis chromosomes have canonical telomeres with telomeric repeats (TTAGG) (Figure 2B;

Appendix 1.13).

DNA methylation is common in eukaryotes, but varies in degree across insects, especially within

Coleoptera (Bewick et al., 2017). Furthermore, the functions of DNA methylation across insects

remain obscure (Bewick et al., 2017; Glastad et al., 2017). To examine firefly cytosine methylation,

we characterized the methylation status of P. pyralis DNA with whole genome bisulfite sequencing

(WGBS). Methylation at CpGs (mCG) was unambiguously detected at ~20% within the genic regions

of P. pyralis and its methylation levels were at least twice those reported from other holometabolous

insects (Figure 2D; Appendix 1.12). Molecular evolution analyses of the DNA methyltransferases

(DNMTs) show that direct orthologs of both DNMT1 and DNMT3 were conserved in P. pyralis, A.

lateralis, and I. luminosus (Appendix 4—figure 2; Appendix 4.2.3), implying that our three study

species, and inferentially likely most firefly lineages, possess mCG. Corroborating this claim, CpG[O/

E] analysis of methylation indicated our three study species had DNA methylation (Appendix 4—fig-

ure 3).

The genomic context of firefly luciferase evolution
Two luciferase paralogs have been previously described in fireflies (Oba et al., 2013a; Bessho-

Uehara et al., 2017). P. pyralis Luc1 was the first firefly luciferase cloned (de Wet et al., 1985), and

its direct orthologs have been widely identified from other fireflies (Oba, 2014). The luciferase

paralog Luc2 was previously known only from a handful of Asian taxa, including A. lateralis

Figure 3 continued

scaffold 228, while 4 of the 13 P. pyralis PACS/ACS genes are close neighbors of PpyrLuc1 on LG1, with a further seven genes 2.4 Mbp and 39.1 Mbp

away on the same linkage-group. Although the Luc1 loci in P. pyralis and A. lateralis are evidently derived from a common ancestor, the relative

positions of the most closely related flanking PACS/ACS genes have diverged between the two species. IlumLuc was captured on a separate scaffold

(Ilumi1.2_Scaffold13255) from its most most closely related PACSs (IlumPACS8, IlumPACS9) on Ilumi1.2_Scaffold9864, although three more distantly

related PACS genes (IlumiPACS1, IlumiPACS2, IlumiPACS4) are co-localized with IlumLuc. In contrast, a different scaffold (Ilumi1.2_Scaffold9654) shows

orthology to the firefly Luc1 locus. The full Ilumi1.2_Scaffold13255 was produced by a manual evidence-supported merge of two scaffolds (Appendix

3.5.4). Genes with a PTS1 are indicated by a dark outline, except for the genes with white interiors, which instead represent non-PACS/ACS genes

without an identified homolog in the other scaffolds. Co-orthologous genes are labeled in the same color in the phylogenetic tree and are connected

with corresponding color bands in synteny diagram. Genes and genomic regions are to scale (Scale bar = 25 Kbp). Gaps excluded from the figure are

shown with dotted lines and are annotated with their length in square brackets. Scaffold ends are shown with rough black bars. MGST = Microsomal

glutathione S-transferase, IMP = Inositol monophosphatase, PRNT = Polyribonucleotide nucleotidyltransferase. Figure produced with GenomeTools

‘sketch’ (v1.5.9) (Gremme et al., 2013). Figure production scripts available as Figure 3—source data 2.

DOI: https://doi.org/10.7554/eLife.36495.008

The following source data is available for figure 3:

Source data 1. Gene tree, gene accession numbers, annotation, and expression values for Figure 3C.

DOI: https://doi.org/10.7554/eLife.36495.009

Source data 2. Bash scripts for Figure 3D figure production.

DOI: https://doi.org/10.7554/eLife.36495.010
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Figure 4. Parallel evolution of elaterid and firefly luciferase. (A) Ancestral state reconstruction recovers at least two gains of luciferase activity in

bioluminescent beetles. Luciferase activity (top right figure key; black: luciferase activity, white: no luciferase activity, shaded: undetermined) was

annotated on extant firefly luciferase homologs via literature review or inference via direct orthology. The ancestral states of luciferase activity within the

putative ancestral nodes were then reconstructed with an unordered parsimony framework and a maximum likelihood (ML) framework (bottom left

figure key; Appendix 4.3.3). Two gains (‘G’) of luciferase activity, annotated with black arrows and yellow stars, are hypothesized. These hypothesized

gains occurred once in a gene within the common ancestor of fireflies, rhagophthalmid, and phengodid beetles, and once in a gene within the

common ancestor of bioluminescent elaterid beetles. Scale bar is substitutions per site. Numbers adjacent to nodes represents node support. NEXUS

and newick files available as Figure 4—source data 1 (B) Molecular adaptation analysis supports independent neofunctionalization of click beetle

luciferase. We tested the molecular adaptation of elaterid luciferase using the adaptive branch-site REL test for episodic diversification (aBSREL)

method (Smith et al., 2015) (Appendix 4.3.4). The branch leading to the common ancestor of elaterid luciferases (red star) was one of three branches

(red and blue stars) recovered with significant (p<0.01) evidence of positive selection, with 35% of sites showing strong directional selection (w or max

dN/dS = 3.98), which we interpret as signal of the initial neofunctionalization of elaterid ancestral luciferase (EAncLuc) from an ancestor without

luciferase activity. As the selected branches with blue stars are red-shifted elaterid luciferases (Oba et al., 2010a; Stolz et al., 2003), they may

represent the post-neofunctionalization selection of a few key sites via sexual selection of emission colors. Specific sites identified as under selection

using Mixed Effect Model of Evolution (MEME) and Phylogenetic Analysis by Maximum Likelihood (PAML) methods are described in Appendix 4.3.4.

The tree and results from the full adaptive model are shown. Branch length, with the exception of the PpyrLuc1 branch which was shortened, reflects

the number of substitutions per site. Numbers adjacent to nodes represents node support. Figure was produced with iTOL (Letunic and Bork, 2016).

Gene tree, metadata, and coding nucleotide multiple sequence alignment available as Figure 4—source data 2.

DOI: https://doi.org/10.7554/eLife.36495.011

The following source data is available for figure 4:

Source data 1. NEXUS and Newick files for luciferase ancestral state reconstruction in Figure 4A.

DOI: https://doi.org/10.7554/eLife.36495.012

Figure 4 continued on next page
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(Oba et al., 2013a; Bessho-Uehara et al., 2017). Previous investigations of these Asian taxa have

shown that Luc1 is responsible for light production from the lanterns of adults, larvae, prepupae and

pupae, whereas Luc2 is responsible for the dim glow of eggs, ovaries, prepupae and the whole

pupal body (Bessho-Uehara et al., 2017). From our curated genesets (Appendix 1.10; 2.8), we

unequivocally identified two firefly luciferases, Luc1 and Luc2, in both the P. pyralis and A. lateralis

genomes. Our RNA-Seq data further show that in both P. pyralis and A. lateralis, Luc1 and Luc2 dis-

play expression patterns consistent with previous reports. While Luc1 is the sole luciferase expressed

in the lanterns of both larvae and adults, regardless of sex, Luc2 is expressed in other tissues and

stages, such as eggs (Figure 3C). Notably, Luc2 expression is detected in RNA libraries derived from

adult female bodies (without head or lantern), suggesting detection of ovary expression as described

in previous studies (Bessho-Uehara et al., 2017). Together, these results support that since their

divergence via gene duplication prior to the divergence of Lampyrinae and Luciolinae, Luc1 and

Luc2 have established different, but conserved roles in bioluminescence throughout the firefly life

cycle.

Firefly luciferase is hypothesized to be derived from an ancestral peroxisomal fatty acyl-CoA syn-

thetase (PACS) (Figure 3A) (Oba et al., 2003; Oba et al., 2006a). We found that, in both firefly spe-

cies, Luc1 is genomically clustered with its closely related homologs, including PACSs and non-

peroxisomal acyl-CoA synthetases (ACSs), enzymes which can be distinguished by the presence/

absence of a C-terminal peroxisomal-targeting-signal-1 (PTS1). We also found nearby microsomal

glutathione S-transferase (MGST) family genes (Figure 3D) that are directly orthologous between

Figure 4 continued

Source data 2. Gene tree, metadata, and coding nucleotide multiple sequence alignment for Elaterid luciferase homolog branch selection test.

DOI: https://doi.org/10.7554/eLife.36495.013
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The following source data is available for figure 5:

Source data 1. Table of Figure 5 highly expressed, differentially expressed, orthogroup overlapped genes.

DOI: https://doi.org/10.7554/eLife.36495.015
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both species, Genome-wide phylogenetic analysis of the luciferases, PACSs and ACSs genes indi-

cates that Luc1 and Luc2 form two orthologous groups, and that the neighboring PACS and ACS

genes near Luc1 form three major clades (Figure 3C): Clade A, whose common ancestor and most

extant members are ACSs, and Clades B and C whose common ancestors and most extant members

are PACSs. Luc1 and Luc2 are highly conserved at the level of gene structure—both are composed

of seven exons with completely conserved exon/intron boundaries (Appendix 4—figure 4; Appen-

dix 4—figure 5), and most members of Clades A, B, and C also have seven exons. The exact syn-

tenic and orthology relationships of the ACS and PACS genes adjacent to the Luc1 locus remains

unclear, likely due to subsequent gene divergence and shuffling (Figure 3C,D).

Luc2 is located on a different linkage-group from Luc1 in P. pyralis and on a different scaffold

from Luc1 in A. lateralis, consistent with the interpretation that Luc1 and Luc2 lie on different chro-

mosomes in both firefly species. No PACS or ACS genes were found in the vicinity of Luc2 in either

species. These data support that tandem gene duplication in a firefly ancestor gave rise to several

ancestral PACS paralogs, one of which neofunctionalized in place to become the ancestral luciferase

(AncLuc) (Figure 3B). Prior to the divergence of the firefly subfamilies Lampyrinae and Luciolinae

around 100 Mya (Appendix 4.3), this AncLuc duplicated, possibly via a long-range gene duplication

event (e.g. transposon mobilization), and then subfunctionalized in its transcript expression pattern

to give rise to Luc2, while the original AncLuc subfunctionalized in place to give rise to Luc1

(Figure 3B). From the shared Luc gene clustering in both fireflies, we infer the structure of the pre

Luc1/Luc2 duplication AncLuc locus contained one or more ACS genes (Clade A), one or more PACS

genes (Clade B/C), and one or more MGST family genes (Figure 3B).

Independent origins of firefly and click beetle luciferase
To resolve the number of origins of luciferase activity, and therefore bioluminescence, between fire-

flies and click beetles, we first identified the luciferase of I. luminosus luciferase (IlumLuc), and com-

pared its genomic context to the luciferases of P. pyralis and A. lateralis (Figure 3D). Unlike some

other described bioluminescent Elateridae, which have separate luciferases expressed in the dorsal

prothorax and ventral abdominal lanterns (Oba et al., 2010a), we identified only a single luciferase

in the I. luminosus genome which was highly expressed in both of the lanterns (Figure 3C; Appendix

3.8). The exon number and exon-intron splice junctions of IlumLuc are identical to those of firefly

luciferases, but unlike the firefly luciferases which have short introns less than <100 bp long, IlumLuc

has two long introns (Appendix 4—figure 4). We found several PACS genes in the I. luminosus

genome which were related to IlumLuc and formed a clade (Clade D) specific to the Elateridae

(Figure 3C,D). IlumLuc lies on a 366 Kbp scaffold containing 18 other genes, including three related

Clade D PACS genes (Scaffold 13255; Figure 3D; Figure 4); however, the Clade D genes that are

most closely related to IlumLuc are found on a separate 650 Kbp scaffold (Scaffold 9864;

Figure 3D). We infer that the IlumLuc locus is not orthologous to the extant firefly Luc1 locus, as

IlumLuc is not physically clustered with Clade A, B or C ACS or PACS genes (Figure 3C,D). We

instead identified a different scaffold in I. luminosus that is likely orthologous to the firefly Luc1 locus

(Scaffold 9654; Figure 3D). This assessment is based on the presence of adjacent Clade A and B

ACS and PACS genes, as well as orthologous exoribonuclease family (PRNT) and inositol monophos-

phatase family (IMP) genes, both of which were found adjacent to the A. lateralis Luc1 locus, but not

the P. pyralis Luc1 locus (Figure 3D). Interestingly, IlumPACS11, the most early-diverging member

of Clade D, was also found on Scaffold 9654 (Figure 3D). This finding is consistent with an expansion

of Clade D following duplication of the IlumPACS11 syntenic ancestor to a distant site. Overall, these

genomic structures are consistent with independent origins of firefly and click beetle luciferases.

We then carried out targeted molecular evolution analyses including the known beetle luciferases

and their closely related homologs. Ancestral state reconstruction of luminescent activity on the

gene tree using Mesquite (Maddison and Maddison, 2017) recovered two independent gains of

luminescence as the most parsimonious and likely scenario: once in click beetles, and once in the

common ancestor of firefly, phengodid, and rhagophthalmid beetles (Figure 4A; Appendix 4.3.3). In

an independent molecular adaptation analysis utilizing the coding nucleotide sequence of the ela-

terid luciferases and their close homologs within Elateridae, 35% of the sites of the branch leading

to the ancestral click beetle luciferase showed a statistically significant signal of episodic positive

selection with dN/dS > 1 (w or max dN/dS = 3.98) as compared to the evolution of its paralogs using

the aBSREL branch-site selection test (Smith et al., 2015) (Figure 4B; Appendix 4.3.4). This implies
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that the common ancestor of the click beetle luciferases (EAncLuc) underwent a period of acceler-

ated directional evolution. As the branch under selection in the molecular adaptation analysis

(Figure 4B) is the same branch of luciferase activity gain via ancestral reconstruction (Figure 4A), we

conclude that the identified selection signal represents the relatively recent neofunctionalization of

click beetle luciferase from a non-luminous ancestral Clade D PACS gene, distinct from the more

ancient neofunctionalization of firefly luciferase. Based on the constraints from our tree, we deter-

mine that this neofunctionalization of EAncLuc occured after the divergence of the elaterid subfamily

Agrypninae. In contrast, we cannot determine if the original neofunctionalization of AncLuc occurred

in the ancestral firefly, or at some point during the evolution of ‘cantharoid’ beetles, an unofficial

group of beetles including the luminous Rhagophthalmidae, Phengodidae and Lampyridae among

other non-luminous groups, but not the Elateridae (Branham and Wenzel, 2003). There is evidence

for a subsequent luciferase duplication event in phengodids, but not in rhagophthalmids, that is

independent of the duplication event that gave rise to Luc1 and Luc2 in fireflies (Figures 3C and

4). Altogether, our results strongly support the independent neofunctionalization of luciferase activ-

ity in click beetles and fireflies, and therefore at least two independent gains of luciferin-utilizing

luminescence in beetles.

Metabolic adaptation of the firefly lantern
Beyond luciferase, we sought to characterize other metabolic traits which might have co-evolved in

fireflies to support bioluminescence. Of particular importance, the enzymes of the de novo biosyn-

thetic pathway for firefly luciferin remain unknown (Oba et al., 2013b). We hypothesized that biolu-

minescent accessory enzymes, either specialized enzymes with unique functions in luciferin

metabolism or enzymes with primary metabolic functions relevant to bioluminescence, would be

highly expressed (HE: 90th percentile; Appendix 4.2.2) in the adult lantern, and would be differen-

tially expressed (DE; Appendix 4.2.2) between luminescent and non-luminescent tissues. To deter-

mine this, we performed RNA-Seq and expression analysis of the dissected P. pyralis and A. lateralis

adult male lantern tissue compared with a non-luminescent tissue (Appendix 4.2.2). We identified a

set of predicted orthologous enzyme-encoding genes conserved in both P. pyralis and A. lateralis

that met our HE and DE criteria (Figure 5). Both luciferase and luciferin sulfotransferase (LST), a spe-

cialized enzyme recently implicated in luciferin storage in P. pyralis (Fallon et al., 2016), were recov-

ered as candidate genes using four criteria (HE, DE, enzymes, direct orthology across species),

confirming the validity of our approach. While a direct ortholog of LST is present in A. lateralis, it is

absent from I. luminosus, suggesting that LST, and the presumed luciferin storage it mediates, is an

exclusive ancestral firefly or cantharoid trait. This finding is consistent with previous hypotheses of

the absence of LST in Elateridae (Fallon et al., 2016), and with the overall hypothesis of indepen-

dent evolution of bioluminescence between the Lampyridae and Elateridae.

Moreover, we identified several additional enzyme-encoding HE and DE lantern genes that are

likely important in firefly lantern physiology (Figure 5). For instance, adenylate kinase likely plays a

critical role in efficient recycling of AMP post-luminescence, and cystathionine gamma-lyase supports

a key role of cysteine in luciferin biosynthesis (Oba et al., 2013b) and recycling (Okada et al.,

1974). We also detected a combined adenylyl-sulfate kinase and sulfate adenylyltransferase enzyme

(ASKSA) among the lantern-enriched gene list (Appendix 4—figure 8), implicating active biosynthe-

sis of 3’-phosphoadenosine-5’-phosphosulfate (PAPS), the cofactor of LST, in the lantern. This finding

highlights the importance of LST-catalyzed luciferin sulfonation for bioluminescence. These firefly

orthologs of ASKSA are the only members amongst their paralogs to contain a PTS1 (Appendix 4—

figure 8), suggesting specialized localization to the peroxisome, the location of the luminescence

reaction. This suggests that the levels of sulfoluciferin and luciferin may be actively regulated within

the peroxisome of lantern cells in response to luminescence. Overall, our findings of several directly

orthologous enzymes that share expression patterns in the light organs of both P. pyralis and A. lat-

eralis suggests that the enzymatic physiology and/or the gene expression patterns of the photocytes

were already fixed in the Luciolinae-Lampyrinae ancestor.

We also performed a similar expression analysis for genes not annotated as enzymes, yielding

several genes with predicted lysosomal function (Appendix 4—table 6; Appendix 4.4). This suggests

that the abundant but as yet unidentified ‘differentiated zone granule’ organelles of the firefly light

organ (Ghiradella and Schmidt, 2004) could be lysosomes. Interestingly, we found a HE (TPM

value ~300) and DE opsin, Rh7, in the light organ of A. lateralis, but not P. pyralis (Appendix 4—
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figure 9; Appendix 4.5), suggesting a potential light perception role for Rh7 in the A. lateralis lan-

tern, akin to the light perception role described for Drosophila Rh7 (Ni et al., 2017).

Genomic insights into firefly chemical defense
Firefly bioluminescence is postulated to have first evolved as an aposematic warning of larval chemi-

cal defenses (Branham and Wenzel, 2003). Lucibufagins are abundant unpalatable defense steroids

described from certain North American firefly species, most notably in the genera Photinus

(Meinwald et al., 1979), Lucidota (Gronquist et al., 2005), and Ellychnia (Smedley et al., 2017),

and hence are candidates for ancestral firefly defense compounds. To test whether lucibufagins are

widespread among bioluminescent beetles, we assessed the presence of lucibufagins in P. pyralis,

A. lateralis, and I. luminosus by liquid-chromatography high-resolution accurate-mass mass-spec-

trometry (LC-HRAM-MS). While lucibufagins were found in high abundance in P. pyralis adult hemo-

lymph, they were not observed in A. lateralis adult hemolymph, nor in I. luminosus metathorax

extract (Figure 6B; Appendix 4.6). Since chemical defense is presumably most critical in the long-
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Figure 6. An expansion in the CYP303-P450 family correlates with lucibufagin content. (A) Hypothesized lucibufagin biosynthetic pathway, starting from

cholesterol. (B) LC-HRAM-MS multi-ion-chromatograms (MIC) showing the summation of exact mass traces for the [M + H]+ of 11 lucibufagin chemical

formulas ± 5 ppm, calibrated for run-specific systematic m/z error (Appendix 4—table 9). Y-axis upper limit for P. pyralis adult hemolymph and larval

body extract is 1000x larger than other traces. Arrows (blue/teal) indicate features with high MS2 spectral similarity to known lucibufagins. Sporadic

peaks in A. lateralis body, and I. luminosus thorax traces are not abundant, preventing MS2 spectral acquisition and comparison, but do not match the

m/z and RT of P. pyralis lucibufagins (Appendix 4.6). (C) Maximum likelihood tree of CYP303 family cytochrome P450 enzymes from P. pyralis, A.

lateralis, T. castaneum, and D. melanogaster. P. pyralis shows a unique CYP303 family expansion, whereas the other species only have a single CYP303.

Circles represent node bootstrap support >60%. Branch length measures substitutions per site. Pseudogenes are annotated with the greek letter 	

(Appendix 1.10.1; 4.2.4). (D) Genomic loci for P. pyralis CYP303 family genes. These genes are found in multiple gene clusters on LG9, supporting origin

via tandem duplication. Introns >4 kbp are shown.

DOI: https://doi.org/10.7554/eLife.36495.016

The following source data is available for figure 6:

Source data 1. CYP303 multiple sequence alignment and gene tree for Figure 6C.

DOI: https://doi.org/10.7554/eLife.36495.017
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lived larval stage, we next tested whether lucibufagins are present in all firefly larvae even if they are

not present in the adults of certain species. We found lucibufagins in P. pyralis larval extracts; how-

ever, they were not observed in A. lateralis larval extracts (Figure 6B; Appendix 4.6). Together,

these results suggest that the lucibufagin biosynthetic pathway is either a derived trait only found in

particular firefly taxa (e.g. subfamily: Lampyrinae), or that lucibufagin biosynthesis was an ancestral

trait that was lost in A. lateralis. Consistent with the former hypothesis, the presence of lucibufagins

in non-North-American Lampyrinae has been previously reported (Tyler et al., 2008), but to date

there are no reports of lucibufagins in the Luciolinae.

The lucibufagin biosynthetic pathway is currently unknown. However, their chemical structure sug-

gests a biosynthetic origin from cholesterol followed by a series of hydroxylations, -OH acetylations,

and the side-chain oxidative pyrone formation (Figure 6A) (Meinwald et al., 1979). We hypothe-

sized that cytochrome P450s, an enzyme family widely involved in metabolic diversification of

organic substrates (Hamberger and Bak, 2013), could underlie several oxidative reactions in the

proposed lucibufagin biosynthetic pathway. We therefore inferred the P450 phylogeny among our

three bioluminescent beetle genomes to identify any lineage-specific genes correlated with lucibufa-

gin presence. Our analysis revealed a unique expansion of one P450 family, the CYP303 family, in P.

pyralis. While 94/97 of currently sequenced winged-insect genomes on OrthoDB (Zdobnov et al.,

2017), as well as the A. lateralis and I. luminosus genomes, contain only a single CYP303 family

gene, the P. pyralis genome contains 11 CYP303 genes and two pseudogenes (Figure 6C), which

expanded via tandem duplication on the same linkage group (Figure 6D). The CYP303 ortholog of

D. melanogaster, CYP303A1, has been shown to play a role in mechanosensory bristle development

(Willingham and Keil, 2004). Although the exact biochemical function and substrate of D. mela-

nogaster CYP303A1 is unknown, its closely related P450 families operate on an insect steroid hor-

mone ecdysone (Willingham and Keil, 2004). As ecdysone and lucibufagins are structurally similar,

CYP303 may operate on steroid-like compounds. Therefore, the lineage-specific expansion of the

CYP303 family in P. pyralis is a compelling candidate in the metabolic evolution of lucibufagins as

chemical defenses associated with the aposematic role of bioluminescence. Alternatively, this

CYP303 expansion in P. pyralis may be associated with other lineage-specific chemical traits, such as

pheromone production.

Symbionts of bioluminescent beetles
Given the increasingly recognized contributions of symbionts to host metabolism (Newman and

Cragg, 2015), we characterized the hologenome of all three beetles as potential contributors to

metabolic processes related to bioluminescence. Whole genome sequencing of our wild-caught and

laboratory reared fireflies revealed a rich microbiome. Amongst our firefly genomes, we found vari-

ous bacterial genomes, viral genomes, and the complete mtDNA for a phorid parasitoid fly, Apoce-

phalus antennatus, the first mtDNA reported for genus Apocephalus. This mtDNA was inadvertently

included in the P. pyralis PacBio library via undetected parasitization of the initial specimens, and

was assembled via a metagenomic approach (Appendix 5.2). Independent collection of A. antenna-

tus which emerged from field-collected P. pyralis adults and targeted COI sequencing later con-

firmed the taxonomic origin of this mtDNA (Appendix 5.3). We also sequenced and

metagenomically assembled the complete circular genome (1.29 Mbp, GC: 29.7%; ~50x coverage)

for a P. pyralis-associated mollicute (Phylum: Tenericutes), Entomoplasma luminosum subsp. pyralis

(Appendix 5.1). Entomoplasma spp. were first isolated from the guts of North American fireflies

(Hackett et al., 1992) and our assembly provides the first complete genomic assembly of any Ento-

moplasma species. Broad read coverage for the E. luminosus subsp. pyralis genome was detected in

5/6 of our P. pyralis DNA libraries, suggesting that Entomplasma is a highly prevalent, possibly verti-

cally inherited, P. pyralis symbiont. It has been hypothesized that these Entomoplasma mollicutes

could play a role in firefly metabolism, specifically via contributing to cholesterol metabolism and

lucibufagin biosynthesis (Smedley et al., 2017).

Within our unfiltered A. lateralis genomic assembly (Alat1.2), we also found 43 scaffolds (2.3

Mbp; GC:29.8%, ~64x coverage), whose taxonomic annotation corresponded to the Tenericutes

(Appendix 2.5.2), suggesting that A. lateralis may also harbor a mollicute symbiont. Alat1.2 also con-

tains 2119 scaffolds (13.0 Mbp, GC:63.7%, ~25x coverage) annotated as of Proteobacterial origin.

Limited Proteobacterial symbionts were detected in the I. luminosus assembly (0.4 Mbp; GC:30–65%

~10x coverage) (Appendix 3.5.2), suggesting no stable symbiont is present in adult I. luminosus.
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Lastly, we detected two species of novel orthomyxoviridae-like ssRNA viruses, which we dub Photi-

nus pyralis orthomyxo-like virus 1 and 2 (PpyrOMLV1/2), that were highly prevalent across our P. pyr-

alis RNA-Seq datasets, and showed multi-generational transovarial transmission in the laboratory

(Appendix 5.4). We also found several endogenous viral elements (EVEs) for PpyrOMLV1/2 in P. pyr-

alis (Appendix 5.5). These viruses are the first reported in any firefly species, and represent only the

second report of transgenerational transfer of any Orthomyxoviridae virus (Marshall et al., 2014),

and the second report of Orthomyxoviridae derived EVEs (Katzourakis and Gifford, 2010).

Together, these genomes from the firefly holobiont provide valuable resources for the continued

inquiry of the symbiotic associates of fireflies and their biological and ecological significance.

Discussion
Here, we generated genome assembles, diverse tissue and life-stage RNA-Seq data, and LC/MS

data for three evolutionarily informative and historically well-studied bioluminescent beetles, and

used a series of comparative analyses to illuminate long-standing questions on the origins and evolu-

tion of beetle bioluminescence. By analyzing the genomic synteny and molecular evolution of the

beetle luciferases and their extant and inferred-ancestral homologs, we found strong support for the

independent origins of luciferase, and therefore bioluminescence, between fireflies and click beetles.

Our approaches and analyses lend molecular evidence to the previous morphology-phylogeny based

hypotheses of parallel gain proposed by Darwin and others (Darwin, 1872; Branham and Wenzel,

2003; Costa, 1975; Sagegami-Oba et al., 2007; Bocakova et al., 2007; Oba, 2009; Day, 2013).

While our elaterid luciferase selection analysis strongly supports an independent gain, we did not

perform an analogous selection analysis of luciferase homologs across all bioluminescent beetles,

due to the lack of genomic data from key related beetle families. Additional genomic information

from early-diverged firefly lineages, other luminous beetle taxa (e.g. Phengodidae and Rhagophthal-

midae), and non-luminous elateroid taxa (e.g. Cantharidae and Lycidae), will be useful to further

develop and test models of luciferase evolution, including the hypothesis that bioluminescence also

originated independently in the Phengodidae and/or Rhagophthalmidae. As some phylogenetic

relationships of fireflies and other lineages of superfamily Elateroidea remain uncertain, continued

efforts to produce reference phylogeny for these taxa are required (Martin et al., 2017;

Bocak et al., 2018). Toward this goal, the recently published Pyrocoelia pectoralis Lampyrinae firefly

genome is an important advance which will contribute to future phylogenetic and evolutionary stud-

ies (Fu et al., 2017).

The independent origins of the firefly and click beetle luciferases provide an exemplary natural

model system to understand enzyme evolution through parallel mutational trajectories and the evo-

lution of complex metabolic traits generally. The abundance of gene duplication events of PACSs

and ACSs at the ancestral luciferase locus in both fireflies and I. luminosus suggests that ancestral

promiscuous enzymatic activities served as raw materials for the selection of new adaptive catalytic

functions (Weng, 2014). But while parallel evolution of luciferase implies evolutionary independence

of bioluminescence overall, the reality may be more complex, and the other subtraits of biolumines-

cence amongst the bioluminescent beetles likely possess different evolutionary histories from lucifer-

ase. While subtraits presumably dependent on an efficient luciferase, such as specialized tissues and

neural control, almost certainly arose well after luciferase specialization, and thus can be inferred to

also have independent origins between fireflies and click beetles, luciferin, which was presumably a

prerequisite to luciferase neofunctionalization, may have been present in their common ancestor.

Microbial endosymbionts, such as the tenericutes detected in our P. pyralis and A. lateralis datasets,

are intriguing candidate contributors to luciferin metabolism and biosynthesis. Alternatively, recent

reports have shown that firefly luciferin is readily produced non-enzymatically by mixing benzoqui-

none and cysteine (Kanie et al., 2016), and that a compound resulting from the spontaneous cou-

pling of benzoquinone and cysteine acts as a luciferin biosynthetic intermediate in A. lateralis

(Kanie et al., 2018). Benzoquinone is known to be a defense compound of distantly related beetles

(Dettner, 1987) and other arthropods (e.g. millipedes) (Shear, 2015). Therefore, the evolutionary

role of sporadic low-level luciferin synthesis through spontaneous chemical reactions, either in the

ancestral bioluminescent taxa themselves, or in non-bioluminescent taxa, and dietary acquisition of

luciferin by either the ancestral or modern bioluminescent taxa, should be considered. To decipher

between these alternative evolutionary possibilities, the discovery of genes involved in luciferin
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metabolism in fireflies and other bioluminescent beetles will be essential. Here, as a first step toward

that goal, we identified conserved, enriched and highly expressed enzymes of the firefly lantern that

are strong candidates in luciferin metabolism and the elusive luciferin de novo biosynthetic pathway.

Ultimately focused experimentation will be needed to decipher the biochemical function of these

enzymes.

The early evolution of firefly bioluminescence was likely associated with an aposematic role. The

adaptive light production of the primordial firefly (or alternatively, a primordial bioluminescent can-

tharoid beetle) that enabled the selection and neofunctionalization of luciferase was perhaps linked

to a response to predators by a primitive whole-body oxygen-gated luminescence, where a startle-

response mediated increase in hemolymph oxygenation through spiracle opening and escape loco-

motion caused a concomitant increase in luminescence (Buck and Case, 2002; Case, 2004). Alterna-

tively, an early role for firefly luminescence in mate attraction has not been ruled out (Buck and

Case, 2002). The presence of particular unpalatable defense compounds in all extant fireflies would

be consistent with an ancestral role and the former hypothesis, and the chemical analysis of tissues

across species and life stages presented in this work provides new insights into the evolutionary

occurrence of lucibufagins, the most well-studied defense compounds associated with fireflies. Our

results reject lucibufagins as ancestral defense compounds of fireflies, but rather suggest them as a

derived metabolic trait associated with Lampyrinae. Additional chemical analyses across more line-

ages of fireflies are needed, however, to further support or falsify this hypothesis. Toward this goal,

the high sensitivity of our LC-HRAM-MS and MS2 molecular networking-based lucibufagin identifica-

tion approach is particularly well suited to broadened sampling in the future, including those of rare

taxa and possibly museum specimens. Combined with genomic data showing a concomitant expan-

sion of the CYP303 gene family in P. pyralis, we present a promising path toward elucidating the

biosynthetic mechanism underlying these potent firefly toxins.

Overall, the resources and analyses generated in this study shed valuable light on the evolution-

ary questions Darwin first pondered, and will enable future studies of the ecology, behavior, and

evolution of bioluminescent beetles. These resources will also accelerate the discovery of new

enzymes from bioluminescent beetles that could enhance biotechnological applications of biolumi-

nescence. Finally, we hope that the genomic resources shared here will facilitate the development of

effective population genomic tools to monitor and protect wild bioluminescent beetle populations

in the face of changing climate and habitats.

Materials and methods
Detailed materials and methods are available in the Appendices. Methods relating to P. pyralis are

given in Appendix 1, while methods relating to A. lateralis and I. luminosus are given in Appendix 2

and Appendix 3, respectively. Methods for comparative genomic analyses are given in Appendix 4,

while methods for microbiome characterization are given in Appendix 5. References to relevant sec-

tions of the Appendices are placed in-line throughout the maintext.

Data and materials availability
Genomic assemblies (Ppyr1.3, Alat1.3, and Ilumi1.2), associated official geneset data, a Sequence-

Server (Priyam et al., 2015) BLAST server, and a JBrowse (Skinner et al., 2009) genome browser

are available at www.fireflybase.org. Raw genomic and RNA-Seq reads for P. pyralis, A. lateralis, and

I. luminosus, are available under the NCBI/EBI/DDBJ BioProjects PRJNA378805, PRJDB6460, and

PRJNA418169 respectively. Raw WGBS reads can be found on the NCBI Gene Expression Omnibus

(GSE107177). Mitochondrial genomes for P. pyralis and I. luminosus and A. antennatus are available

on NCBI GenBank with accessions KY778696, MG242621, and MG546669. The complete genome of

Entomoplasma luminosum subsp. pyralis is available on NCBI GenBank with accession CP027019.

The viral genomes for Photinus pyralis orthomyxo-like virus 1 and 2 are available on NCBI Genbank

with accessions MG972985-MG972994. LC-MS data is available on MetaboLights (Accession

MTBLS698). Other supporting datasets are available on FigShare (Appendix 6.1).
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Data availability

Genomic assemblies (Ppyr1.3, Alat1.3, and Ilumi1.2), associated official geneset data, a Sequence-

Server BLAST server, and a JBrowse genome browser are available at www.fireflybase.org (see

Appendix 6.2). Raw genomic and RNA-Seq reads for P. pyralis, A. lateralis, and I. luminosus, are

available under the NCBI/EBI/DDBJ BioProjects PRJNA378805, PRJDB6460, and PRJNA418169
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respectively. Raw WGBS reads can be found on the NCBI Gene Expression Omnibus (GSE107177).

Mitochondrial genomes for P. pyralis and I. luminosus and A. antennatus are available on NCBI Gen-

Bank with accessions KY778696, MG242621, and MG546669. The complete genome of Entomo-

plasma luminosum subsp. pyralis is available on NCBI GenBank with accession CP027019. The viral

genomes for Photinus pyralis orthomyxo-like virus 1 & 2 are available on NCBI Genbank with acces-

sions MG972985-MG972994. LC-MS data is available on MetaboLights (Accession MTBLS698).

Other supporting datasets are available on FigShare (Appendix 6).
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Appendix 1
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Photinus pyralis additional information

1.1 Taxonomy, biology, and life history
Photinus pyralis (Linnaeus, 1767) is amongst the most widespread and abundant of all U.S.

fireflies (Lloyd, 1966; Lloyd, 2008). It inspired extensive work on the biochemistry and

physiology of firefly bioluminescence in the early 20th century, and the first luciferase gene

was cloned from this species (de Wet et al., 1985). A habitat generalist, P. pyralis occurs in

fields, meadows, suburban lawns, forests, and woodland edges, and even urban environments.

For example, the authors have observed P. pyralis flashing in urban New York City and

Washington D.C. Adults rest on vegetation during the day and signaling begins as early as 20

min before sunset (Lloyd, 1966). Male flashing is cued by ambient light levels, thus shaded or

unshaded habitats can show up to a 30 min difference in the initiation of male flashing

(Lloyd, 1966). Males can be cued to flash outside of true twilight if exposed to light intensities

simulating twilight (Case, 2004). P. pyralis were also reported to flash during totality of the

total solar eclipse of 2017 (Personal communication: L.F. Faust, M.A. Branham). Courtship

activity lasts for 30–45 min and both sexes participate in a bioluminescent flash dialog, as is

typical for Photinus fireflies.

Males initiate courtship by flying low above the ground while repeating a single ~300 ms

patrol flash at ~5–10 s intervals (Case, 2004). Males emit their patrol flash while dipping down

and then ascending vertically, creating a distinctive J-shaped flash gesture (Lloyd, 1966;

Case, 2004) (Figure 1A). During courtship, females perch on vegetation and respond to a

male patrol flash by twisting their abdomen toward the source of the flash and giving a single

response flash given after a 2–3 s delay (Video 1). Receptive females will readily respond to

simulated male flashes, such as those produced by an investigator’s penlight. Females have

fully developed wings and are capable of flight. Both sexes are capable of mating several

times during their adult lives. During mating, males transfer to females a fitness-enhancing

nuptial gift consisting of a spermatophore manufactured by multiple accessory glands

(van der Reijden et al., 1997); the molecular composition of this nuptial gift has recently been

elucidated for P. pyralis (Al-Wathiqui et al., 2016). In other Photinus species, male gift size

decreases across sequential matings (Cratsley et al., 2003), and multiple matings are

associated with increased female fecundity (Rooney and Lewis, 2002).

Adult P. pyralis live 2–3 weeks, and although these adults are typically considered non-

feeding, both sexes have been reported drinking nectar from the flowers of the milkweed

Asclepias syriaca (Faust and Faust, 2014). Mated females store sperm and lay ~30–50 eggs

over the course of a few days on moss or in moist soil. The eggs take 2–3 weeks to hatch.

Larval bioluminescence is thought to be universal for the Lampyridae, where it appears to

function as an aposematic warning signal. Like other Photinus, P. pyralis larvae are predatory,

live on and beneath the soil, and appear to be earthworm specialists (Hess, 1920). In the

northern parts of its range, slower development likely requires P. pyralis to overwinter at least

twice, most likely as larvae. Farther south, P. pyralis may complete development within several

months, achieving two generations per year (Faust, 2017), which may be possibly be

observed in the South as a ‘second wave’ of signalling P. pyralis in September-October.

Anti-predator chemical defenses of male P. pyralis include several bufadienolides, known as

lucibufagins, that circulate in the hemolymph (Meinwald et al., 1979). Pterins have also been

reported to be abundant in P. pyralis (Goetz et al., 1981); however, the potential defense role

of these compounds has never been tested (Personal communication: J. Meinwald). When

attacked, P. pyralis males release copious amounts of rapidly coagulating hemolymph and

such ‘reflex-bleeding’ may also provide physical protection against small predators (Blum and

Sannasi, 1974; Faust et al., 2012).
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1.2 Species distribution
Although Photinus pyralis is widely distributed in the Eastern United States, published

descriptions of its range are limited, with the notable exception of Lloyd’s 1966 monograph

(Lloyd, 1966) which addresses the range of many Photinus species. We therefore sought to

characterize the current distribution of P. pyralis in order to produce an updated map to

inform our experimental design and enable future population genetic studies. Four sources of

data were used to produce the presented range map of P. pyralis: (i) Field surveys by the

authors (ii) Published (Lloyd, 1966; Luk et al., 2011) and unpublished sightings of P. pyralis at

county level resolution, provided by Dr. J. Lloyd (University of Florida), (iii) coordinates and

dates of P. pyralis sightings, obtained by targeted e-mail surveys to firefly field biologists, (iv)

citizen scientist reports of P. pyralis through the iNaturalist platform (iNaturalist, 2017).

iNaturalist sightings were manually curated to only include reports which could be

unambiguously identified as P. pyralis from the photos, and also that also included GPS

geotagging to <100 m accuracy. A spreadsheet of these sightings is available on FigShare

(DOI: 10.6084/m9.figshare.5688826).

QGIS (v2.18.9, OSG Foundation, 2017) was used for data viewing and figure creation. A

custom Python script (Fallon, 2018e; copy archived at https://github.com/elifesciences-

publications/2017_misc_scripts) within QGIS was used to link P. pyralis sightings to counties

from the US census shapefile (United States Census Bureau, 2017). Outlying points that were

located in Desert Ecoregions of the World Wildlife Fund (WWF) Terrestrial Ecoregions

shapefile (Olson et al., 2001; World Wildlife Fund, 2017) or the westernmost edge of the

range were manually removed, as they are likely isolated populations not representative of the

contiguous range. For Figure 1B, these points were converted to a polygonal range map

using the ‘Concave hull’ QGIS plugin (‘nearest neighbors = 19’) followed by smoothing with

the Generalizer QGIS plugin with Chaiken’s algorithm (Level = 10, and Weight = 3.00). Below

(Appendix 1—figure 1), red circles indicate county-centroided presence records.

Appendix 1—figure 1. Detailed geographic distribution map for P. pyralis. P. pyralis sightings

(red circles show county centroided reports) in the United States and Ontario, Canada

(diagonal hashes). The World Wildlife Fund Terrestrial Ecoregions (Olson et al., 2001;

World Wildlife Fund, 2017) are also shown (colored shapes). The P. pyralis sighting dataset

shown is identical to that used to prepare Figure 1B.
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In our field surveys, we found that the range of P. pyralis was notably extended from the

range reported by Lloyd, specifically we found P. pyralis in abundance to the west of the Mill

river in Connecticut. P. pyralis is found with confidence roughly from Connecticut to Texas,

and possibly as far south as Guatemala (Personal communication: A. Catalán). These possible

southern populations require further study.

1.3 Specimen collection and identification
Adult male P. pyralis specimens for Illumina short-insert and mate-pair sequencing were

collected at sunset on June 13th, 2011 near the Visitor’s Center at Great Smoky Mountains

National Park (permit to Dr. Kathrin Stanger-Hall). Specimens were identified to species and

sex via morphology (Green, 1956), flash pattern and behavior (Lloyd, 1966), and cytochrome-

oxidase I (COI) similarity (partial sequence: primers HCO, LCO [Stanger-Hall and Lloyd,

2015]) when blasted against an in-house database of firefly COI nucleotide sequences.

Collected fireflies were stored in 95% ethanol at �80˚C until DNA extraction.

Adult male P. pyralis specimens for Pacific Biosciences (PacBio) RSII sequencing were

captured during flight at sunset on June 9th, 2016, from Mercer Meadows in Lawrenceville, NJ

(40.3065 N 74.74831 W), on the basis of the characteristic ‘rising J’ flash pattern of P. pyralis

(permit to TRF via Mercer County Parks Commission). Collected fireflies were sorted, briefly

checked to be likely P. pyralis by the presence of the margin of ventral unpigmented

abdominal tissue anterior to the lanterns, flash frozen with liquid N2, lyophilized, and stored at

�80˚C until DNA extraction. A single aedeagus (male genitalia) was dissected from the stored

specimens and confirmed to match the P. pyralis taxonomic key (Green, 1956) (Appendix 1—

figure 2).

A B

Appendix 1—figure 2. P. pyralis aedeagus (male genitalia). (A) Ventral and (B) side view of a P.

pyralis aedeagus dissected from specimens collected on the same date and locality as those

used for PacBio sequencing. Note the strongly sclerotized paired ventro-basal processes

(‘mickey mouse ears’) emerging from the median process, characteristic of P. pyralis

(Green, 1956).

DOI: https://doi.org/10.7554/eLife.36495.021

1.3.2 Collection and rearing of P. pyralis larvae
We intended to survey the lucibufagin content of P. pyralis larvae (Figure 6B; Appendix 4.6),

and as well as the transovarial transmission of Photinus pyralis orthomyxo-like viruses from

parent to larvae (Appendix 5.4), but as P. pyralis larvae are subterranean and extremely

difficult to collect from the wild, we reared P. pyralis larvae from eggs laid from mated pairs. It
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is important to note that these P. pyralis larval rearing experiments were unexpectedly

successful. Although there has been some success in laboratory rearing and domestication of

Asian Aquatica spp. (Chiang and Yang, 2010), including the A. lateralis Ikeya-Y90 strain

described in this manuscript, rearing of North American fireflies is considered extremely

difficult with numerous unpublished failures for unclear reasons (Lloyd, 1996), and limited

reports of successful rearing of mostly non-Photinus genera, including Photuris sp.

(McLean et al., 1972), Pyractomena angulata (Buschman, 1988), and Pyractomena borealis

(Personal communication: Scott Smedley). The below protocol for P. pyralis larval rearing is

presented in the context of disclosure of the methods of this manuscript, and should be

considered a preliminary, unoptimized rearing protocol. A full description of the P. pyralis

larvae and it’s life history and behavior will be presented in a separate manuscript.

Four adult female P. pyralis were collected from the Bluemont Junction Trail in Arlington,

VA from June 12th through June 18th 2017 (collection permission obtained by TRF from

Arlington County Parks and Recreation department). The females were mated to P. pyralis

males collected either from the same locality and date, or to males collected from Kansas in

late June. Mating was performed by housing one to two males and one female in small plastic

containers for ~1–3 days with a wet kimwipe to maintain humidity. Mating pairs were

periodically checked for active mating, which in Photinus fireflies takes several hours.

Successfully mated females were transferred to Magenta GA-7 plastic boxes (Sigma-Aldrich,

USA), and provided a ~4 cm x 4 cm piece of locally collected moss (species diverse and

unknown) as egg deposition substrate, and allowed to deposit eggs until their death in ~1–4

days. Deceased females were removed, artificial freshwater (AFW; 1:1000 diluted 32 PSU

artificial seawater) was sprayed into the box to maintain high humidity, and eggs were kept for

2–3 weeks at room temperature and periodically checked until hatching. Like other firefly

eggs, the eggs of P. pyralis were observed to be faintly luminescent imaging using a cooled

CCD camera (Appendix 1—figure 3); however, this luminescence was not visible to the dark-

adapted eye, indicating that this luminescence is less intense than other firefly species such as

Luciola cruciata (Harvey, 1952).

Upon hatching, first instar larvae were mainly fed ~1 cm cut pieces of Canadian

Nightcrawler earthworms (Lumbricus terrestris; Windsor Wholesale Bait, Ontario, Canada), and

occasional live White Worms (Enchytraeus albidus; Angels Plus, Olean, NY). Although P.

pyralis first instar larvae were observed to attack live Enchytraeus albidus, an experiment to

determine if this would be suitable as a single food source was not performed. Uneaten and

putrefying earthworm pieces were removed after 1 day, and the container cleaned. Once the

larvae had been manually fed for ~2 weeks and deemed sufficiently strong, they were

transferred to plastic shoeboxes (P/N: S-15402, ULINE, USA) which were intended to mimic a

soil ecosystem. In personal discussions of unpublished firefly rearing attempts by various firefly

researchers, we noted that a common theme was the difficulty of preventing the uneaten prey

of these predatory larvae from putrifying. Therefore, we sought to create ecologically inspired

‘eco-shoeboxes’, where fireflies would prey on live organisms, and other organisms would

assist in cleanup of uneaten or partially eaten prey that had been fed to the firefly larvae, to

prevent the growth of pathogenic microorganisms on uneaten prey.

First, these shoeboxes were filled with 1L of mixed 50% (v/v) potting soil, and 50% coarse

sand (Quikrete, USA) that had been washed several times with distilled water to remove silt

and dust. The soil-sand mix was wet well with AFW, and live Enchytraeus albidus (50+),

temperate springtails (50+; Folsomia candida; Ready Reptile Feeders, USA), and dwarf

isopods (50+; Trichorhina tomentosa; Ready Reptile Feeders, USA) were added to the box,

and several types of moss, coconut husk, and decaying leaves were sparingly added to the

corners of the box. The non-firefly organisms were included to mimic a primitive detritivore

(Enchytraeus albidus and Trichorhina tomentosa) and fungivore (Folsomia candida) system.

About 50 firefly larvae were included per box. No interactions between the P. pyralis larvae

and the additional organisms were observed. Predation on Enchytraeus albidus seems likely,

but careful observations were not made. Distilled water was sprayed into the box every ~2

days to maintain a high humidity. Throughout this period, live Lumbricus terrestris (~10–15 cm)

were added to the box every 2–3 days as food. These earthworms were first prepared by
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washing with distilled water several times to remove attached soil, weakened and stimulated

to secrete coelemic fluid and gut contents by spraying with 95% ethanol, washed several times

in distilled water, and left overnight in ~2 cm depth distilled water at 4˚C. Anecdotally this pre-

cleaning and preparation process reduced the rate and degree that dead earthworms

putrefied. Young P. pyralis larvae were observed to successfully kill and gregariously feed on

these live earthworms (Appendix 1—figure 4). The possibility that firefly larvae possess a

paralytic venom used to stun or kill prey has been noted by other researchers (Hess, 1920;

Williams, 1917). In our observations, an earthworm would immediately react to the bite from

a single P. pyralis larvae, thrashing about for several minutes, but would then become

seemingly paralyzed over time, supporting the role of a potent, possibly neurotoxic, firefly

venom. The P. pyralis larvae would then begin extra-oral digestion and gregarious feeding on

the liquified earthworm. Once the earthworm had been killed and broken apart by firefly

larvae, Enchytraeus albidus would enter through gaps in the cuticle and begin to feed in large

numbers throughout the interior of the earthworm. The other detritivores were observed at

later stages of feeding. Between the combined action of the P. pyralis larvae, and the other

detritivores, the live earthworm was completely consumed within 1–2 days, and no manual

cleanup was required.

Compared to the initial manual feeding and cleaning protocol for P. pyralis 1st instar

larvae, the ‘eco-shoebox’ rearing method was low-input and convenient for large numbers of

larvae. The feeding and cleanup process was efficient for ~2 months (July through September),

leading to a large number of healthy 3-4th instar larvae (Appendix 1—figure 5). However,

after that point, P. pyralis larvae, possibly in preparation for a winter hibernation, seemingly

became quiescent, and were less frequently seen patrolling throughout the box. At the same

time, the Enchytraeus albidus earthworms were observed to become less abundant, either due

to continual predation by P. pyralis, or due to population collapse from insufficient fulfillment

of nutritional requirements from feeding of Enchytraeus albidus on Lumbricus terrestris alone.

At this point, earthworms were not consumed within 1–2 days, and became putrid, and P.

pyralis which had been feeding on these earthworms were frequently found dead nearby, and

themselves quickly putrefied. Generally after this point P. pyralis larvae were more frequently

found dead and partially decayed, indicating the possibility of pathogenesis from

microorganisms from putrefying earthworms. At this stage, it was observed that mites (Acari),

probably from the soil contained in the guts of the fed earthworms, became abundant, and

were observed to act as ectoparasitic on P. pyralis larvae. An attempt to simulate hibernation

of P. pyralis larvae was made by storing them at 4˚C for ~3 weeks, however a large proportion

(~30%) of larvae died during this hibernation to a seeming fungal infection. Other larvae

revived quickly when returned to room temperature, but all Trichorhina tomentosa were killed

by even transient exposure to 4˚C. To date, a smaller number of fifth and sixth instar P. larvae

have been obtained, but pupation in the laboratory has not occured. The lack of pupation is

unsurprising as it is likely occurs in the wild after 1–2 years of growth, is likely under

temperature and photoperiodic control, and may require a licensing stage of cold

temperature hibernation for several weeks. Overall, manual feeding of first1 st instar larvae

followed by the ‘eco-shoebox’ method was unexpectedly successful approach for the

maintenance and growth of P. pyralis larvae.
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Appendix 1—figure 3. Luminescence of P. pyralis eggs. (A) Photograph under ambient light

of ~1 day post-deposition P. pyralis eggs. (B) Photograph of self-luminescence of ~1 day post-

deposition P. pyralis eggs. Both photographs taken with a NightOwl LB98 cooled CCD

luminescence imager (Berthold Technologies, USA). Luminescence was not visible to the dark-

adapted eye.

DOI: https://doi.org/10.7554/eLife.36495.022

Appendix 1—figure 4. Gregarious predation of young P. pyralis larvae on a live Lumbricus ter-

restris. Both P. pyralis larvae (red arrows), and Enchytraeus albidus (yellow arrows), were

observed to feed on the paralyzed earthworms.

DOI: https://doi.org/10.7554/eLife.36495.023
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Appendix 1—figure 5. Gregarious predation of 3rd-4th instar P. pyralis larvae on a live Lumbri-

cus terrestris.

DOI: https://doi.org/10.7554/eLife.36495.024

1.4 Karyotype and genome size
The karyotype of P. pyralis was previously reported to be 2n = 20 with XO sex determination

(male, 18A + XO; female, 18A + XX) (Wasserman and Ehrman, 1986). The genome sizes of

four P. pyralis adult males were previously determined to be 422 ± 9 Mbp (SEM, n = 4),

whereas the genome sizes of five P. pyralis adult females were determined to be 448 ± 7

(SEM, n = 5) by nuclear flow cytometry analysis (Lower et al., 2017). From these analyses, the

size of the X-chromosome is inferred to be ~26 Mbp. Genome size inference via kmer spectral

analysis of the P. pyralis short-insert Illumina data from a single adult P. pyralis male estimated

a genome size of 343 Mbp (Appendix 1—figure 6).

1.5 Library preparation and sequencing
See Appendix 4—table 1 for a overview of all sequence libraries. Library specific construction

methods are detailed below.

1.5.1 Illumina
DNA was extracted from sterile-water-washed thorax of Great Smoky Mountains National Park

collected specimens using phenol-chloroform extraction with RNAse digestion, checked for

quality via gel electrophoresis, and quantified by Nanodrop or Qubit (Thermo Scientific, USA).

To obtain sufficient DNA for both short insert and mate-pair library construction, libraries were

constructed separately from DNA from each of two individual males and pooled DNA of three

males, all from the same population. Males were selected for sequencing as they are more

easily found in the field than females. In addition, as P. pyralis males are XO (Dias et al.,

2007), differences in sequencing coverage could inform localization of scaffolds to the X
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chromosome. Illumina TruSeq short insert (average insert size: 300 bp) and Nextera mate-pair

libraries (insert size: 3 Kbp, 6 Kbp) were constructed at the Georgia Genomics Facility (Athens,

GA) and subsequently sequenced on two lanes of Illumina HiSeq2000 100 � 100 bp PE reads

(University of Texas; Appendix 4—table 1).

A B

Appendix 1—figure 6. Genome scope kmer analysis of the P. pyralis short read library. (A)

Linear and (B) log plot of a kmer spectral genome composition analysis of the ‘8369’ P. pyralis

Illumina short-read library from a single P. pyralis XO adult male (Appendix 1.5.1;

Appendix 4—table 1) with jellyfish (v2.2.9; parameters: -C -k 35) (Marçais and Kingsford,

2011) and GenomeScope (v1.0; parameters: Kmer length = 35, Read length = 100, Max kmer

coverage = 1000) (Vurture et al., 2017). len = inferred haploid genome length,

uniq = percentage non-repetitive sequence, het = overall rate of genome heterozygosity,

kcov = mean kmer coverage for heterozygous bases, err = error rate of the reads, dup:

average rate of read duplications. These results are consistent with the genome size of a XO

male, when possible systematic error of kmer spectral analysis and flow cytometry genome

size estimates is considered. The heterozygosity is somewhat low when compared to some

other arthropods.

DOI: https://doi.org/10.7554/eLife.36495.025

1.5.2 PacBio
High-molecular-weight DNA (HMW DNA) was extracted from four pooled lyophilized adult

male P. pyralis (dry mass 90.8 mg) from the MMNJ field site. These specimens were first

externally washed using 95% ethanol, after which DNA extraction proceeded with a 100/G

Genomic Tip plus Genomic Buffers kit (Qiagen, USA). DNA extraction followed the

manufacturer’s protocol, with the exception of the final precipitation step, where HMW DNA

was pelleted with 40 mg RNA grade glycogen (Thermo Scientific, USA) and centrifugation

(3000 x g, 30 min, 4 ˚C) instead of spooling on a glass rod. Although increased genomic

heterozygosity from four pooled males and a resulting more complicated genome assembly

was a concern for a wild population like P. pyralis, four males were used in order to extract

enough DNA for workable coverage using 15 Kbp+ size selected PacBio RSII sequencing. All

extracted DNA was used for library preparation, and all of the final library was used for

sequencing. Adult males, being XO, were chosen over the preferable XX females, as adult

males are much more easily captured because they signal during flight, whereas females are

typically found in the brush below and generally only flash in response to authentic male

signals.

Precipitated HMW DNA was redissolved in 80 mL Qiagen QLE buffer (10 mM Tris-Cl, 0.1

mM EDTA, pH 8.5) yielding 17.1 mg of DNA (214 ng/mL) and glycogen (500 ng/mL). Final DNA

concentration was measured with a Qubit fluorometer (Thermo Scientific) using the Qubit

Fallon et al. eLife 2018;7:e36495. DOI: https://doi.org/10.7554/eLife.36495 47 of 146

Research article Genetics and Genomics

https://doi.org/10.7554/eLife.36495.025
https://doi.org/10.7554/eLife.36495


Broad Range kit. Manipulations hereafter, including HMW DNA size QC, fragmentation, size

selection, library construction, and PacBio RSII sequencing, were performed by the Broad

Technology Labs of the Broad Institute (Cambridge, MA).

First, the size distribution of the HMW DNA was confirmed by pulsed-field-gel-

electrophoresis (PFGE). In brief, 100 ng of HMW DNA was run on a 1% agarose gel (in 0.5x

TBE) with the BioRad CHEF DRIII system. The sample was run out for 16 hr at six volts/cm with

an angle of 120 degrees with a running temperature of 14 ˚C. The gel was stained with

SYBRgreen dye (Thermo Scientific - Part No. S75683). 1 mg of 5 Kbp ladder (BioRad, part no

170–3624) was used as a standard. These results demonstrated the HMW DNA had a mean

size of >48 Kbp (Appendix 1—figure 7). This pool of HMW DNA is designated 1611_PpyrPB1

(NCBI BioSample SAMN08132578).

Next, HMW DNA (17.1 mg) was sheared to a targeted average size of 20–30 Kbp by

centrifugation in a Covaris g-Tube (part no. 520079) at 2500 x g for 2 min. SMRTbell libraries

for sequencing on the PacBio platform were constructed according to the manufacturer’s

recommended protocol for 20 Kbp inserts, which includes size selection of library constructs

larger than 15 Kbp using the BluePippin system (Sage Science, Beverly, MA). Two separate

cassettes were run. In each cassette, two lanes were used in which there was 1362 ng/lane

(PAC20kb kit). Constructs 15 Kbp and above were eluted over a period of 4 hr. An additional

damage repair step was carried out post size-selection. Insert size range for the final library

was determined using the Fragment Analyzer System (Advanced Analytical, Ankeney, IA). The

size-selected SMRTbell library was then sequenced over 61 SMRT cells on a PacBio RSII

instrument of the Broad Technology Labs (Cambridge, MA), using the P6 v.2 polymerase and

the v.4 DNA Sequencing Reagent (P6-C4 chemistry; part numbers 100-372-700, 100-612-400).

PacBio sequencing data is available on the NCBI Sequence Read Archive (Bioproject

PRJNA378805).
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Appendix 1—figure 7. PFGE of P. pyralis HMW DNA used for PacBio sequencing. Lane 1 was

used for further library prep and sequencing, Lanes 2–5 represent separate batches of P.

pyralis HMW DNA that was not used for PacBio sequencing. Lane 1 was used as it had the

highest DNA yield, and an equivalent DNA size distribution to the other samples.

DOI: https://doi.org/10.7554/eLife.36495.026
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Appendix 1—figure 8. Subread length distribution for P. pyralis PacBio RSII sequencing. Figure

produced with SMRTPortal (v2.3.0.140936, Pacific Biosciences, 2017) by aligning all PacBio

reads from data from the 61 SMRT cells against Ppyr1.3 using the RS_Resequencing.1

protocol with default parameters. Subread length unit is basepair (bp).

DOI: https://doi.org/10.7554/eLife.36495.027

1.5.3 Hi-C library preparation
Two adult P. pyralis MMNJ males were flash frozen in liquid nitrogen, stored at �80˚C, and

shipped on dry-ice to Phase Genomics (Seattle, WA). Manipulations hereafter occurred at

Phase Genomics, following previously published protocols (Lieberman-Aiden et al., 2009;

Burton et al., 2013; Bickhart et al., 2017). Briefly, a streamlined version of the standard Hi-C

protocol (Lieberman-Aiden et al., 2009) was used to perform a series of steps resulting in

proximity-ligated DNA fragments, in which physically proximate sequence fragments are

joined into linear chimeric molecules. First, in vivo chromatin was cross-linked with

formaldehyde, fixing physically proximate loci to each other. Chromatin was then extracted

from cellular material and digested with the Sau3AI restriction enzyme, which cuts at the

GATC motif. The resulting fragments were proximity ligated with biotinylated nucleotides and

pulled down with streptavidin beads. These chimeric sequences were then sequenced with 80

bp PE sequencing on the Illumina NextSeq platform, resulting in Hi-C read pairs.

1.6 Genome assembly
The P. pyralis genome assembly followed three stages: (1) a hybrid assembly using Illumina

and PacBio reads, producing assembly Ppyr1.1 (Appendix 1.6.2), (2) Ppyr1.1 scaffolded using

Hi-C data, producing assembly Ppyr1.2 (Appendix 1.6.3), and (3) Ppyr1.2 manually curation for

proper X-chromosome assembly and removal of putative non-firefly sequences, producing

Ppyr1.3 (1.6.4).

1.6.2 Ppyr1.1: MaSuRCA hybrid assembly
Several genome assembly approaches were evaluated with the general goal of maximizing

conserved gene content and contiguity. The highest quality P. pyralis assembly was generated

by a hybrid assembly approach using a customized MaSuRCA (v3.2.1_01032017) (Zimin et al.,

2013; Zimin et al., 2017) pipeline that combined both Illumina-corrected PacBio reads (Mega-
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reads) and synthetic long reads constructed from short-insert reads alone (Super-reads) using

a custom small overlap length (59 bp).

We first applied MaSuRCA (v3.2.1_01032017) (Zimin et al., 2013; Zimin et al., 2017) to

correct our long reads (38x coverage; Library ID 1611_PpyrPB1; Appendix 4—table 1) using

our short-insert and mate-pair reads (Libraries: 8369, 375_3K, 8375_6K, 83_3K, 83_6K;

Appendix 4—table 1). No pre-filtering of reads was performed, as Illumina adaptors are

automatically removed within the MaSuRCA pipeline. We modified the pipeline to assemble

the genome using both corrected long reads (Mega-reads) and synthetic long reads (Super-

reads) with a custom smaller overlap length (59 bp). All reads (short-insert, mate-pair and

PacBio) were then used within the MaSuRCA pipeline to call a genomic consensus.

To scaffold the contigs, we first filtered Illumina short-reads from the mate-pair libraries

(Libraries 8375_3K, 8375_6K, 83_3K, 83_6K) with Nxtrim (v0.4.1) (O’Connell et al., 2015) with

parameters ‘–separate –rf –justmp’. We then manually integrated the MaSuRCA assembly by

replacing the incomplete mitochondrial contigs with complete mitochondrial assemblies from

P. pyralis and Apocephalus antennatus (Appendix 5.2). We scaffolded and gap-filled the

assembly using the Illumina short-insert and filtered mate-pair reads (Libraries: 8369, 8375_3K,

8375_6K, 83_3K, 83_6K) via Redundans (v0.13a) (Pryszcz and Gabaldón, 2016) with default

settings. After scaffolding with our Illumina data, redundant sequences were removed by the

MaSuRCA ‘deduplicate_contigs.sh’ script. We then applied PBjelly (v15.8.24) (English et al.,

2012) and PacBio reads to scaffold and gap-fill the assembly, and redundancy reduction with

‘deduplicate_contigs.sh’ script was run again. Finally, we replaced mitochondrial sequences

which had been artificially extended by the scaffolding, gap-filling and sequence extension

process with the proper sequences. The resultant assembly was dubbed Ppyr1.1.

1.6.3 Ppyr1.2: Scaffolding with Hi-C
The Hi-C read pairs were applied in a manner similar to that originally described here

(Burton et al., 2013) and later expanded upon (Bickhart et al., 2017). Briefly, Hi-C reads were

mapped to Ppyr1.1 with BWA (v1.7.13) (Li and Durbin, 2009), requiring perfect, unique

mapping locations for a read pair to be considered usable. The number of read pairs joining a

given pair of contigs is referred to as the ‘link frequency’ between those contigs, and when

normalized by the number of restriction sites in the pair of contigs, is referred to as the ‘link

density’ between those contigs.

A three-stage scaffolding process was used to create the final scaffolds, with each stage

based upon previously described analysis of link density (Burton et al., 2013; Bickhart et al.,

2017). First, contigs were placed into chromosomal groups. Second, contigs within each

chromosomal group were placed into a linear order. Third, the orientation of each contig is

determined. Each scaffolding stage was performed many times in order to optimize the

scaffolds relative to expected Hi-C linkage characteristics.

In keeping with previously described methods (Burton et al., 2013; Bickhart et al., 2017),

the number of chromosomal scaffolds to create–10–was an a priori input to the scaffolding

process derived from the previously published chromosome count of P. pyralis

(Wasserman and Ehrman, 1986). However, to verify the correctness of this assumption,

scaffolds were created for haploid chromosome numbers ranging from 5 to 15. A scaffold

number of 10 was found to be optimal for containing the largest proportion of Hi-C linkages

within scaffolds, which is an expected characteristic of actual Hi-C data.

1.6.4 Ppyr1.3: Manual curation and taxonomic annotation filtering
1.6.4.1 Defining the X chromosome

Hi-C data was mapped and converted to the ’hic’ file format with the juicer pipeline (v1.5.6)

(Durand et al., 2016b), and then visualized using juicebox (v1.5.2) (Durand et al., 2016a). This

visualization revealed a clear breakpoint in Hi-C linkage density on LG3 at ~22,220,000 bp.

Mapping of Illumina short-insert and PacBio reads with Bowtie2 (v2.3.1) (Langmead and

Salzberg, 2012) and SMRTPortal (v2.3.0.140893) with the ‘RS_Resequencing.1’ protocol,

followed by visualization with Qualimap (v2.2.1) (Okonechnikov et al., 2016), revealed that

the first section of LG3 (1–22,220,000 bp), here termed LG3a, was present at roughly half the

coverage of LG3b (22,220,001–50,884,892 bp) in both the Illumina and PacBio libraries.
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Mapping of Tribolium castaneum X chromosome proteins (NCBI Tcas 5.2) to the Ppyr1.2

assembly using both tblastn (v2.6.0) (Camacho et al., 2009) and Exonerate(v2.2.0) (Slater and

Birney, 2005) based ‘protein2genome’ alignment through the MAKER pipeline revealed a

relative enrichment on LG3a only. Taken together, this data suggested that the half-coverage

section of LG3 (LG3a) corresponded to the X-chromosome of P. pyralis, and that it was

misassembled onto an autosome. Therefore, we manually split LG3 into LG3a and LG3b in the

final assembly.

1.6.4.2 Taxonomic annotation filtering

Given the recognized importance of filtering genome assemblies to avoid misinterpretation

of the data (Koutsovoulos et al., 2016), we sought to systematically remove assembled non-

firefly contaminant sequence from Ppyr1.2. Using the blobtools toolset (v1.0.1) (Laetsch and

Blaxter, 2017), we taxonomically annotated our scaffolds by performing a blastn (v2.6.0+)

nucleotide sequence similarity search against the NCBI nt database, and a diamond

(v0.9.10.111) (Buchfink et al., 2015) translated nucleotide sequence similarity search against

the of Uniprot reference proteomes (July 2017). Using this similarity information, we

taxonomically annotated the scaffolds with blobtools using parameters ‘-x bestsumorder –rank

phylum’. A tab delimited text file containing the results of this blobtools annotation are

available on FigShare (DOI: 10.6084/m9.figshare.5688982). We then generated the final

genome assembly by retaining scaffolds that either contained annotated features (genes or

non-simple/low-complexity repeats), had coverage >10.0 in both the Illumina (Appendix 1—

figure 9) and PacBio libraries (Appendix 1—figure 10), and if the taxonomic phylum was

annotated as ‘Arthropod’ or ‘no-hit’ by the blobtools pipeline (Appendix 1—figure 11). This

approach removed 374 scaffolds (2.1 Mbp), representing 15% of the scaffold number and

0.4% of the nucleotides of Ppyr1.2. Notably, four tenericute scaffolds, likely corresponding to

a partially assembled Entomoplasma sp. genome, distinct from the Entomoplasma luminosus

var. pyralis assembled from the PacBio library (Appendix 5) were removed. Furthermore, we

removed two contigs representing the mitochondrial genome of P. pyralis (complete mtDNA

available via Genbank: KY778696). The final filtered assembly, Ppyr1.3, is available at www.

fireflybase.org.
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Appendix 1—figure 9. Blobplot of Illumina short-insert reads aligned against the Ppyr1.2 refer-

ence. Coverage shown represents mean coverage of reads from the Illumina short-insert library

(Sample name 8369; Appendix 4—table 1), aligned against Ppyr1.2 using Bowtie2 with

parameters (–local). Scaffolds were taxonomically annotated as described in Appendix 1.6.4.2.

DOI: https://doi.org/10.7554/eLife.36495.028
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Appendix 1—figure 10. Blobplot of P. pyralis PacBio reads aligned against Ppyr1.2. Coverage

shows represents mean coverage of reads from the PacBio library (Sample name 1611;

Appendix 4—table 1). The reads were aligned using SMRTPortal v2.3.0.140893 with the

‘RS_Resequencing.1’ protocol with default parameters. Scaffolds were taxonomically

annotated as described in Appendix 1.6.4.2.

DOI: https://doi.org/10.7554/eLife.36495.029
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Appendix 1—figure 11. Venn diagram representation of blobtools taxonomic annotation filter-

ing approach for Ppyr1.2 scaffolds. (A) The blue set represents scaffolds which have >10.0

coverage in both Illumina and PacBio libraries. (B) The red set represents scaffolds which had

either genes on repeats (non simple or low-complexity) annotated. (C) The green set

represents scaffolds with suspicious taxonomic assignment (Non ‘Arthropod’ or ‘no-hit’).

Outside A, B, and C, represents low-coverage, unannotated scaffolds. Ppyr1.3 consists of the

intersection of A and B, minus the intersection of C. All linkage groups (LG1-LG10) were

annotated as ‘Arthropod’ by blobtools, and captured in the intersection between A and B but

not set C.

DOI: https://doi.org/10.7554/eLife.36495.030

1.7 Ppyr0.1-PB: PacBio only genome assembly
In addition to our finalized genome assembly (Ppyr1.3), we sought to better understand the

symbiont composition that varied between our P. pyralis PacBio and Illumina libraries.

Therefore, we produced a long-read only assembly of our PacBio data to assemble the

sequence that might be unique to this library. To achieve this, we first filtered the HDF5 data

from the 61 sequence SMRT cells to. FASTQ format subreads using SMRTPortal

(v2.3.0.140893) (Pacific Biosciences, 2017) with the ‘RS_Subreads.1’ protocol with default

parameters. These subreads were then input into Canu (Github commit 28ecea5/v1.6)

(Koren et al., 2017) with parameters ‘genomeSize = 450 m corOutCoverage = 200

ovlErrorRate = 0.15 obtErrorRate = 0.15 -pacbio-raw’. The unpolished contigs from this

produced genome assembly are dubbed Ppyr0.1-PB.

1.8 Mitochondrial genome assembly and annotation
To achieve a full length mitochondrial genome (mtDNA) assembly of P. pyralis, sequences

were assembled separately from the nuclear genome. Short insert Illumina reads from a single

GSMNP individual (Sample 8369; Appendix 4—table 1) were mapped to the known mtDNA

of the closest available relative, Pyrocoelia rufa (NC_003970.1 [Bae et al., 2004]) using

bowtie2 v2.3.1 (parameters: –very-sensitive-local). All concordant read pairs were input to

SPAdes (v3.8.0) (Nurk et al., 2013) (parameters: –plasmid –only-assembler -k35,55,77,90) for

assembly. The resulting contigs were then combined with the P. rufa mitochondrial reference

genome for a second round of read mapping and assembly. The longest resulting contig

aligned well to the P. rufa mitochondrial genome; however, it was ~1 Kbp shorter than

expected, with the unresolved region appearing to be the tandem repetitive region (TRU)
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(Bae et al., 2004), previously described in the P. rufa mitochondrial genome. To resolve this,

all PacBio reads were mapped to the draft mitochondrial genome, and a single high-quality

PacBio circular-consensus-sequencing (CCS) read that spanned the unresolved region was

selected using manual inspection and manually assembled with the contiguous sequence from

the Illumina sequencing to produce a complete circular assembly. The full assembly was

confirmed by re-mapping the Illumina short-read data using bowtie2 followed by consensus

calling with Pilon v1.21(Walker et al., 2014). Re-mapped PacBio long-read data also

confirmed the structure of the mtDNA, and indicated variability in the repeat unit copy

number of the TRU amongst the four sequenced P. pyralis individuals (Sample 1611_PpyrPB1;

Appendix 4—table 1). The P. pyralis mtDNA was then ‘restarted’ using seqkit(Shen et al.,

2016), such that the FASTA record break occurred in the AT-rich region, and annotated using

the MITOS2 annotation server (Bernt et al., 2017). Low confidence and duplicate gene

predictions were manually removed from the MITOS2 annotation. The final P. pyralis mtDNA

with annotations is available on GenBank (KY778696).
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Appendix 1—figure 12. Mitochondrial genome of P. pyralis. The mitochondrial genome of P.

pyralis was assembled and annotated as described. Note the firefly specific tandem-repeat-

unit (TRU) region. Figure produced with Circos (Krzywinski et al., 2009).

DOI: https://doi.org/10.7554/eLife.36495.031

1.9 Transcriptome analysis

1.9.1 RNA-extraction, library preparation and sequencing
In order to capture expression from diverse life stages, stranded RNA-Seq libraries were

prepared from whole bodies of four life stages/sexes (eggs, 1 st instar larvae, adult male, and

adult female; Appendix 1—table 1). Eggs and larvae were derived from a laboratory mating

of P. pyralis (Collected MMNJ, July 2016). Briefly, live adult P. pyralis were transported to the
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lab and allowed to mate in a plastic container over several days. The female, later sequenced,

was observed mating with two independent males on two separate nights. The female was

then transferred to a plastic container with moss, and allowed to oviposit over several days.

Once no more oviposition was observed, the female was removed, flash frozen with liquid N2,

and stored at �80˚C for RNA extraction. Resulting eggs were washed 3x with dilute bleach/

H2O and reared in aggregate in plastic containers on moist Whatman paper. ~13 days after

the start of egg oviposition, a subset of eggs were flash frozen for RNA extraction. The

remaining eggs were allowed to hatch and larvae were flash frozen the day after emergence

(first instar). Total RNA was extracted from a single stored adult male (non-paternal to eggs/

larvae), the adult female (maternal to eggs/larvae), seven pooled eggs, and four pooled larvae

using the RNeasy Lipid Tissue Mini Kit (QIAGEN) with the optional on-column DNase

treatment. Illumina sequencing libraries were prepared by the Whitehead Genome

Technology Core (WI-GTC) using the TruSeq Stranded mRNA library prep kit (Illumina) and

following the manufacturer’s instructions with modification to select for larger insert sizes

(~300–350 bp). These samples were multiplexed with unrelated plant RNA-Seq samples and

sequenced 150 � 150 nt on one rapid mode flowcell (two lanes) of a HiSeq2500 (WI-GTC), to

a depth of ~30M paired reads per library.

To examine gene expression in adult light organs, we generated non-strand specific

sequencing of polyA pulldown enriched mRNA from dissected photophore tissue

(Appendix 1—table 1). Photophores were dissected from the abdomens of adult P. pyralis

males (Collected MMNJ, July 2015) by Dr. Adam South (Harvard School of Public Health),

using three individuals per biological replicate. These tissues and libraries were co-prepared

and sequenced with other previously published libraries (full library preparation and

sequencing details here [Al-Wathiqui et al., 2016]) at a depth of ~10M paired reads per

library.

To examine gene expression in larval light organs, we performed RNA-seq on dissected

larval light organs. We first extracted total RNA from a pool of six dissected larval

photophores from three individuals using the RNeasy Lipid Tissue Mini Kit (QIAGEN) with the

optional on-column DNase treatment. The larvae were the same larvae described in Appendix

1.3.2. The total RNA was enriched to mRNA via polyA pulldown and prepared into a paired

unstranded Illumina sequencing using the Kapa HyperPrep kit (Kapa Biosystems, USA), and

sequenced to a depth of 43M 100 � 100 paired reads on a HiSeq2500 sequencer (Illumina,

USA).

All these data were combined with previously published tissue, sex, and stage-specific

libraries (Appendix 1—table 1) for reference-guided transcriptome assembly (Appendix

1.9.3). Strand-specific data was used for de novo transcriptome assembly (Appendix 1.9.2).

Appendix 1—table 1. P. pyralis RNA sequencing libraries. N: number of individuals pooled for

sequencing; Sex/stage: M = male, F = female, A = adult, L = larva, L1 = larva 1 st instar, L4 =

larvae fourth instar, E13 = 13 days post fertilization eggs; Tissue: H = head, PA = lantern

abdominal segments, FB = abdominal fat body, T = thorax, OAG = other accessory glands, SD

= spermatophore digesting gland/bursa, SG = spiral gland, SC = spermatheca, p=dissected

photophore, E = egg, WB = whole body.

Library name Source* SRA ID N
Sex/
stage Tissue Library type

8175 Photinus pyralis male head
(adult) transcriptome

SRA1 SRR2103848 1 M/A H

8176 Photinus pyralis male light organ
(adult) transcriptome

SRA1 SRR2103849 1 M/A PA

8819 Photinus pyralis light organ (lar-
val) transcriptome

SRA1 SRR2103867 1 L PA

9_Photinus_sp_1_lantern SRA2 SRR3521424 1 M/A PA Strand-specific.
Ribo-zero

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

Library name Source* SRA ID N
Sex/
stage Tissue Library type

Ppyr_FatBody_1 SRA3 SRR3883756 6 M/A FB

Ppyr_FatBody_2 SRA3 SRR3883757 6 M/A FB

Ppyr_FatBody_3 SRA3 SRR3883766 6 M/A FB

Ppyr_FatBody_Mated SRA3 SRR3883767 4 M/A FB

Ppyr_FThorax SRA3 SRR3883768 3 F/A T

Ppyr_MThorax_1 SRA3 SRR3883769 6 M/A T

Ppyr_MThorax_2 SRA3 SRR3883770 6 M/A T

Ppyr_MThorax_3 SRA3 SRR3883771 6 M/A T

Ppyr_OAG_1A SRA3 SRR3883772 6 M/A AG

Ppyr_OAG_1B SRA3 SRR3883773 6 M/A AG

Ppyr_OAG_2 SRA3 SRR3883758 6 M/A AG

Ppyr_OAG_Mated SRA3 SRR3883759 4 M/A AG

Ppyr_SDGBursa SRA3 SRR3883760 3 F/A SD

Ppyr_SG_Mated SRA3 SRR3883761 4 M/A SG

Ppyr_Spermatheca SRA3 SRR3883762 3 F/A SC

Ppyr_SpiralGland_1 SRA3 SRR3883763 6 M/A SG

Ppyr_SpiralGland_2 SRA3 SRR3883764 6 M/A SG

Ppyr_SpiralGland_3 SRA3 SRR3883765 6 M/A SG

Ppyr_Lantern_1A ‡ SRR6345453 6 M/A P

Ppyr_Lantern_2 ‡ SRR6345454 6 M/A P

Ppyr_Lantern_3 ‡ SRR6345446 6 M/A P

Ppyr_Eggs ‡ SRR6345447 7 E13 E Strand-specific

Ppyr_Larvae ‡ SRR6345445 4 L1 WB Strand-specific

Ppyr_wholeFemale† ‡ SRR6345449 1 F/A WB Strand-specific

Ppyr_wholeMale ‡ SRR6345452 1 M/A WB Strand-specific

TF_VA2017_3pooled_larval_lantern ‡ SRR7345580 3 L4 P

*SRA1 = NCBI BioProject PRJNA289908 (Sander and Hall, 2015); SRA2 = NCBI BioProject

PRJNA321737 (Fallon et al., 2016); SRA3 = NCBI BioProject PRJNA328865 (Al-Wathiqui et al.,

2016).
†Parent of eggs and larvae with data from this study.
‡This study.

DOI: https://doi.org/10.7554/eLife.36495.032

1.9.2 De novo transcriptome assembly and genome alignment
One strand-specific de novo transcriptome was produced from all available MMNJ strand-

specific reads (WholeMale, WholeFemale, eggs, larvae) and strand-specific reads from SRA

(SRR3521424) (Appendix 1—table 1). Reads from these five libraries were pooled (158.6M

paired-reads) as input for de novo transcriptome assembly. Transcripts were assembled using

Trinity (v2.4.0) (Grabherr et al., 2011) with default parameters except the following: (–

SS_lib_type RF –trimmomatic –min_glue 2 min_kmer_cov 2 –jaccard_clip –

no_normalize_reads). Gene structures were then predicted from alignment of the de novo

transcripts to the Ppyr1.3 genome using the PASA pipeline (v2.1.0) (Haas et al., 2008) with

the following steps: first, poly-A tails were trimmed from transcripts using the internal

seqclean component; next, transcript accessions were extracted using the

accession_extractor.pl component; finally, the trimmed transcripts were aligned to the

genome with modified parameters (–aligners blat,gmap –ALT_SPLICE –

transcribed_is_aligned_orient –tdn tdn.accs). Using both the blat (v. 36 � 2) (Kent, 2002)
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and gmap (v2017-09-11) (Wu and Watanabe, 2005) aligners was required, as an appropriate

gene model for Luc2 was not correctly produced using only a single aligner. Importantly, it

was also necessary to set (–NUM_BP_PERFECT_SPLICE_BOUNDARY = 0) for the

validate_alignments_in_db.dbi step, to ensure transcripts with natural variation near the

splice sites were not discarded. Post alignment, potentially spurious transcripts were filtered

out using a custom script (Fallon, 2017; copy archived at https://github.com/elifesciences-

publications/PASA_expression_filter_2017) that removed extremely lowly-expressed

transcripts (<1% of the expression of a given PASA assembly cluster). Expression values used

for filtering were calculated from the WholeMale library reads using the Trinity

align_and_estimate_abundance.pl utility script. The WholeMale library was selected because

it was the highest quality library - strand-specific, low contamination, and many reads -

thereby increasing the reliability of the transcript quantification. Finally, the PASA pipeline

was run again with this filtered transcript set to generate reliable transcript structures.

Peptides were predicted from the final transcript structures using Transdecoder (v.5.0.2)

(Haas, 2018) with default parameters. Direct coding gene models (DCGMs) were then

produced with the Transdecoder ‘cdna_alignment_orf_to_genome_orf.pl’ utility script with

the PASA assembly GFF and transdecoder predicted peptide GFF as input. The unaligned

de novo transcriptome assembly is dubbed ‘PPYR_Trinity_stranded’, whereas the aligned

direct coding gene models are dubbed ‘Ppyr1.3_Trinity-PASA_stranded-DCGM’.

1.9.3 Reference guided transcriptome assembly
Two reference guided transcriptomes, one strand-specific and one non-strand-specific, were

produced from all available P. pyralis RNA-Seq reads (Appendix 1—table 1) using HISAT2

(v2.0.5) (Kim et al., 2015) and StringTie (v1.3.3b) (Pertea et al., 2015). For each library,

reads were first mapped to the Ppyr1.3 genome assembly with HISAT2 (parameters: -X 2000

–dta –fr) and then assembled using StringTie with default parameters except use of ‘–rf’ for

the strand-specific libraries. The resulting library-specific assemblies were then merged into a

final assembly using StringTie (–merge), one for the strand-specific and one for the non-

strand specific libraries, producing two final assemblies. For each final assembly, a transcript

fasta file was produced and peptides predicted using Transdecoder with default parameters.

Then, the StringTie. GTFs were converted to GFF format with the Transdecoder

‘gtf_to_alignment_gff3.pl’ utility script and direct coding gene models (DCGMs) were

produced with the Transdecoder ‘cdna_alignment_orf_to_genome_orf.pl’ utility script, with

the StringTie GFF and transdecoder predicted peptide GFF as input. The final GFFs were

validated and sorted with genometools (v1.5.9) with parameters (parameters: gff3 -tidy -sort

-retainids), and then sorted again for IGV format with igvtools (parameters: sort). The aligned

direct coding gene models for the stranded and unstranded reference guided

transcriptomes are dubbed ‘Ppyr1.3_Stringtie_stranded-DCGM’ and

‘Ppyr1.3_Stringtie_unstranded-DCGM’.

1.9.4 Transcript expression analysis
P. pyralis RNA-Seq reads (Appendix 1—table 1) were pseudoaligned to the PPYR_OGS1.1

geneset CDS sequences using Kallisto (v0.44.0) (Bray et al., 2016) with 100 bootstraps (-b

100), producing transcripts-per-million reads (TPM). Kallisto expression quantification analysis

results are available on FigShare (DOI: 10.6084/m9.figshare.5715139).

1.10 Official coding geneset annotation (PPYR_OGS1.1)
We annotated the coding gene structure of P. pyralis by integrating direct coding gene

models produced from the de novo transcriptome (Appendix 1.9.2) and reference guided

transcriptome (Appendix 1.9.3), with a lower weighted contribution of ab initio gene

predictions, using the Evidence Modeler (EVM) algorithm (v1.1.1) (Haas et al., 2008). First,

Augustus (v3.2.2) (Stanke et al., 2006) was trained against Ppyr1.2 with BUSCO (parameters:

-l endopterygota_odb9 –long –species tribolium2012). Next, preliminary gene models for

prediction training were produced by the alignment of the P. pyralis de novo transcriptome

to Ppyr1.2 with the MAKER pipeline (v3.0.0b) (Holt and Yandell, 2011) in ‘est2genome’
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mode. Preliminary gene models were used to train SNAP (v2006-07-28) (Korf, 2004)

following the MAKER instructions (MAKER Tutorial for GMOD Online Training, 2014).

Augustus and SNAP gene predictions of Ppyr1.3 were then produced through the MAKER

pipeline, with hints derived from MAKER blastx/exonerate mediated protein alignments of

peptides from Drosophila melanogaster (NCBI

GCF_000001215.4_Release_6_plus_ISO1_MT_protein.faa), Tribolium castaneum (NCBI

GCF_000002335.3_Tcas5.2_protein), and Aquatica lateralis (AlatOGS1.0; this report), and

MAKER blastn/exonerate transcript alignments of the P. pyralis de novo transcriptome.

These ab initio coding gene models are dubbed ‘Ppyr1.3_abinitio_Augustus-SNAP-MAKER-

GMs.gff3’

We then integrated the ab initio predictions with our de novo and reference guided direct

coding gene models, using EVM. A variety of evidence sources, and EVM evidence weights

were empirically tested and evaluated using a combination of inspection of known gene

models (e.g. Luc1/Luc2), and the BUSCO score of the geneset. In the final version, six

sources of evidence were used for EVM: de novo transcriptome direct coding gene models

(Ppyr1.3_Trinity-PASA_stranded-DCGM; weight = 11), protein alignments (D. melanogaster,

T. castaneum, A. lateralis; weight = 8), GMAP and BLAT alignments of de novo

transcriptome (via PASA; weight = 5), reference guided transcriptome direct coding gene

models (Ppyr1.3_Stringtie_stranded-DCGM; weight = 3), Augustus and SNAP ab initio gene

models (via MAKER; weight = 2). A custom script (Fallon, 2018a; copy archived at https://

github.com/elifesciences-publications/maker_gff_to_evm_gff_2017) was necessary to convert

MAKER GFF format to an EVM compatible GFF format.

Lastly, gene models for luciferase homologs, P450s (Appendix 1.10.1), and de novo

methyltransferases (DNMTs) which were fragmented or were incorrect (e.g. fusions of

adjacent genes) were manually corrected based on the evidence of the de novo and

reference guided direct coding gene models. Manual correction was performed by

performing TBLASTN searches with known good genes from these gene families within

SequencerServer(v1.10.11) (Priyam et al., 2015), converting the TBLASTN results to gff3

format with a custom script (Fallon, 2018b; copy archived at https://github.com/

elifesciences-publications/firefly_genomes_general_scripts), and viewing these alignments

alongside the alternative direct coding gene models (Appendix 1.9.2; 1.9.3) in Integrative

Genomics Viewer(v2.4.8) (Thorvaldsdóttir et al., 2013). The official gene set models gff3 file

was manually modified in accordance with the evidence from the direct gene models.

Different revision numbers of the official geneset (e.g. PPYR_OGS1.0, PPYR_OGS1.1)

represent the improvement of the geneset over time due to these continuing manual gene

annotations.

1.10.1 P450 annotation
Translated de novo transcripts were formatted to be BLAST searchable with NCBI’s

standalone software. The peptides were searched with 58 representative insect P450s in a

batch BLAST (evalue = 10). The query set was chosen to cover the diversity of insect P450s.

The top 100 hits from each search were retained. The resulting 5837 hit IDs were filtered to

remove duplicates, leaving 472 unique hits. To reduce redundancy due to different isoforms,

the Trinity transcript IDs (style DNXXX_cX_gX_iX) were filtered down to the ‘DN’ level,

resulting in 136 unique IDs. All peptides with these IDs were retrieved and clustered with

CD-Hit (v4.5.4) (Li and Godzik, 2006) to 99% identity to remove short overlapping peptides.

These 535 protein sequences were batch BLAST compared to a database of all named insect

P450s to identify best hits. False positives were removed and about 30 fungal sequences

were removed. These fungal sequences could potentially be from endosymbiotic fungi in the

gut. Overlapping sequences were combined and the transcriptome sequences were BLAST

searched against the P. pyralis genome assembly to fill gaps and extend the sequences to

the ends of the genes were possible. This approach was very helpful with the CYP4G gene

cluster, allowing fragments to be assembled into whole sequences. When a new genome

assembly and geneset became available, the P450s were compared to the integrated gene

models in PPYR_OGS1.0. Some hybrid sequences were corrected. The final set contains 170

named cytochrome P450 sequences (166 genes, two pseudogenes).
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The cytochrome P450s in insects belong to four established clans CYP2, CYP3, CYP4 and

Mito (Appendix 1—figure 13). P. pyralis has about twice as many P450s as Drosophila

melanogaster (86 genes, four pseudogenes) and slightly more than the red flour beetle

Tribolium castaneum (137 genes, 10 pseudogenes). Pseudogenes were determined by a lack

of conserved sites common to all P450s. The CYP3 clan is the largest, mostly due to three

families: CYP9 (40 sequences), CYP6 (36 sequences) and CYP345 (18 sequences). Insects

have few conserved sequences across species. These include the halloween genes for 20-

hydroxyecdysone synthesis and metabolism CYP302A1, CYP306A1, CYP307A2, CYP314A1

and CYP315A1 (Rewitz et al., 2007) in the CYP2 and Mito clans. The CYP4G subfamily

makes a hydrocarbon waterproof coating for the exoskeleton (Helvig et al., 2004).

Additional conserved P450s are CYP15A1 (juvenile hormone [Helvig et al., 2004]) and

CYP18A1 (20-hydroxyecdysone degradation [Guittard et al., 2011]) in the CYP2 clan. Most

of the other P450s are limited to a narrower phylogenetic range. Many are unique to a single

genus, although this may change as more sampling is done. It is common for P450s to

expand into gene blooms (Sezutsu et al., 2013).
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Appendix 1—figure 13. P. pyralis P450 gene phylogenetic tree. Neighbor-joining

phylogenetic tree of 165 cytochrome P450s from P. pyralis. Four pseudogenes and one short

sequence were removed. The P450 clans have colored spokes (CYP2 clan brown, CYP3 clan

green, CYP4 clan red, Mito clan blue). Shading highlights different families and family

clusters within the CYP3 clan. The tree was made using Clustal Omega at EBI

(European Bioinformatics Institute, 2017) with default settings. The resulting multiple

sequence alignment is available on FigShare (DOI: 10.6084/m9.figshare.5697643). The tree

was drawn with FigTree v1.3.1 using midpoint rooting.

DOI: https://doi.org/10.7554/eLife.36495.033
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1.10.2 Virus annotation and analysis
Viruses were discovered from analysis of published P. pyralis RNA sequencing libraries (NCBI

TSA: GEZM00000000.1) and the Ppyr1.2 genome assembly (Appendix 5.4). 24 P. pyralis RNA

sequencing libraries were downloaded from SRA (taxid: 7054, date accessed: 15th June

2017). RNA sequence reads were first de novo assembled using Trinity v2.4.0

(Grabherr et al., 2011) with default parameters. Resulting transcriptomes were assessed for

similarity to known viral sequences by TBLASTN searches (max e-value = 1 � 10�5) using as

a probe the complete predicted non redundant viral Refseq proteins retrieved from NCBI

(date accessed: 15th June 2017). Significant hits were explored manually and redundant

contigs discarded. False-positives were eliminated by comparing candidate viral contigs to

the entire non-redundant nucleotide (nt) and protein (nr) database to remove false-positives.

Candidate virus genome segment sequences were curated by iterative mapping of reads

using Bowtie 2 (v2.3.2) (Langmead and Salzberg, 2012). Special attention was taken with

the segments’ terminis – an arbitrary cut off of 10x coverage was used as threshold to

support terminal base calls. The complementarity and folded structure of untranslated ends,

as would be expected for members of the Orthomyxoviridae, was assessed by Mfold 2.3

(Zuker, 2003). Further, conserved UTR sequences were identified using ClustalW2

(Larkin et al., 2007) (support of >65% required to call a base). To identify/rule out additional

segments of no homology to the closely associated viruses we used diverse in silico

approaches based on RNA levels including: the sequencing depth of the transcript,

predicted gene product structure, or conserved genome termini, and significant co-

expression with the remaining viral segments.

After these filtering steps, putative viral sequences were annotated manually. First,

potential open-reading frames (ORF) were predicted by ORFfinder (Wheeler et al., 2003)

and manually inspected by comparing predicted ORFS to those from the closest-related

reference virus genome sequence. Then, translated ORFs were blasted against the non-

redundant protein sequences NR database and best hits were retrieved. Predicted ORF

protein sequences were also subjected to a domain-based Blast search against the

Conserved Domain Database (CDD) (v3.16) (Marchler-Bauer et al., 2017) and integrated

with SMART (Letunic and Bork, 2018), Pfam (Finn et al., 2016), and PROSITE (Sigrist et al.,

2002) results to characterize the functional domains. Secondary structure was predicted with

Garnier as implemented in EMBOSS (v6.6) (Rice et al., 2000), signal and membrane cues

were assessed with SignalP (v4.1) (Petersen et al., 2011), and transmembrane topology and

signal peptides were predicted by Phobius (Käll et al., 2004). Finally, the potential functions

of predicted ORF products were explored using these annotations as well as similarity to

viral proteins of known function.

To characterize Orthomyxoviridae viral diversity in P. pyralis in relation to known viruses,

predicted P. pyralis viral proteins were used as probes in TBLASTN (max e-value = 1�10�5)

searches of the complete 2754 Transcriptome Shotgun Assembly (TSA) projects on NCBI

(date accessed: 15th June 2017). Significant hits were retrieved and the target TSA projects

further explored with the complete Orthomyxoviridae refseq collection to assess the

presence of additional similar viral segments. Obtained transcripts were extended/curated

using the SRA associated libraries for each TSA hit and then the curated virus sequences

were characterized and annotated as described above.

To identify P. pyralis viruses to family/genus/species, amino acid sequences of the

predicted viral polymerases, specifically the PB1 subunit, were used for phylogenetic

analyses with viruses of known taxonomy. To do this, multiple sequence alignment were

generated using MAFFT (v7.310) (Katoh and Standley, 2013) and unrooted maximum-

likelihood phylogenetic trees were constructed using FastTree (Price et al., 2010) with

standard parameters. FastTree accounted for variable rates of evolution across sites by

assigning each site to one of 20 categories, with the rates geometrically spaced from 0.05 to

20, and set each site to its most likely rate category using a Bayesian approach with a

gamma prior. Support for individual nodes was assessed using an approximate likelihood

ratio test with the Shimodaira-Hasegawa-like procedure. Tree topology, support values and

substitutions per site were based on 1000 tree resamples.
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To facilitate taxonomic identification, we complemented BLASTP data with two levels of

phylogenetic insights: (i) Trees based on the complete refseq collection of ssRNA (-) viruses

which permitted a conclusive assignment at the virus family level. (ii) Phylogenetic trees

based on reported, proposed, and discovered Orthomyxoviridae viruses that allowed

tentative species demarcation and genera postulation. PB1-based trees were complemented

independently with phylogenetic studies derived from amino acids of predicted

nucleoproteins, hemagglutinin protein, PB2 protein, and PA protein which supported

species, genera and family demarcation based on solely on PB1, the standard in

Orthomyxoviridae. In addition, sequence similarity of concatenated gene products of

International Committee on Taxonomy of Viruses (ICTV) allowed demarcation to species and

firefly viruses were assessed by Circoletto diagrams(Darzentas, 2010) (e-value = 1e-2).

Where definitive identification was not easily assessed, protein Motif signatures were

determined by identification of region of high identity between divergent virus species,

visualized by Sequence Logo(Crooks et al., 2004), and contrasted with related literature.

Heterotrimeric viral polymerase 3D structure prediction was generated with the SWISS-

MODEL automated protein structure homology-modeling server (Biasini et al., 2014) with

the best fit template 4WSB: the crystal structure of Influenza A virus 4WSB. Predicted

structures were visualized in UCSF Chimera (Pettersen et al., 2004) and Needleman-Wunsch

sequence alignments from structural superposition of proteins were generated by

MatchMaker and the Match->Align Chimera tool. Alternatively, 3D structures were visualized

in PyMOL (v1.8.6.0; Schrodinger).

Viral RNA levels in the transcriptome sequences were also examined. Virus transcripts

RNA levels were obtained by mapping the corresponding raw SRA FASTQ read pairs using

either Bowtie2(Langmead and Salzberg, 2012) or the reference mapping tool of the

Geneious 8.1.9 suite (Biomatters, Ltd.) with standard parameters. Using the mapping results

and retrieving library data, absolute levels, TPMs and FPKM were calculated for each virus

RNA segment. Curated genome segments and coding annotation of the identified

PpyrOMLV1 and 2 are available on FigShare at (DOI: 10.6084/m9.figshare.5714806) and

(DOI: 10.6084/m9.figshare.5714812) respectively, and NCBI Genbank (accessions MG972985

through MG972994)

All curation, phylogeny construction, and visualization were conducted in Geneious 8.1.9

(Biomatters, Ltd.). Animal silhouettes in Appendix 5—figure 2 were developed based on

non-copyrighted public domain images. Figure compositions were assembled using

Photoshop CS5 (Adobe). Bar graphs were generated with Excel 2007 software (Microsoft).

RNA levels normalized as mapped transcripts per million per library were visualized using

Shinyheatmap (Khomtchouk et al., 2017).

Finally, to identify endogenous viral-like elements, tentative virus detections and the viral

refseq collection were contrasted to the P. pyralis genome assembly Ppyr1.2 by BLASTX

searches (e-value = 1e-6) and inspected by hand. Then 15 Kbp genome flanking regions

were retrieved and annotated. Lastly, transposable elements (TEs) were determined by the

presence of characteristic conserved domains (e.g. RNASE_H, RETROTRANSPOSON,

INTEGRASE) on predicted gene products and/or significant best BLASTP hits to reported

TEs (e-value <1e-10).

1.11 Repeat annotation
Repeat prediction for P. pyralis was performed de novo using RepeatModeler (v1.0.9)

(Smit and Hubley, 2017) and MITE-Hunter (v11-2011) (Han and Wessler, 2010).

RepeatModeler uses RECON (Bao and Eddy, 2002) and RepeatScout (Price et al., 2005) to

predict interspersed repeats, and then refines and classifies the consensus repeat models to

build a repeat library. MITE-Hunter detects candidate MITEs (miniature inverted-repeat

transposable elements) by scanning the assembly for terminal inverted repeats and target

site duplications < 2 kb apart. To identify tandem repeats, we also ran Tandem Repeat

Finder (v4.09; parameters: 2 7 7 80 10) (Benson, 1999), and added repeats whose repeat

block length was >5 kb to the repeat library annotated as ‘complex tandem repeat’. The

RepeatModeler and MITE-Hunter libraries were combined and classified using
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RepeatClassifier (RepeatModeler 1.0.9 distribution) (Smit and Hubley, 2017). The complex

repeats identified by Tandem Repeat Finder were added to this classified list to create the

final library of 3118 repeats. This repeat library is dubbed the P. pyralis Official Repeat

Library 1.0 (PPYR_ORL1.0).

Appendix 1—table 2. Annotated repetitive elements in P. pyralis.

Repeat class Family Counts Bases % of assembly

DNA All 122551 38364685 8.14

Helitrons 35068 9308100 1.97

LTR All 28860 11401648 2.42

Non-LTR All 52107 17744320 3.76

LINE 48983 16763499 3.56

SINE 1241 139637 0.03

Unknown interspersed 696511 141970977 30.1

Complex tandem repeats 10395 2352796 0.50

Simple repeat 48224 2372183 0.50

rRNA 449 161517 0.034

DOI: https://doi.org/10.7554/eLife.36495.034

1.12 P. pyralis methylation analysis
MethylC-seq libraries were prepared from HMW DNA prepared from four P. pyralis MMNJ

males using a previously published protocol (Urich et al., 2015), and sequenced to ~36x

expected depth on an Illumina NextSeq500. Methylation analysis was performed using

methylpy (Schultz et al., 2015) Methylpy calls programs for read processing and aligning: (i)

reads were trimmed of sequencing adapters using Cutadapt (Martin, 2011), (ii) processed

reads were mapped to both a converted forward strand (cytosines to thymines) and

converted reverse strand (guanines to adenines) using bowtie (flags: -S, -k 1, -m 1, –

chunkmbs 3072, –best, –strata, -o 4, -e 80, -l 20, -n 0 [Langmead et al., 2009]), and (iii) PCR

duplicates were removed using Picard (Picard Tools, 2017). In total, 49.4M reads were

mapped corresponding to an actual sequencing depth of ~16x. A sodium bisulfite non-

conversion rate of 0.17% was estimated from Lambda phage genomic DNA. Raw WGBS data

can be found on the NCBI Gene Expression Omnibus (GSE107177). Previously published

whole genome bisulfite sequencing (WGBS)/MethylC-seq libraries for Apis mellifera

(Herb et al., 2012), Bombyx mori (Xiang et al., 2010), Nicrophorus vespilloides

(Cunningham et al., 2015), and Zootermopsis nevadensis (Glastad et al., 2016) were

downloaded from the Short Read Archive (SRA) using accessions SRR445803–4, SRR027157–

9, SRR2017555, and SRR3139749, respectively. Libraries were subjected to identical

methylation analysis as P. pyralis.

Weighted DNA methylation was calculated for CG sites by dividing the total number of

aligned methylated reads by the total number of methylated plus un-methylated reads

(Schultz et al., 2012). For genic metaplots, the gene body (start to stop codon), 1000 base

pairs (bp) upstream, and 1000 bp downstream was divided into 20 windows proportional

windows based on sequence length (bp). Weighted DNA methylation was calculated for

each window and then plotted in R (v3.2.4) (R Development Core Team, 2013).

1.13 Telomere FISH analysis
We synthesized a 5’ fluorescein-tagged (TTAGG)5 oligo probe (FAM; Integrated DNA

Technologies) for fluorescence in situ hybridization (FISH). We conducted FISH on squashed

larval tissues according to previously published methods (Larracuente and Ferree, 2015),

with some modification. Briefly, we dissected larvae in 1X PBS and treated tissues with a

hypotonic solution (0.5% Sodium citrate) for 7 min. We transferred treated larval tissues to

Fallon et al. eLife 2018;7:e36495. DOI: https://doi.org/10.7554/eLife.36495 64 of 146

Research article Genetics and Genomics

https://doi.org/10.7554/eLife.36495.034
https://doi.org/10.7554/eLife.36495


45% acetic acid for 30 s, fixed in 2.5% paraformaldehyde in 45% acetic acid for 10 min,

squashed, and dehydrated in 100% ethanol. We treated dehydrated slides with detergent

(1% SDS), dehydrated again in ethanol, and then stored until hybridization. We hybridized

slides with probe overnight at 30˚C, washed in 4X SSCT and 0.1X SSC at 30˚C for 15 min per

wash. Slides were mounted in VectaShield with DAPI (Vector Laboratories), visualized on a

Leica DM5500 upright fluorescence microscope at 100X, imaged with a Hamamatsu Orca R2

CCD camera. Images were captured and analyzed using Leica’s LAX software.

Appendix 1—table 3. Photinus pyralis genome Experiment.com crowdfunding donors

(https://experiment.com/projects/illuminating-the-firefly-genome).

Liliana Bachrach Doug Fambrough Benjamin Lower Luis Cunha
Joshua
Guerriero

Atsuko Fish Tom Alar Noreen Huefner David Esopi John Skarha

Rutong Xie Richard Hall Zachary Michel Jack Hynes Keith Guerin

Nathan Shaner Joe Doggett Joe T. Bamberg Michael McGurk Pureum Kim

Sara Lewis Mark Lewis Lauren Solomon Peter Berx Milo Grika

Jing-Ke Weng Sarah Sander Dr. Husni Elbahesh Matt Grommes Daniel Zinshteyn

Peter Rodenbeck Daniel Bear Kathryn Larra-
cuente

Colette Dedyn Tom Brekke

Larry Fish Don Salvatore Matthew Cichocki Florencia
Schlamp

Edoardo Gianni

Amanda Larra-
cuente

Emily Davenport Marcel Bruchez Marie Lower Cindy Wu

Hunter Lower Ted Sharpe Robert Unckless Michael R.
McKain

Christina Tran

Allan Kleinman David Plunkett Arvid Ågren Ben Pfeiffer Eric Damon Wal-
ters

Misha Koksharov Tim Fallon Margaret S Butler Kathryn Keho Geoffrey Giller

Sarah Shekher Edward Garrity Yasir Ahmed-Brai-
mah

Jenny Wayfarer Fahd Butt

Jared Lee Huaping Mo Ruth Ann Grissom Darby Thomas Christophe Man-
dy

Raphael De Cock TimG Tomáš Pluskal Emily Hatas

Linds Fallon Jan Thys Genome Galaxy Richard Casey

Grace Li Francisco Martinez
Gasco

Dustin Greiner William Nicholls

DOI: https://doi.org/10.7554/eLife.36495.035
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Appendix 2

DOI: https://doi.org/10.7554/eLife.36495.036

Aquatica lateralis additional information

2.1 Taxonomy, biology, and life history

Aquatica lateralis (Motschulsky, 1860) (Japanese name, Heike-botaru / ヘイケボタル) is one of

the most common and popular luminous insects in mainland Japan. This species is a member

of the subfamily Luciolinae and had long belonged in the genus Luciola, but was recently

moved to the new genus Aquatica with some other Asian aquatic fireflies (Fu et al., 2010).

The life cycle of A. lateralis is usually 1 year. Aquatic larva possesses a pair of outer gills on

each abdominal segment and live in still or slow streams near rice paddies, wetlands and

ponds. Larvae mainly feed on freshwater snails. They pupate in a mud cocoon under the soil

near the water. Adults emerge in early to end of summer. While both males and females are

full-winged and can fly, there is sexual dimorphism in adult size: the body length is about 9

mm in males and 12 mm in females (Ohba, 2004).

Like other firefly larvae, A. lateralis larvae are bioluminescent. Larvae possess a pair of

lanterns at the dorsal margin of the abdominal segment 8. Adults are also luminescent and

possess lanterns at true abdominal segments 6 and 7 in males and at segment six in females

(Branham and Wenzel, 2003; Ohba, 2004; Kanda, 1935). The adult is dusk active. Male

adults flash yellow-green for about 1.0 s in duration every 0.5–1.0 s while flying ~1 m above

the ground. Female adults, located on low grass, respond to the male signal with flashes of 1–

2 s in duration every 3–6 s. Males immediately approach females and copulate on the grass

(Ohba, 2004; Ohba, 1983). Like many other fireflies, A. lateralis is likely toxic: both adults and

larvae emit an unpleasant smell when disturbed and both invertebrate (dragonfly) and

vertebrate (goby) predators vomit up the larva after biting (Ohba and Hidaka, 2002). A.

lateralis larvae have eversible glands on each of the eight abdominal segments (Fu et al.,

2010). The contents of the eversible glands is perhaps similar to that reported for A. leii

(Fu et al., 2007).

2.2 Species distribution
The geographical range of A. lateralis includes Siberia, Northeast China, Kuril Isls, Korea, and

Japan (Hokkaido, Honshu, Shikoku, Kyushu, Tsushima Isls.) (Kawashima et al., 2003). Natural

habitats of these Japanese fireflies have been gradually destroyed through human activity, and

currently these species can be regarded as ‘flagship species’ for conservation (Higuchi, 1996).

For example, in 2017, Japanese Ministry of Environment began efforts to protect the

population of A. lateralis in the Imperial Palace, Tokyo, where 3000 larvae cultured in an

aquarium were released in the pond beside the Palace (Imperial Palace Outer Garden

Management Office, 2017).

2.3 Specimen collection
Individuals used for genome sequencing, RNA sequencing, and LC-HRAM-MS were derived

from a small population of laboratory-reared fireflies. This population was established from a

few individuals collected from rice paddy in Kanagawa Prefecture of Japan in 1989 and 1990

(Ikeya, 2016) by Mr. Haruyoshi Ikeya, a highschool teacher in Yokohama, Japan. Mr. Ikeya

collected adult A. lateralis specimens from their natural habitat in Yokohama and has

propagated them for over 25 years (~25 generations) in a laboratory aquarium without any

addition of wild individuals. This population has since been propagated in the laboratory of

YO and JKW, and is dubbed the ‘Ikeya-Y90’ cultivar. Because of the small number of

individuals used to establish the population and the number of generations of propagation,

this population likely represents a partially inbred strain. Larvae were kept in aquarium at 19–
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21˚C and fed using freshwater snails (Physella acuta and Indoplanorbis exustus). Under

laboratory rearing conditions, the life cycle is reduced to 7–8 months. The original habitat of

this strain has been destroyed and the wild population which led to the laboratory strain is

now extinct.

2.4 Karyotype and genome size
Unlike P. pyralis, the karyotype of A. lateralis is reported to be 2n = 16 with XY sex

determination (male, 14A + XY; female, 14A + XX) (Inoue and Yamamoto, 1987). The Y

chromosome is much smaller than X chromosome, and the typical behaviors of XY

chromosomes, such as partial conjugation of X/Y at the first meiotic metaphase and

a separation delay of X/Y at the first meiotic anaphase, were observed in testis cells

(Inoue and Yamamoto, 1987).

We determined the genome size of A. lateralis using flow cytometry-mediated calibrated-

fluorimetry of DNA content with propidium iodide stained nuclei. First, the head+prothorax of

a single pupal female (gender identified by morphological differences in abdominal segment

VIII) was homogenized in 100 mL PBS. These tissues were chosen to avoid the ovary tissue.

Once homogenized, 900 mL PBS, 1 mL Triton X-100 (Sigma-Aldrich), and 4 mL 100 mg/mL

RNase A (QIAGEN) were added. The homogenate was incubated at 4˚C for 15 min, filtered

with a 30 mm Cell Tries filter (Sysmex), and further diluted with 1 mL PBS. 20 mL of 0.5 mg/mL

propidium iodide was added to the mixture and then average fluorescence of the 2C nuclei

determined with a SH-800 flow cytometer (Sony, Japan). Three technical replicates of this

sample were performed. Independent runs for extracted Aphid nuclei (Acyrthosiphon pisum;

517 Mbp), and fruit fly nuclei (Drosophila melanogaster; 175 Mbp) were performed as

calibration standards. Genome size was estimated at 940 Mbp ±1.4 (S.D.; technical

replicates = 3).

Genome size inference via Kmer spectral analysis estimated a genome size of 772 Mbp

(Appendix 2—figure 1).

2.5 Genomic sequencing and assembly
Genomic DNA was extracted from the whole body of a single laboratory-reared A. lateralis

adult female (c.v. Ikeya-Y90) using the QIAamp Kit (Qiagen). Purified DNA was fragmented

with a Covaris S2 sonicator (Covaris, Woburn, MA), size-selected with a Pippin Prep (Sage

Science, Beverly, MA), and then used to create two paired-end libraries using the TruSeq

Nano Sample Preparation Kit (Illumina) with insert sizes of ~200 and~800 bp. These libraries

were sequenced on an Illumina HiSeq1500 using a 125 � 125 paired-end sequencing protocol.

Mate-pair libraries of 2–20 Kb with a peak at ~5 Kb were created from the same genomic DNA

using the Nextera Mate Pair Sample Preparation Kit (FC-132–1001, Illumina), and sequenced

on HiSeq 1500 using a 100 � 100 paired-end sequencing protocol at the NIBB Functional

Genomics Facility (Aichi, Japan). In total, 133.3 Gb of sequence (159x) was generated.

Reads were assembled using ALLPATHS-LG (build# 48546) (Gnerre et al., 2011), with

default parameters and the ‘HAPLOIDIFY = True’ option. Scaffolds were filtered to remove

non-firefly contaminant sequences using blobtools (Laetsch and Blaxter, 2017), resulting in

the final assembly (Alat1.3). The final assembly (Alat1.3) consists of 5388 scaffolds totaling

908.5 Gbp with an N50 length of 693.0 Kbp, corresponding to 96.6% of the predicted

genome size of 940 Mbp based on flow cytometry (Appendix 2.4). Genome sequencing library

statistics are available in Appendix 4—table 1.
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A B

Appendix 2—figure 1. Genome scope kmer analysis of the A. lateralis short-insert genomic

library. (A) Linear and (B) log plot of a kmer spectral genome composition analysis of the

‘FFGPE_PE200’ A. lateralis Illumina short-insert library (Appendix 2.5; Appendix 4—table 1)

with jellyfish (v2.2.9; parameters: -C -k 35) (Marçais and Kingsford, 2011) and GenomeScope

(v1.0; parameters: Kmer length = 35, Read length = 100, Max kmer coverage = 1000)

(Vurture et al., 2017). len = inferred haploid genome length, uniq = percentage non-

repetitive sequence, het = overall rate of genome heterozygosity, kcov = mean kmer coverage

for heterozygous bases, err = error rate of the reads, dup: average rate of read duplications.

These results are consistent when considering the possible systematic error of kmer spectral

analysis and flow cytometry genome size estimates. The heterozygosity is lower than that

measured for P. pyralis, possibly reflecting the long-term laboratory rearing in reduced

population sizes of A. lateralis strain Ikeya-Y90.

DOI: https://doi.org/10.7554/eLife.36495.037

2.5.2 Taxonomic annotation filtering
Potential contaminants in Alat1.2 were identified using the blobtools toolset (v1.0)

(Laetsch and Blaxter, 2017). First, scaffolds were compared to known sequences by

performing a blastn (v2.5.0+) nucleotide sequence similarity search against the NCBI nt

database and a diamond (v0.9.10) (Buchfink et al., 2015) translated nucleotide sequence

similarity search against the of Uniprot reference proteomes (July 2017). Using this similarity

information, scaffolds were annotated with blobtools (parameters ‘-x bestsumorder’). We also

inspected the read coverage by mapping the paired-end reads (FFGPE_PE200) on the

genome using bowtie2. A tab delimited text file containing the results of this blobtools

annotation are available on FigShare (DOI: 10.6084/m9.figshare.5688928). The contigs derived

from potential contaminants and/or poor quality contigs were then removed: contigs with

higher %GC (>50%) with bacterial hits or no database hits and showing low read coverage

(<30 x) (see Appendix 2—figure 2). This process removed 1925 scaffolds (1.17 Mbp),

representing 26.3% of the scaffold number and 1.3% of the nucleotides of Alat1.2, producing

the final filtered assembly, dubbed Alat1.3.
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Appendix 2—figure 2. Blobplot of A. lateralis Illumina reads aligned against Alat1.2. Coverage

shown represents mean coverage of reads from the Illumina short-insert library (Sample name

FFGPE_PE200; Appendix 4—table 1), aligned against Alat1.2 using Bowtie2. Scaffolds were

taxonomically annotated as described in Appendix 2.5.2.

DOI: https://doi.org/10.7554/eLife.36495.038

2.6 RNA-extraction, library preparation and sequencing
In order to capture transcripts from diverse life-stages and tissues, non-stranded RNA-Seq

libraries were prepared from fresh specimens of nine life stages/sexes/tissues (eggs, fifth (the

last) instar larvae, both sex of pupae, adult male head, male abdomen (prothorax-to-fifth

segment), male lantern, adult female head, and female lantern (Appendix 2—table 1). Live

specimens were anesthetized on ice and dissected during the day. The lantern tissue was

dissected from the abdomen and contains the cuticle, photocyte layer and reflector layer. For

eggs, larvae, and pupae, total RNA was extracted using the RNeasy Mini Kit (QIAGEN) with

the optional on-column DNase treatment. For adult specimens, total RNA was extracted using

TRIzol reagent (Invitrogen) to avoid contamination of pigments and uric acid. These were then

treated with DNase in solution and then cleaned using a RNeasy Mini kit.

cDNA libraries were generated from purified Total RNA (500 ng from each sample) using a

TruSeq RNA Sample Preparation Kit v2 (Illumina) according to the manufacturer’s protocol

(Low-Throughput Protocol), except that all reactions were carried out at half scale. The

fragmentation of mRNA was performed for 4 min. The enrichment PCR was done using six

cycles. A subset of nine libraries (BdM1, HeF1, HeM1, LtF1, LtM1, Egg1, Lrv1, PpEF, PpLM;

Appendix 2—table 1) were multiplexed and sequenced in a single lane of Hiseq1500 101 �

101 bp paired-end reads. The remaining 23 libraries (BdM2, BdM3, HeF2, HeF3, HeM2,

HeM3, LtF2, LtF3, LtM2, LtM3, WAF1, WAF2, WAF3, WAM1, WAM2, WAM3, Egg2, Lrv2,
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Lrv3, PpEM, PpLF, PpMF, PpMM) were multiplexed and sequenced in two lanes of Hiseq1500

66 bp single-end reads. Sequence quality was inspected with FastQC (Andrews, 2017).

Appendix 2—table 1. Aquatica lateralis RNA sequencing. N: number of individuals pooled for

sequencing; Sex/stage: M = male, F = female, A = adult, L = larva, L = larvae, E = Eggs,

p=Pupae, P-E = Pupae early, P-M = Pupae middle, P-L = Pupae late; Tissue: H = head,

La = dissected lantern containing cuticle, photocyte layer and reflector layer, H = head,

B = Thorax, plus abdomen excluding lantern containing segments. W = whole specimen.

AEL = After egg laying.

Library
name Label SRA ID N

Sex/
Stage Tissue Library type

R102L6_idx13 BdM1 DRR119264 1 M/A B Illumina paired-end, non-stranded
specific, PolyA

R128L1_idx25 BdM2 DRR119265 1 M/A B Illumina single-end, non-stranded
specific, PolyA

R128L2_idx27 BdM3 DRR119266 1 M/A B Illumina single-end, non-stranded
specific, PolyA

R102L6_idx15 HeF1 DRR119267 3 F/A H Illumina paired-end, non-stranded
specific, PolyA

R128L1_idx22 HeF2 DRR119268 3 F/A H Illumina single-end, non-stranded
specific, PolyA

R128L2_idx23 HeF3 DRR119269 3 F/A H Illumina single-end, non-stranded
specific, PolyA

R102L6_idx12 HeM1 DRR119270 2 M/A H Illumina paired-end, non-stranded
specific, PolyA

R128L1_idx20 HeM2 DRR119271 2 M/A H Illumina single-end, non-stranded
specific, PolyA

R128L2_idx21 HeM3 DRR119272 2 M/A H Illumina single-end, non-stranded
specific, PolyA

R102L6_idx16 LtF1 DRR119273 5 F/A La Illumina paired-end, non-stranded
specific, PolyA

R128L1_idx06 LtF2 DRR119274 5 F/A La Illumina single-end, non-stranded
specific, PolyA

R128L2_idx12 LtF3 DRR119275 5 F/A La Illumina single-end, non-stranded
specific, PolyA

R102L6_idx14 LtM1 DRR119276 5 M/A La Illumina paired-end, non-stranded
specific, PolyA

R128L1_idx05 LtM2 DRR119277 5 M/A La Illumina single-end, non-stranded
specific, PolyA

R128L2_idx19 LtM3 DRR119278 5 M/A La Illumina single-end, non-stranded
specific, PolyA

R128L2_idx15 WAF1 DRR119279 1 F/A W Illumina single-end, non-stranded
specific, PolyA

R128L1_idx16 WAF2 DRR119280 1 F/A W Illumina single-end, non-stranded
specific, PolyA

R128L2_idx18 WAF3 DRR119281 1 F/A W Illumina single-end, non-stranded
specific, PolyA

R128L1_idx11 WAM1 DRR119282 1 M/A W Illumina single-end, non-stranded
specific, PolyA

R128L2_idx13 WAM2 DRR119283 1 M/A W Illumina single-end, non-stranded
specific, PolyA

R128L1_idx14 WAM3 DRR119284 1 M/A W Illumina single-end, non-stranded
specific, PolyA

Appendix 2—table 1 continued on next page
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Appendix 2—table 1 continued

Library
name Label SRA ID N

Sex/
Stage Tissue Library type

R102L6_idx4 Egg1 DRR119285 19.6
mg
(�30–
50)

E
�6 hr
AEL

W Illumina paired-end, non-stranded
specific, PolyA

R128L1_idx01 Egg2 DRR119286 21.6
mg
(�30–
50)

E
�7 d
AEL

W Illumina single-end, non-stranded
specific, PolyA

R102L6_idx5 Lrv1 DRR119287 1 L W Illumina paired-end, non-stranded
specific, PolyA

R128L1_idx03 Lrv2 DRR119288 1 L W Illumina single-end, non-stranded
specific, PolyA

R128L2_idx04 Lrv3 DRR119289 1 L W Illumina single-end, non-stranded
specific, PolyA

R128L1_idx07 PpEM DRR119290 1 M/P-E W Illumina single-end, non-stranded
specific, PolyA

R128L2_idx10 PpLF DRR119291 1 F/P-L W Illumina single-end, non-stranded
specific, PolyA

R128L1_idx09 PpMF DRR119292 1 F/P-M W Illumina single-end, non-stranded
specific, PolyA

R128L2_idx08 PpMM DRR119293 1 M/P-M W Illumina single-end, non-stranded
specific, PolyA

R102L6_idx7 PpEF DRR119294 1 F/P-E W Illumina paired-end, non-stranded
specific, PolyA

R102L6_idx6 PpLM DRR119295 1 M/P-L W Illumina paired-end, non-stranded
specific, PolyA

DOI: https://doi.org/10.7554/eLife.36495.039

2.7 Transcriptome analysis

2.7.1 De novo transcriptome assembly and alignment
To build a comprehensive set of reference transcript sequences, reads derived from the pool

of nine libraries (BdM1, HeF1, HeM1, LtF1, LtM1, Egg1, Lrv1, PpEF, PpLM; Appendix 2—

table 1) were pooled. These represent RNA prepared from various tissues (head, thorax +

abdomen, lantern) and stages (egg, pupae, adult) of both sexes. A non strand-specific de

novo transcriptome assembly was produced with Trinity (v2.6.6) (Grabherr et al., 2011)

using default parameters exception the following: (–min_glue 2 min_kmer_cov 2 –

jaccard_clip –no_normalize_reads –trimmomatic). Peptides were predicted from the de novo

transcripts via Transdecoder (v5.3.0; default parameters). De novo transcripts were then

aligned to the A. lateralis genome (Alat1.3) using the PASA pipeline with blat (v36 � 2) and

gmap (v2018-05-03) (–aligners blat,gmap), parameters for alternative splice analysis and

strand specificity (–ALT_SPLICE –transcribed_is_aligned_orient), and input of the previously

extracted Trinity accessions (–tdn tdn.accs). Importantly, it was necessary to set (–

NUM_BP_PERFECT_SPLICE_BOUNDARY = 0) for the validate_alignments_in_db.dbi step, to

ensure transcripts with natural variation near the splice sites were not discarded. Direct

coding gene models (DCGMs) were then produced with the Transdecoder

‘cdna_alignment_orf_to_genome_orf.pl’ utility script, with the PASA assembly GFF and

transdecoder predicted peptide GFF as input. The unaligned de novo transcriptome

assembly is dubbed ‘AQULA_Trinity_unstranded’, whereas the aligned direct coding gene

models are dubbed ‘Alat1.3_Trinity_unstranded-DCGM’.
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2.7.2 Reference guided transcriptome alignment and assembly
A reference guided transcriptome was produced from all available A.lateralis RNA-seq reads

(Appendix 2—table 1) using HISAT2 (v2.1.0) (Kim et al., 2015) and StringTie (v1.3.3b)

(Pertea et al., 2015). Reads were first mapped to the A. lateralis genome (Alat1.3) with

HISAT2 (parameters: -X 2000 –dta –fr). Then StringTie assemblies were performed on each

separate bam file corresponding to the original libraries using default parameters. Finally,

the produced. GTF files were merged using StringTie (–merge). A transcript fasta file was

produced from the StringTie GTF file with the transdecoder ‘gtf_genome_to_cdna_fasta.pl’

utility script, and peptides were predicted for these transcripts using Transdecoder (v5.3.0)

with default parameters. The StringTie GTF was converted to GFF format with the

Transdecoder ‘gtf_to_alignment_gff3.pl’ utility script, and direct coding gene models

(DCGMs) were then produced with the Transdecoder ‘cdna_alignment_orf_to_genome_orf.

pl’ utility script, with the StringTie-provided GFF and transdecoder predicted peptide GFF as

input. The reference guided transcriptome assembly was dubbed

‘AQULA_Stringtie_unstranded’, whereas the aligned direct coding gene models were

dubbed ‘Alat1.3_Stringtie_unstranded-DCGM’.

2.7.3 Transcript expression analysis
A. lateralis RNA-Seq reads (Appendix 2—table 1) were pseudoaligned to the

AQULA_OGS1.0 geneset mRNAs using Kallisto (v0.43.1) (Bray et al., 2016) with 100

bootstraps (-b 100), producing transcripts-per-million reads (TPM). Kallisto expression

quantification analysis results are available on FigShare (DOI: 10.6084/m9.figshare.5715139).

2.8 Official coding geneset annotation (AQULA_OGS1.0)
A protein-coding gene reference set for A. lateralis was generated by Evidence Modeler

(v1.1.1) using both aligned transcripts and aligned proteins. For transcripts, we combined

reference guided and de novo transcriptome assembly approaches. Notably, these reference

guided and de novo transcriptome assembly approaches differed from the current de novo

(Appendix 2.7.1) and reference guided (Appendix 2.7.2) transcriptome assembly approaches.

In the reference-guided approach applied here, RNA-Seq reads were mapped to the

genome assembly with TopHat and assembled into transcripts with Cufflinks (parameters: –

min-intron-length 30) (Trapnell et al., 2010). The Cufflinks transcripts were subjected to the

TransDecoder program to extract ORFs. In the de novo transcriptome approach applied

here, RNA-seq reads were assembled de novo by Trinity and ORFs were predicted using

TransDecoder. We used CD-HIT-EST (Li and Godzik, 2006) to reduce the redundancy of the

predicted ORFs. The ORF sequences were mapped to the genome using Exonerate in

est2genome mode for splice-aware alignment. We processed homology evidence at the

protein level using the reference proteomes of D. melanogaster and T. castaneum. These

reference proteins were split-mapped to the A. lateralis genome in two steps: first with

BLASTX to find approximate loci, and then with Exonerate in protein2genome mode to

obtain more refined alignments. These gene models derived from multiple evidence were

merged by the EVM program to obtain the reference annotation for the genomes. We also

predicted ab initio gene models using Augustus, but we didn’t include Augustus models for

the EVM integration because our preliminary analysis showed the ab initio gene models had

no positive impact on gene prediction.

Lastly, gene models for luciferase homologs, P450s, and de novo methyltransferases

(DNMTs) which were fragmented or were incorrect (e.g. fusions of adjacent genes) were

manually corrected based on the evidence of the de novo and reference guided direct

coding gene models. Manual correction was performed by performing TBLASTN searches

with known good genes from these gene families within SequencerServer(v1.10.11)

(Priyam et al., 2015), converting the TBLASTN results to gff3 format with a custom script

(Fallon, 2018b), and viewing these alignments alongside the alternative direct coding gene

models (Appendix 2.7.1; 2.7.2) in Integrative Genomics Viewer(v2.4.8)

(Thorvaldsdóttir et al., 2013). The official gene set. gff3 file was manually modified in

accordance with the alternative gene models. Different revision numbers of the official
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geneset (e.g. AQULA_OGS1.0, AQULA_OGS1.1) represent the improvement of the geneset

over time due to these continuing manual gene annotations.

2.9 Repeat annotation
A de novo species-specific repeat library for A. lateralis was constructed using

RepeatModeler (v1.0.9), and Tandem Repeat Finder (v4.09; settings: 2 7 7 80 10)

(Benson, 1999). Only tandem repeats from Tandem Repeat Finder with a repeat block

length >5 kb (annotated as ‘complex tandem repeat’) were added to the RepeatModeler

library. This process yielded a final library of 1695 interspersed repeats. We then used this

library and RepeatMasker (v4.0.5) (Smit et al., 2015) to identify and mask interspersed and

tandem repeats in the genome assembly. This repeat library is dubbed the Aquatica lateralis

Official Repeat Library 1.0 (AQULA_ORL1.0).

Appendix 2—table 2. Annotated repetitive elements in A. lateralis.

Repeat class Family Counts Bases % of assembly

DNA All 229064 73263593 8.06

Helitrons 930 466679 0.051

LTR All 59499 23391956 2.57

Non-LTR All 151788 50394853 5.55

LINE 151788 50394853 5.55

SINE 0 0 0

Unknown interspersed 450934 99998958 11.01

Complex tandem repeats 295 33237 0.004

Simple repeat 155265 6656757 0.73

rRNA 0 0 0

DOI: https://doi.org/10.7554/eLife.36495.040
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Appendix 3

DOI: https://doi.org/10.7554/eLife.36495.041

Ignelater luminosus additional information

3.1 Taxonomy, biology, and life history
Ignelater luminosus is a member of the beetle family Elateridae (‘click beetles’), related to

Lampyridae within the superfamily Elateroidea. The Elateridae includes about 10,000 species

(Slipinski et al., 2011) (17 subfamilies) (Costa et al., 2010), which are widespread throughout

the globe. Unlike in fireflies, where bioluminescence is universal, only ~200 described elaterid

species are luminous. These luminous species are recorded only from tropical and subtropical

regions of Americas and some small Melanesian islands, such as Fiji and Vanuatu

(Costa, 1975; Costa et al., 2010). For instance, the tropical American Pyrophorus noctilucus is

considered the largest (~30 mm) and brightest bioluminescent insect (Harvey and Stevens,

1928; Levy, 1998). All luminous species are closely related - luminous click beetles belong to

the tribes Pyrophorini and Euplinthini (Costa, 1975; Arias-Bohart, 2015) of the subfamily

Agrypninae, with the single exception of Campyloxenus pyrothorax (Chile) in the related

subfamily Campyloxeninae (Stibick, 1979). The luminescence of a pair of pronotal ‘light

organs’ of the adult Balgus schnusei (Costa, 1984), a species that has now been assigned to

the Thylacosterninae of the Elateridae (Costa et al., 2010), has not been confirmed by later

observation. This near-monophyly of bioluminescent elaterid taxa is supported by both

morphological (Douglas, 2011) and molecular phylogenetic analysis (Sagegami-Oba et al.,

2007; Oba and Sagegami-Oba, 2007; Kundrata and Bocak, 2011), although early

morphological phylogenies were inconsistent (Stibick, 1979; Hyslop, 1917; Ohira, 1962;

Dolin, 1978; Ohira, 2013). This suggests a single origin of bioluminescence in this family.

The genus Ignelater was established by Costa in 1975 and I. luminosus was included in this

genus (Costa, 1975). Often this species is called Pyrophorus luminosus as an ‘auctorum’, a

name used to describe a variety of taxa (Johnson, 2002). This use of ‘Pyrophorus’ as an

auctorum may be due to the heightened difficulty of classifying Elateridae (Costa, 1975). The

genus Ignelater is characterized by the presence of both dorsal and ventral photophores

(Costa, 1975; Rosa, 2007). An unreviewed report suggested that the adult I. luminosus has a

ventral light organ only in males (Reyes and Lee, 2010). Phylogenetic analyses based on the

morphological characters suggested that the genera Ignelater and Photophorus (which

contain only two species from Fiji and Vanuatu) are the most closely related genera in the tribe

Pyrophorini (Rosa, 2007). The earliest fossil of an Elateridae species was recorded from the

Middle Jurassic of Inner Mongolia, China (Chang et al., 2009). McKenna and Farrell

suggested that, based on molecular analyses, the family Elateridae originated in the Early

Cretaceous (130 Mya) (McKenna and Farrell, 2009). It is expected that many recent genera in

Elateroidea were established by the Early Tertiary (<65 Mya) (Grimaldi and Engel, 2005).

The exact function of bioluminescence across different life stages remains unknown for

many luminous elaterid species. Bioluminescent elaterid beetles typically have two paired

lanterns on the dorsal surface of the prothorax, and a single lantern on the ventral abdomen,

which is only exposed during flight. Several bioluminescent Elateridae produce different

colored luminescence from their prothorax and abdominal lanterns (Oba et al., 2010a;

Feder and Velez, 2009). Harvey reported that there was not a marked difference in the

luminescence color of the dorsal and ventral lanterns of Puerto Rican I. luminosus

(Harvey, 1952). Like fireflies, elaterid larvae often produce light, with the glowing termite

mounds of Brazil that contain the predatory larvae of Pyrearinus termitilluminans being a

striking example (Costa and Vanin, 2010). A description of the anatomy of the larval light

organ of Pyrophorus is provided by (Harvey, 1952), and a more modern photograph of the

larval light organ is provided by (Bechara and Stevani, 2018). Like other bioluminescent

elaterid larvae, I. luminosus larvae produce a diffuse light from their prothorax, however they

are only luminous when disturbed (Wolcott, 1948). I. luminosus larvae are subterranean

predators and are an enthusiastic predator of the white grub (Ancylonycha spp.), reportedly
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consuming 50 + to reach full size (Wolcott, 1950). Adult I. luminosus are luminescent and a

bioluminescent courtship behavior was described in an unreviewed study (Kretsch, 2000).

Reportedly, males search during flight with their prothorax lanterns illuminated steadily, while

females stay on the ground modulating the intensity of their prothorax lanterns in ~2 s

intervals. Once a female is observed, the prothorax lanterns of the male go dark, the ventral

lantern becomes illuminated, and the male approaches the female via a circular search

pattern. Mating is brief, reportedly taking only 5 seconds.

Unlike fireflies, bioluminescent elaterid species are not known to have potent chemical

defenses. For example, the Jamaican bioluminescent elaterid beetle Pyrophorus

plagiophthalmus, does not appear to be strongly unpalatable, as bats were observed to

regularly capture the beetles during their flying bioluminescent displays (Vélez, 2006). A

defense role for I. luminosus luminescence to startle predators is possible.

3.2 Species distribution
I. luminosus is often considered to be endemic to Puerto Rico (Virkki et al., 1984); however,

the genus Ignelater is reported in Florida (USA), Vera Cruz (Mexico), the Bahamas, Cuba, Isla

de la Juventud, Hispaniola (Haiti + Dominican Republic), Puerto Rico, and the Lesser Antilles

(Costa, 1975). Similarly, I. luminosus itself has been reported on the island of Hispaniola

(Kretsch, 2000; Perez-Gelabert, 2008), indicating I. luminosus is not restricted to Puerto

Rico. This geographic distribution of Ignelater suggests that Puerto Rico may contain multiple

Ignelater species and, given the difficulty of distinguishing different species of bioluminescent

Elateridae by morphological characters, a definitive species distribution for I. luminosus cannot

be stated, other than this species is seemingly not strictly endemic to Puerto Rico.

3.3 Collection
I. luminosus (Illiger, 1807) adult specimens were collected from private land in Mayagüez,

Puerto Rico (18˚ 13’ 12.1974’ N, 67˚ 6’ 31.6866’ W) with permission of the landowner by Dr.

David Jenkins (USDA-ARS). Individuals were captured at night on April 20th and April 28th

2015 during flight on the basis of light production. The I. luminosus specimens were frozen in

a �80˚C freezer, lyophilized, shipped to the laboratory (MIT) on dry ice, and stored at �80 ˚C.

Full collection metadata is available from the NCBI BioSample records of these specimens

(NCBI Bioproject PRJNA418169). Identification to species was performed by comparing

antenna and dissected genitalia morphology to published keys (Costa, 1975; Rosa, 2007;

Rosa, 2010) (Appendix 3—figure 1). All inspected specimens were male (3/3). Specimens

collected at the same time, but not those used for genitalial dissection, were used for

sequencing. Although the genitalia morphology of the sequenced specimens was not

inspected to confirm their sex, sequenced specimens were inferred to be male, based on the

fact that female bioluminescent elaterid beetles are rarely seen in flight (Personal

communication: S. Velez) and the dissected specimens collected in the same batch as the

sequenced specimens were confirmed to be male.

A B

Appendix 3—figure 1. I. luminosus aedeagus (male genitalia). (A) Dorsal and (B) ventral view of
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an Ignelater luminosus aedeagus, dissected from the same batch of specimens used for linked-

read sequencing and genome assembly. The species identity of this specimen was confirmed

as I. luminosus by comparison of the aedeagus to the keys of Costa and Rosa (Costa, 1975;

Rosa, 2007; Rosa, 2010).

DOI: https://doi.org/10.7554/eLife.36495.042

3.4 Karyotype and genome size
The karyotype of male Puerto Rican I. luminosus (as Pyrophorus luminosus) was reported as

2n = 14A + X1X2Y (Virkki et al., 1984). The genome sizes of 5 male I. luminosus were

determined by flow cytometry-mediated calibrated-fluorimetry of DNA content with

propidium iodide stained nuclei by Dr. J. Spencer Johnston (Texas A&M University). The

frozen head of each individual was placed into 1 mL of cold Galbraith buffer in a 1 mL Kontes

Dounce Tissue Grinder along with the head of a female Drosophila virilis standard (1C = 328

Mbp). The nuclei from the sample and standard were released with 15 strokes of the ‘B’

(loose) pestle, filtered through 40 mm Nylon mesh, and stained with 25 mg/mL Propidium

Iodide (PI). After a minimum of 30 min staining in the dark and cold, the average fluorescence

channel number for the PI (red) fluorescence of the 2C (diploid) nuclei of the sample and

standard were determined using a CytoFlex Flow Cytometer (Beckman-Coulter). The 1C

amount of DNA in each sample was determined as the ratio of the 2C channel number of the

sample and standard times 328 Mbp. The genome size of these I. luminosus males was

determined to be 764 ± 7 Mbp (SEM, n = 5). Genome size inference via Kmer spectral analysis

of the I. luminosus linked-read data estimated a genome size of 841 Mbp (Appendix 3—

figure 2).

3.5 Genomic sequencing and assembly
HMW DNA (25 mg) was extracted from a single male specimen of I. luminosus using a 100/G

Genomic Tip with the Genomic buffers kit (Qiagen, USA). The I. luminosus specimen was first

washed with 95% ethanol, and DNA was extracted following the manufacturer’s protocol, with

the exception of the final precipitation step, where HMW DNA was pelleted with 40 mg RNA

grade glycogen (Thermo Scientific, USA) and centrifugation (3000 x g, 30 min, 4˚C) instead of

spooling on a glass rod. HMW DNA was sent on dry-ice to the Hudson Alpha Institute of

Biotechnology Genomic Services Lab (HAIB-GSL), where pulsed-field-gel-electrophoresis

(PFGE) quality control and 10x Genomics Chromium Genome v1 library construction was

performed. PFGE quality control indicated the mean size of the input DNA was >35 kbp+. The

resulting library was then sequenced on one HiSeqX lane. 408,838,927 paired reads (150 �

150 PE) were produced, corresponding to a genomic coverage of 153x. To evaluate the effect

of different Ilumina instruments on data and assembly quality, the library was also sequenced

on one HiSeq2500 lane, where 145,250,480 reads (150 � 150 PE) were produced,

corresponding to a genomic coverage of 54x. A summary of the library statistics for the

genomic sequencing is available in Appendix 4—table 1. The draft genome of I. luminosus

(Ilumi1.0) was assembled from the obtained HiSeqX genomic sequencing reads using the

Supernova assembler (v1.1.1) (Weisenfeld et al., 2017), on a 40 core 1 TB RAM server at the

Whitehead Institute for Biomedical Research. The reported mean molecule size was 12.23 kbp.

The assembly was exported to FASTA format using Supernova mkoutput (parameters: –

style=pseudohap), and modified by taxonomic annotation filtering (Appendix 3.5.2) and

polishing (Appendix 3.5.3) to form Ilumi1.1. A Supernova (v2.0.0) assembly was also produced

from combined HiSeqX and HiSeq2500 reads, but on a brief inspection the quality was

equivalent to Ilumi1.1, so the new assembly was not used for further analyses. Manual long-

read based scaffolding was then applied to produce a final assembly Ilumi1.2 (Appendix

3.5.4).

Fallon et al. eLife 2018;7:e36495. DOI: https://doi.org/10.7554/eLife.36495 76 of 146

Research article Genetics and Genomics

https://doi.org/10.7554/eLife.36495.042
https://doi.org/10.7554/eLife.36495


A B

Appendix 3—figure 2. Genome scope kmer analysis of the I. luminosus linked-read genomic

library. (A) Linear and (B) log plot of a kmer spectral genome composition analysis of the

‘1610_IlumiHiSeqX’ I. luminosus Illumina linked-read library (Appendix 2.5; Appendix 4—table

1) with jellyfish (v2.2.9; parameters: -C -k 35) (Marçais and Kingsford, 2011) and

GenomeScope (v1.0; parameters: Kmer length = 35, Read length = 138, Max kmer

coverage = 1000) (Vurture et al., 2017). Before analysis, 10x Chromium barcodes were

trimmed off Read1 using cutadapt (v1.8; parameters: -u 23) (Martin, 2011). vlen = inferred

haploid genome length, uniq = percentage non-repetitive sequence, het = overall rate of

genome heterozygosity, kcov = mean kmer coverage for heterozygous bases, err = error rate

of the reads, dup: average rate of read duplications. These results are consistent when

considering the possible systematic error of kmer spectral analysis and flow cytometry genome

size estimates. The heterozygosity is higher than that measured for P. pyralis and A. lateralis.

The read error rate for this library is also significantly higher than the P. pyralis and A. lateralis

results, possibly highlighting the difference in raw read error rate between HiSeq2500 and

HiSeqX sequencing, or is possibly an artifact of the Chromium library.

DOI: https://doi.org/10.7554/eLife.36495.043

3.5.2 Taxonomic annotation filtering
We sought to systematically remove assembled non-elaterid contaminant sequence from

Ilumi1.0. Using the blobtools toolset (v1.0.1), (Laetsch and Blaxter, 2017), we taxonomically

annotated our scaffolds by performing a blastn (v2.6.0+) nucleotide sequence similarity search

against the NCBI nt database, and a diamond (v0.9.10.111) (Buchfink et al., 2015) translated

nucleotide sequence similarity search against the of Uniprot reference proteomes (July 2017).

Using this similarity information, we taxonomically annotated the scaffolds with blobtools

using parameters ‘-x bestsumorder –rank phylum’ (Appendix 3—figure 3). A tab delimited

text file containing the results of this blobtools annotation is available on FigShare (DOI: 10.

6084/m9.figshare.5688952). We then generated the final genome assembly by retaining

scaffolds that had coverage >10.0 in the 1610_IlumiHiSeqX library, and did not have a high

scoring (score >5000) taxonomic assignment for ‘Proteobacteria’, followed by polishing indels

and gap-filling with Pilon (Appendix 3.5.3). This approach removed 235 scaffolds (330 Kbp),

representing 0.2% of the scaffold number and 0.03% of the nucleotides of Ilumi1.0. While

filtering the Ilumi1.0 assembly, we noted a large contribution of scaffolds taxonomically

annotated as Platyhelminthes (1740 scaffolds; 119.56 Mbp). Upon closer inspection, we found

conflicting information as to the most likely taxonomic source of these scaffolds. Diamond

searches of these scaffolds had hits in Coleoptera, whereas blastn searches showed these

scaffold had confident hits (nucleotide identity >90%, evalue = 0) against the Rat Tapeworm

Hymenolepis diminuta genome (NCBI BioProject PRJEB507). Removal of these scaffolds

decreased the endopterygota BUSCO score, from C:97% D:1.3% to C:76.0% D:1.1%. This loss

Fallon et al. eLife 2018;7:e36495. DOI: https://doi.org/10.7554/eLife.36495 77 of 146

Research article Genetics and Genomics

https://doi.org/10.7554/eLife.36495.043
https://figshare.com/articles/_/5688952
https://figshare.com/articles/_/5688952
https://doi.org/10.7554/eLife.36495


of the endopterygota BUSCOs led us to conclude that the Platyhelminthes annotated

scaffolds were authentic scaffolds of I. luminosus, but sequences of Hymenolepis sp. may have

been transferred into the I. luminosus genome via horizontal-gene-transfer (HGT). Although

Hymenolepis diminuta infects mammals, it also spends a period of its life cycle in intermediate

insect hosts, including beetles, as cysticercoids (Center for Disease Control and Prevention,

2017; Sheiman et al., 2006). For a beetle like I. luminosus, which has a extended predatory

larval stage, the accidental ingestion and harboring of a Hymenolepis sp. is plausible,

potentially enabling HGT between Hymenolepis sp. and I. luminosus over evolutionary

timescales.

Appendix 3—figure 3. Blobtools plot of Ilumi1.0. Coverage shown represents mean coverage

of reads from the HiSeqX Chromium library sequencing (Sample name 1610_IlumiHiSeqX;

Appendix 4—table 1), aligned against Ilumi1.0 using Bowtie2 with parameters (–local).

Scaffolds were taxonomically annotated as described in Appendix 3.5.2.

DOI: https://doi.org/10.7554/eLife.36495.044

3.5.3 Ilumi1.1: Indel polishing
Manual inspection of the initial gene-models for Ilumi1.0 revealed a key luciferase homolog

had an unlikely frameshift occurring after a polynucleotide run. Mapping of the

1610_IlumiHiSeqX and 1706_IlumiHiSeq2500 reads (Appendix 4—table 1) with Bowtie2 using

parameters (–local), revealed that this indel was not supported by the majority of the data,

and that indels were present at a notable frequency after polynucleotide runs. As a greatly

increased indel rate after polynucleotide runs (~10% error) is a known systematic error of

Illumina sequencing, and has been noted as the major error type in Supernova assemblies

(Weisenfeld et al., 2017), we therefore sought to correct these errors globally through the

use of Pilon (v1.2.2) (Walker et al., 2014). In order to run Pilon efficiently, we split the
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taxonomically filtered Ilumi1.0 reference (dubbed Ilumi1.0b; Appendix 3.5.2) using Kirill

Kryukov’s fasta_splitter.pl script (v0.2.6) (Kryukov, 2017), partitioned the previously mapped

1610_IlumiHiSeqX paired-end reads to these references using samtools, and ran Pilon in

parallel on the partitioned reads and records with parameters (–fix gaps,indels –changes –vcf –

diploid). The final consensus FASTAs produced by Pilon were merged to produce the polished

assembly (Ilumi1.1). Ilumi1.1 (842,900,589 nt; 91,325 scaffolds) was slightly smaller than

Ilumi1.0b (845,332,796 nt; 91,325 scaffolds), indicating the gaps filled by Pilon were smaller

than their predicted size. The BUSCO score increased modestly after polishing (C:93.3% to

C:94.8%), suggesting that indel polishing and gap filling had a net positive effect.

3.5.4 Ilumi1.2: Manual long-read scaffolding
We determined via manual gene-model annotation of Ilumi1.1 (Appendix 3.8), that the second

through seventh exon of IlumPACS4 (ILUMI_06433 PA) were present on

Ilumi1.1_Scaffold13255, but that the first exon was missing from this scaffold. Targeted tblastn

using PangPACS (AB479114.1) (Oba et al., 2010a), the most closely related gene sequence to

IlumPACS4, indicated that the most similar region in the I. luminosus genome to the predicted

PangPACS first exon was a right-pointing region on Ilumi1.1_Scaffold11560, not captured in

any gene model, but downstream of the existing luciferase homolog genes IlumPACS1 and

IlumPACS2. We surmised that this region was the correct first exon for IlumPACS4, and that

the IlumPACS4 gene model spanned Ilumi1.1_Scaffold13255 and Ilumi1.1_Scaffold11560, and

thus that the right edge of Ilumi1.1_Scaffold13255 and the left edge of the reverse

complement of Ilumi1.1_Scaffold11560 should be joined. To substantiate this, we performed

long-read Oxford Nanopore MinION sequencing at the MIT BioMicroCenter. The HMW DNA

used was the same DNA used for Chromium library prep, and had been stored at �80˚C since

extraction. Thawing of DNA and size distribution QC on a FEMTO Pulse capillary

electrophoresis instrument (Advanced Analytical Technologies Inc, USA) indicated the DNA

had a mean size distribution peak of ~17 kbp. A 1D Nanopore library was prepared from this

DNA using the standard kit and protocol (Part #: SQK-LSK108). The resulting library was

sequenced for 48 hr on a MinION sequencer using a R9.4 flow cell (Part #:FLO-MIN106). Raw

trace data was basecalled live within the MinKNOW software (v18.01.6). 824,248 reads (2.4

Gbp; ~1–2x of the I. luminosus genome) were obtained. Reads were mapped to Ilumi1.1 with

minimap2 (v2.8-r686-dirty) (Li, 2018) using parameters (-ax map-ont). Inspection of mapped

reads with Integrative Genomics Viewer(v2.4.8) (Thorvaldsdóttir et al., 2013) revealed a 17.6

kbp read with seven kbp antiparallel alignment to the right edge of Scaffold13255. Inspection

of the extension of this read off Scaffold13255 revealed it contained 10 Kbp+ of a non-

palindromic complex tandem repeat DNA with an ~100 bp repeat unit (Appendix 3—figure

4). The repeat unit of this complex tandem repeat DNA (Appendix 3—table 1) is annotated in

our de novo repeat library construction as ‘Ilumi.complex.repeat.1’ (Appendix 3.9), and via

blastn is clearly interspersed at low copy numbers throughout the Ilumi1.1 genome assembly.

Notably, this repeat unit was present the right edge of Ilumi1.1_Scaffold13255, while the

reverse complement of this repeat unit was present on the right edge of

Ilumi1.1_Scaffold11560, supporting that these scaffolds were adjacent to one another, but the

assembly had been broken by this large stretch of tandem repetitive DNA. Although our

Nanopore sequencing did not unambiguously span this repetitive element and bridge the two

scaffolds, we surmised that this information was sufficient to manually merge these scaffolds

(Appendix 3—figure 5). The long Ilumi1.1_Scaffold13255 extending read was adaptor

trimmed with porechop (v0.2.3) (Wick, 2018), removing 35 bp from the start of the read.

Next, the 3’ end of the read which aligned up to the last nucleotide of Ilumi1.1_Scaffold13255

was trimmed. Finally, the remaining read was reverse complemented, and concatenated to the

right edge of Ilumi1.1_Scaffold13255. 1337 Ns were concatenated to the right edge of the

extended Ilumi1.1_Scaffold13255 to indicate an uncertainty in the repeat copy number, and

Ilumi1.1_Scaffold11560 was reverse complemented and concatenated to

Ilumi1.1_Scaffold13255 to produce the final version of Ilumi1.2_Scaffold13255 (Appendix 3—

figure 5). Further whole genome scaffolding using this Nanopore data and the LINKS pipeline

(v1.8.5) (Warren et al., 2015) with parameters (-d 4000,8000,10000,14000,16000,20000 t
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2,3,5,9 l 2 -a 0.75) was attempted, but only a single additional pair of scaffolds was merged,

so this whole-genome scaffolding was not used further.

Appendix 3—figure 4. Self alignment of the Ilumi1.1_Scaffold13255 right-edge extending long

MinION read. Alignment performed in in Gepard (Krumsiek et al., 2007). Note the large (10

kbp+) tandem repetitive region.

DOI: https://doi.org/10.7554/eLife.36495.045
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Appendix 3—table 1. Sequence of the I. luminosus luciferase cluster splitting complex tandem

repeat.

Repeat name Repeat unit length Repeat unit sequence

Ilumi.complex.repeat.1 �100 bp TGGTACGAACTATACACGTATACTCAAATCTAATT
GTGATACAGCAAAGTAATAATGCAGCATTGTTTGCC
GCTCTATACTGCGATTTTATAGTGGT

DOI: https://doi.org/10.7554/eLife.36495.046

Appendix 3—figure 5. Diagram of manual scaffold merges between Ilumi1.1 and Ilumi1.2.

Diagram of the manual merge of Ilumi1.1_Scaffold13255 with Ilumi1.1_Scaffold11560

between I. luminosus genome assembly versions Ilumi1.1 and Ilumi1.2. This merge was

supported by: (1) The putative missing first exon of IlumPACS4 being present on the right

edge of Ilumi1.2_Scaffold11560. (2) The right edge of Ilumi1.1_Scaffold13255, and the right

edge of Ilumi1.1_Scaffold11560, having anti-parallel versions of a homologous complex

tandem repeat. See Figure 3 in the maintext for explanation of presented genes.

DOI: https://doi.org/10.7554/eLife.36495.047

3.6 RNA extraction, library prep, and sequencing

3.6.1 HiSeq2500
Total RNA was extracted from the head + prothorax of an I. luminosus presumed male using

the RNeasy Lipid Tissue Mini Kit (Qiagen, USA). Illumina sequencing libraries were prepared

from total RNA enriched to mRNA with a polyA pulldown using the TruSeq RNA Library Prep

Kit v2 (Illumina, San Diego, CA). The library was sequenced at the Whitehead Institute

Genome Technology Core (Cambridge, MA) on two lanes of an Illumina HiSeq 2500 using

rapid mode 100 � 100 bp PE. This library was multiplexed with the P. pyralis RNA-Seq

libraries of Al-Wathiqui and colleagues (Al-Wathiqui et al., 2016), and thus, P. pyralis reads

arising from index misassignment were present in this library which necessitated downstream

filtering to avoid misinterpretation.

3.6.2 BGISEQ-500
Total RNA was extracted from the head + prothorax, mesothorax + metathorax, and

abdomen of adult presumed I. luminosus males using the RNeasy Lipid Tissue Mini Kit

(Qiagen, USA), and sent on dry-ice to Beijing Genomics Institute (BGI, China). Transcriptome

libraries for RNA each sample were prepared from total RNA using the BGISEQ-500 (BGI,

China) RNA sample prep protocol. Briefly, poly-A mRNA was purified using oligo (dT) primed

magnetic beads and chemically fragmented into smaller pieces. Cleaved fragments were

converted to double-stranded cDNA by using N6 primers. After gel purification and end-
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repair, an ‘A’ base was added at the 3’-end of each strand. The Ad153-2B adapters with

barcode was ligated to both ends of the end repaired/dA tailed DNA fragments, then

amplification by ligation-mediated PCR. Following this, a single strand DNA was separated

at a high temperature and then a Splint oligo sequence was used as bridge for DNA

cyclization to obtain the final library. Then rolling circle amplification (RCA) was performed to

produce DNA Nanoballs (DNBs). The qualified DNBs were loaded into the patterned

nanoarrays and the libraries were sequenced as 50 � 50 bp (PE-50) read through on the

BGISEQ-500 platform. Sequencing-derived raw image files were processed by BGISEQ-500

base-calling software with the default parameters, generating the ‘raw data’ for each sample

stored in FASTQ format. This library preparation and sequencing was provided free of

charge as an evaluation of the BGISEQ-500 platform.

Appendix 3—table 2. I. luminosus RNA-Seq libraries.

Library name SRA ID N Sex Tissue Notes

Pyrophorus_luminosus_head SRR6339835 1 M* Prothorax and head (lantern
containing)

Illumina RNA-
Seq

Prothorax_A3 SRR6339834 1 M* Prothorax and head
(lantern containing)

BGISEQ-500
RNA-Seq

Thorax_A3 SRR6339833 1 M* Mesothorax and metathorax BGISEQ-500
RNA-Seq

Abdomen_A3 SRR6339832 1 M* Abdomen
(lantern containing)

BGISEQ-500
RNA-Seq

Prothorax_A4 SRR6339831 1 M* Prothorax and head
(lantern containing)

BGISEQ-500
RNA-Seq

Thorax_A4 SRR6339830 1 M* Mesothorax and metathorax BGISEQ-500
RNA-Seq

Abdomen_A4 SRR6339838 1 M* Abdomen
(lantern containing)

BGISEQ-500
RNA-Seq

*Gender inferred. See Appendix 3.3 for a discussion on this inference.

DOI: https://doi.org/10.7554/eLife.36495.048

3.7 Transcriptome analysis
Both de novo (Appendix 3.7.1) and reference guided (Appendix 3.7.2) transcriptome

assembly approaches using Trinity and Stringtie were used, respectively.

3.7.1 De novo transcriptome assembly and alignment
For the de novo transcriptome approach, all available I. luminosus RNA-Seq reads (head +

prothorax,metathorax + mesothorax, abdomen - both Illumina and BGISEQ-500) were

pooled and input into Trinity. A non-strand-specific de novo transcriptome assembly was

produced with Trinity (v2.4.0) (Grabherr et al., 2011) using default parameters exception the

following: (–min_glue 2 min_kmer_cov 2 –jaccard_clip –no_normalize_reads –trimmomatic).

Peptides were predicted from the de novo transcripts via Transdecoder (v5.0.2; default

parameters). De novo transcripts were then aligned to the I. luminosus genome (Ilumi1.1)

using the PASA pipeline with blat (v36 � 2) and gmap (v2017-09-11) (–aligners blat,gmap),

parameters for alternative splice analysis and strand specificity (–ALT_SPLICE –

transcribed_is_aligned_orient), and input of the previously extracted Trinity accessions (–tdn

tdn.accs). Importantly, it was necessary to set (–

NUM_BP_PERFECT_SPLICE_BOUNDARY = 0) for the validate_alignments_in_db.dbi step, to

ensure transcripts with natural variation near the splice sites were not discarded. Direct

coding gene models (DCGMs) were then produced with the Transdecoder

‘cdna_alignment_orf_to_genome_orf.pl’ utility script, with the PASA assembly GFF and

transdecoder predicted peptide GFF as input. The resulting DCGM GFF3 file was manually

lifted over to the Ilumi1.2 assembly. The unaligned de novo transcriptome assembly is
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dubbed ‘ILUMI_Trinity_unstranded’, whereas the aligned direct coding gene models are

dubbed ‘Ilumi1.2_Trinity_unstranded-DCGM’.

3.7.2 Reference guided transcriptome alignment and assembly
A reference guided transcriptome was produced from all available I. luminosus RNA-seq

reads (head + prothorax, mesothorax + metathorax, abdomen - both Illumina and BGISEQ-

500) using HISAT2 (v2.0.5) (Kim et al., 2015) and StringTie (v1.3.3b) (Pertea et al., 2015).

Reads were first mapped to the I. luminosus draft genome with HISAT2 (parameters: -X 2000

–dta –fr). Then StringTie assemblies were performed on each separate bam file

corresponding to the original libraries using default parameters. Finally, the produced GTF

files were merged using StringTie (–merge). A transcript fasta file was produced from the

StringTie GTF file with the transdecoder ‘gtf_genome_to_cdna_fasta.pl’ utility script, and

peptides were predicted for these transcripts using Transdecoder (v5.0.2) with default

parameters. The StringTie GTF was converted to GFF format with the Transdecoder

‘gtf_to_alignment_gff3.pl’ utility script, and direct coding gene models (DCGMs) were then

produced with the Transdecoder ‘cdna_alignment_orf_to_genome_orf.pl’ utility script, with

the StringTie-provided GFF and transdecoder predicted peptide GFF as input. The resulting

DCGM GFF3 file was manually lifted over to the Ilumi1.2 assembly. The reference guided

transcriptome assembled was dubbed ‘ILUMI_Stringtie_unstranded’, whereas the aligned

direct coding gene models were dubbed ‘Ilumi1.2_Stringtie_unstranded-DCGM’

3.7.3 Transcript expression analysis
I. luminosus RNA-Seq reads (Appendix 3—table 2) were pseudoaligned to the

ILUMI_OGS1.2 geneset CDS sequences using Kallisto (v0.44.0) (Bray et al., 2016) with 100

bootstraps (-b 100), producing transcripts-per-million reads (TPM). Kallisto expression

quantification analysis results are available on FigShare (DOI: 10.6084/m9.figshare.5715139).

3.8 Official coding geneset annotation (ILUMI_OGS1.2)
We annotated the coding gene structure of I. luminosus by integrating direct coding gene

models produced from the de novo transcriptome (Appendix 3.7.1) and reference guided

transcriptome (Appendix 3.7.2), with a lower weighted contribution of ab initio gene

predictions, using the Evidence Modeler (EVM) algorithm (v1.1.1) (Haas et al., 2008). First,

Augustus (v3.2.2) (Stanke et al., 2006) was trained against Ilumi1.0 with BUSCO

(parameters: -l endopterygota_odb9

–long –species tribolium2012). Augustus predictions of Ilumi1.0 were then produced

through the MAKER pipeline, with hints derived from MAKER blastx/exonerate mediated

protein alignments of peptides from Drosophila melanogaster (NCBI

GCF_000001215.4_Release_6_plus_ISO1_MT_protein.faa), Tribolium castaneum (NCBI

GCF_000002335.3_Tcas5.2_protein), Photinus pyralis (PPYR_OGS1.0; this report), Aquatica

lateralis (AlatOGS1.0; this report), the I. luminosus de novo transcriptome translated

peptides, and MAKER blastn/exonerate transcript alignments of the I. luminosus de novo

transcriptome transcripts.

We then integrated the ab initio predictions with our de novo and reference guided direct

coding gene models, using EVM. In the final version, eight sources of evidence were used for

EVM: de novo transcriptome direct coding gene models (Ilumi1.1_Trinity_unstranded-

DCGM; weight = 8), reference guided transcriptome direct coding gene models

(Ilumi1.1_Stringtie_unstranded-DCGM; weight = 4), MAKER/Augustus ab initio predictions

(Ilumi1.1_maker_augustus_ab-initio; weight = 1), protein alignments (P. pyralis, A. lateralis,

D. melanogaster, T. castaneum, I. luminosus; weight = 1 each). A custom script

(Fallon, 2018a) was used to convert the input MAKER GFF to an EVM compatible GFF

format.

Lastly, gene models for luciferase homologs, P450s, and de novo methyltransferases

(DNMTs) which were fragmented or were incorrectly assembled (e.g. adjacent gene fusions)

were manually corrected based on the evidence of the de novo and reference guided direct

coding gene models (Appendix 3.7.1; 3.7.2). Manual correction was performed by
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performing TBLASTN searches with known good genes from these gene families within

SequencerServer(v1.10.11) (Priyam et al., 2015), converting the TBLASTN results to gff3

format with a custom script (Fallon, 2018b), and viewing these TBLASTN alignments

alongside the alternative direct coding gene models and the official geneset in Integrative

Genomics Viewer (v2.4.8) (Thorvaldsdóttir et al., 2013). The official gene set models gff3

file was then manually modified based on the observed evidence. Different revision numbers

of the official geneset (e.g. ILUMI_OGS1.0, ILUMI_OGS1.1) represent the improvement of

the geneset over time due to these continuing manual gene annotations.

3.9 Repeat annotation
A de novo species-specific repeat library for I. luminosus was constructed using

RepeatModeler (v1.0.9), and Tandem Repeat Finder (v4.09; settings: 2 7 7 80

10) (Benson, 1999). Only tandem repeats from Tandem Repeat Finder with a repeat block

length >5 kb (annotated as ‘complex tandem repeat’) were added to the RepeatModeler

library. This process yielded a final library of 2259 interspersed repeats. We then used this

library and RepeatMasker (v4.0.5) (Smit et al., 2015) to identify and mask interspersed and

tandem repeats in the genome assembly. This repeat library is dubbed the Ignelater

luminosus Official Repeat Library 1.0 (ILUMI_ORL1.0).

Appendix 3—table 3. Annotated repetitive elements in I. luminosus.

Repeat class Family Counts Bases % of assembly

DNA All 158853 71221843 8.45

Helitrons 344 139863 0.016

LTR All 23433 11341577 1.35

Non-LTR All 151788 50394853 4.75

LINE 97703 40052840 4.75

SINE 0 0 0

Unknown interspersed 757206 159587269 18.93

Complex tandem repeats 4976 848992 0.1

Simple repeat 108914 4439967 0.52

rRNA 0 0 0

DOI: https://doi.org/10.7554/eLife.36495.049

3.10 Mitochondrial genome assembly and annotation
The mitochondrial genome sequence of I. luminosus was assembled by a targeted sub-

assembly approach. First, Chromium linked-reads were mapped to the previously sequenced

mitochondrial genome of the Brazilian elaterid beetle Pyrophorus divergens (NCBI ID:

NC_009964.1) (Arnoldi et al., 2007), using Bowtie2 (v2.3.1; parameters: –very-sensitive-

local ) (Langmead et al., 2009). Although these reads still contain the 16 bp Chromium

library barcode on read 1 (R1), Bowtie2 in local mapping mode can accurately map these

reads. Mitochondrial mapping R1 reads with a mapping read 2 (R2) pair were extracted with

‘samtools view -bh -F 4 f 8’, whereas mapping R2 reads with a mapping R1 pair were

extracted with ‘samtools view -bh -F 8 f 4’. R1 and R2 singleton mapping reads were

extracted with ‘samtools view -bh -F 12’ for diagnostic purposes, but were not used further

in the assembly. The R1, R2, and singleton reads in. BAM format were merged, sorted, and

converted to FASTQ format with samtools and ‘bedtools bamtofastq’, respectively. The

resultant R1 and R2 FASTQ files containing only the paired mapped reads (995523 pairs, 298

Mbp) were assembled with SPAdes (Nurk et al., 2013) without error correction and with the

plasmidSPAdes module (Antipov et al., 2016) enabled (parameters: -t 16 –plasmid -k55,127

–cov-cutoff 1000 –only-assembler). The resulting ‘assembly_graph.fastg’ file was viewed in

Bandage (Wick et al., 2015), revealing a 16,088 bp node with 1119x average coverage that
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circularized through two possible paths: a 246 bp node with 252x average coverage, or a

245 bp node with 1690x coverage. The lower coverage path was observed to differ only in a

‘T’ insertion after a 10-nucleotide poly-T stretch when compared to the higher coverage

path. Given that increased levels of insertions after polynucleotide stretches are a known

systematic error of Illumina sequencing, it was concluded that the lower coverage path

represented technical error rather than an authentic genetic variant and was deleted. This

produced a single 16,070 bp circular contig. This contig was ‘restarted’ with seqkit

(v0.7.0) (Shen et al., 2016) to place the FASTA record break in the AT-rich region, and was

submitted to the MITOSv2 mitochondrial genome annotation web server. Small mis-

annotations (e.g. low scoring additional predictions of already annotated mitochondrial

genes) were manually inspected and removed. This annotation indicated that all expected

features were present on the contig, including subunits of the NAD+ dehydrogenase

complex (NAD1, NAD2, NAD3, NAD4, NAD4l, NAD5, NAD6), the large and small ribosomal

RNAs (rrnL, rrnS), subunits of the cytochrome c oxidase complex (COX1, COX2, COX3),

cytochrome b oxidase (COB), ATP synthase (atp6, atp8), and tRNAs. BLASTN of the

Ignelater luminosus mitochondrial genome against published complete mitochondrial

genomes from beetles indicated 96–89% alignment with 86–73% nucleotide identity, with

poor or no sequence level alignment in the A-T rich region. Like other reported elaterid

beetle genomes, the I. luminosus mitochondrial genome does not contain the tandem repeat

unit (TRU) previously reported in Lampyridae (Bae et al., 2004).

Appendix 3—figure 6. Mitochondrial genome of I. luminosus. The mitochondrial genome of I.
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luminosus was assembled and annotated as described. in the Appendix 3.10. Figure

produced with Circos (Krzywinski et al., 2009).

DOI: https://doi.org/10.7554/eLife.36495.050
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Appendix 4

DOI: https://doi.org/10.7554/eLife.36495.051

Comparative analyses

4.1 Assembly statistics and comparisons
The level of non-eukaryote contamination of the raw read data for each P. pyralis library was

assessed using kraken v1.0 (Wood and Salzberg, 2014) using a dust-masked minikraken

database to eliminate comparison with repetitive sequences. Overall contamination levels

were low (Appendix 4—table 1), in agreement with a low level of contamination in our final

assembly (Appendix 1—figure 9, Appendix 2—figure 2, Appendix 3—figure 3). On

average, contamination was 3.5% in the PacBio reads (whole body) and 1.6% in the Illumina

reads (only thorax) (Appendix 4—table 1). There was no support for Wolbachia in any of the

P. pyralis libraries, with the exception of a single read from a single library which had a kraken

hit to Wolbachia. QUAST version 4.3 (Gurevich et al., 2013) was used to calculate genome

quality statistics for comparison and optimization of assembly methods (Appendix 4—table

2). BUSCO (v3.0.2) (Simão et al., 2015) was used to estimate the percentage of expected

single copy conserved orthologs captured in our assemblies and a subset of previously

published beetle genome assemblies (Appendix 4—table 3). The endopterygota_odb9

(metamorphosing insects) BUSCO set was used. The bacteria_odb9 gene set was used to

identify potential contaminants by screening contigs and scaffolds for conserved bacterial

genes. For genome predictions from beetles, the parameter ‘–species tribolium2012’ was used

to improve the BUSCO internal Augustus gene predictions. For Drosophila melanogaster

BUSCO genome predictions (Appendix 4—table 3) ‘–species=fly’ was used.

4.2 Comparative analyses

4.2.1 Protein orthogroup clustering
Orthologs were identified by clustering the P. pyralis, A. lateralis, and I. luminosus geneset

peptides with the D. melanogaster (UP000007266) and T. castaneum (UP000000803) reference

Uniprot protein genesets using the OrthoFinder (v2.2.6) (Emms and Kelly, 2015) pipeline with

parameters ‘-M msa -A mafft -T fasttree -I 1.5’. The pipeline was executed with NCBI blastp +

v0.2.7.1, mafft 7.313, and FastTree v2.1.10 with Double precision (No SSE3). The Uniprot

reference proteomes were first filtered using a custom script to remove multiple isoforms-per-

gene using a custom script (Fallon, 2018c; copy archived at https://github.com/elifesciences-

publications/filter_uniprot_to_best_isoform), which utilized blastp evidence against either the

Drosophila melanogaster or Tribolium castaneum NCBI datasets (whichever species was not

being filtered), and the Apis mellifera, Bombyx mori, Caenorhabditis elegans, Anopheles

gambiae NCBI peptide genesets. Not all redundant isoforms are removed as there may not

have been sufficient evidence to support a particular isoform as the canonical isoform, or there

were unusual annotation situations (alternative splice variants annotated as separate genes).

OrthoFinder clustering results are available on FigShare (DOI: 10.6084/m9.figshare.5715136).

Overlaps of number of shared orthogroups across species are shown in Appendix 4—figure

1. Overlaps on a gene-basis (only P. pyralis, A. lateralis, I. luminosus, and T. castaneum) are

shown in Figure 2E.
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Appendix 4—figure 1. Venn diagram of P. pyralis, A. lateralis, I. luminosus, T. castaneum, and

D. melanogaster orthogroup relationships. Orthogroups were calculated between the

PPYR_OGS1.1, AQULA_OGS1.0, ILUMI_OGS1.2, genesets, and the T. casteneum and D.

melanogaster filtered Uniprot reference proteomes using OrthoFinder(Emms and Kelly,

2015). See Appendix 4.2.1 for description of clustering method. OGs = Orthogroups,

OGS = Official gene set, *=Not completely filtered to single peptide per gene. Figure

produced with InteractiVenn (Heberle et al., 2015). Intermediate scripts and species specific

overlaps are available as Figure 2—source data 1.

DOI: https://doi.org/10.7554/eLife.36495.055

4.2.2 Comparative RNA-Seq differential expression analysis (Figure 5)
For differential expression testing, Kallisto transcript expression results for P. pyralis

(Appendix 1.9.4) and A. lateralis (Appendix 2.7.3) were independently between-sample

normalized using Sleuth (v0.30.0) (Pimentel et al., 2017) with default parameters, producing

between-sample-normalized transcripts-per-million reads (BSN-TPM). Differential expression

(DE) tests for P. pyralis (adult male dissected fatbody vs. adult male dissected lantern - three

biological replicates per condition), and for A. lateralis (adult male thorax + abdominal

segments 1–5 vs. adult male dissected lantern - three biological replicates per condition), were

performed using the Wald test within Sleuth. Genes whose mean BSN-TPM across

bioreplicates was above the 90th percentile were annotated as ‘highly expressed’ (HE). Genes

with a Sleuth DE q-value <0.05 were annotated as ‘differentially expressed.’ (DE). Enzyme

encoding (E/NotE) genes were predicted from the InterProScan functional annotations using a

custom script (Fallon, 2018d; copy archived at https://github.com/elifesciences-publications/

interproscan_to_enzyme_go) and GOAtools (Tang et al., 2018), with the modification that the

enzymatic activity GO term was manually added to select InterPro annotations: IPR029058,

IPR036291, and IPR001279. These enzyme lists are available as supporting files associated

with the official geneset filesets. Orthogroup membership was determined from the
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OrthoFinder analysis (Appendix 4.2.1). The enzyme HE/DE/E + NotE gene filtering and

overlaps (Figure 5) were performed using custom scripts. These custom scripts and results of

the differential expression testing are available on FigShare (10.6084/m9.figshare.5715151).

4.2.3 Comparative methylation analyses

A0A139WNY8 TRICA

XP 017782245.1

PPYR 13116-PA

AQULA 006675-PA

ILUMI 27559-PA

PPYR 02985-PA

PPYR 05848-PA

PPYR 02208-PA

AQULA 007699-PA

XP 017781711.1

PPYR 06588-PA

PPYR 03377-PA

Q9VKB3 DROME

ILUMI 01550-PA

XP 017770102.1

D6WXT9 TRICA

ILUMI 05406-PA

AQULA 004889-PA

DNMT1

DNMT2

DNMT3

1.0

bootstrap > 90%

70% < bootstrap < 90%

P. pyralis

A. lateralis

I. luminosus

T. castaneum

D. melanogaster

N. vespilloides

Appendix 4—figure 2. DNA and tRNA methyltransferase gene phylogeny. Levels and

patterns of mCG in P. pyralis are corroborated by the presence of de novo and maintenance

DNMTs (DNMT3 and DNMT1, respectively). Notably, P. pyralis possesses two copies of

DNMT1, and 3 copies of DNMT3, in contrast to a single copy of DNMT1 and DNMT3 in the

firefly Aquatica lateralis. The evolutionary history was inferred by using the Maximum

Likelihood method with the LG + G (five gamma categories) (Le and Gascuel, 2008).

Evolutionary analyses were conducted in MEGA7 (Kumar et al., 2016). Size of circles at nodes

corresponds to bootstrap support (100 bootstrap replicates). Branch lengths are in amino acid

substitutions per site. T. castaneum = Tribolium castaneum, D. melanogaster = Drosophila

melanogaster, N. vespilloides = Nicrophorus vespilloides. The multiple sequence alignment

and phylogenetic topology are available on FigShare (10.6084/m9.figshare.6531311).

DOI: https://doi.org/10.7554/eLife.36495.056

4.2.3.2 CpG[O/E] methylation analysis

CpG[O/E] is a non-bisulfite sequencing metric that captures spontaneous deamination of

methylated cytosines (Suzuki et al., 2007), and confidently recovers the presence/absence of

DNA methylation in insects (Bewick et al., 2017). In a mixture of loci that are DNA methylated

and low to un-methylated, a bimodal distribution of CpG[O/E] values is expected. Conversely, a

unimodal distribution is suggestive of a set of loci that are mostly low to un-methylated.

CpG[O/E] was estimated for each annotated gene in the official gene set of A. lateralis, I.

luminosus, and P. pyralis. Additionally, CpG[O/E] was estimated for each annotated gene for a

true positive and negative coleopteran (Nicrophorus vespilloides [https://i5k.nal.usda.gov/

Fallon et al. eLife 2018;7:e36495. DOI: https://doi.org/10.7554/eLife.36495 94 of 146

Research article Genetics and Genomics

https://figshare.com/articles/_/5715151
https://figshare.com/articles/_/5715151
https://doi.org/10.7554/eLife.36495.056
https://doi.org/10.7554/eLife.36495


nicrophorus-vespilloides] and Tribolium castaneum [https://i5k.nal.usda.gov/tribolium-

castaneum], respectively), and a true negative dipteran (Drosophila melanogaster [http://

flybase.org/]).

The modality of CpG[O/E] distributions was tested using Gaussian mixture modeling in R

(https://www.r-project.org/: mclust v5.4 and mixtools v1.0.4). Two modes were modeled for

each CpG[O/E] distribution, and the subsequent means and 95% confidence interval (CI) of the

means were compared with overlapping or nonoverlapping CI’s signifying unimodality or

bimodality, respectively.
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Appendix 4—figure 3. Detection of DNA methylation using CpG[O/E].

DOI: https://doi.org/10.7554/eLife.36495.057

Distributions of CpG[O/E](CpG[O/E] methylation analysis) within sequenced species (P.

pyralis, A. lateralis, and I. luminosus), other coleopterans (N. vespilloides and T. castaneum),

and the dipteran D. melanogaster. Curves represent two independently modeled Gaussian

distributions, and the solid vertical lines and shaded areas represent the mean and 95%

confidence interval (CI) of the mean of each distribution. Modality of the distributions

accurately predicts presence (+)/blue square or absence (–)/red square of DNA methylation in

each species.

4.2.4 CYP303 evolutionary analysis (Figure 6C)
Candidate P450s were identified using BLASTP (e-value: 1 � 10�20) of a P. pyralis CYP303

family member (PPYR_OGS1.0: PPYR_14345-PA) against the P. pyralis, A. lateralis, and I.

luminosus reference set of peptides, and the D. melanogaster (NCBI GCF_000001215.4) and

T. castaneum (NCBI GCF_000002335.3) geneset peptides. Resulting hits were merged,

aligned with MAFFT E-INS-i (v7.243) (Katoh and Standley, 2013), and a preliminary neighbor-

joining (NJ) tree was generated using MEGA7 (Kumar et al., 2016). Genes descending from

the common ancestor of the CYP303 and CYP304 genes were selected from this NJ tree, and

the peptides within this subset re-aligned with MAFFT using the L-INS-i algorithm. Then the

maximum likelihood evolutionary history of these genes was inferred within MEGA7 using the

LG + G model (five gamma categories (+G, parameter = 2.4805). Initial tree(s) for the heuristic

search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a

matrix of pairwise distances estimated using a JTT model, and then selecting the topology

with the best log likelihood value. The resulting tree was rooted using D. melanogaster

Cyp6a17 (NP_652018.1). The tree shown in Figure 6C was truncated in Dendroscope
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(v3.5.9) (Huson and Scornavacca, 2012) to display only the CYP303 clade. The multiple

sequence alignment FASTA files and newick files of the full and truncated tree are available in

Figure 6—source data 1.

4.3 Luciferase evolution analyses

4.3.1 Luciferase genetics overview
The gene for firefly luciferase was first isolated from the North American firefly P. pyralis

(de Wet et al., 1985; Wood et al., 1984; de Wet et al., 1987) and then identified from the

Japanese fireflies Luciola cruciata (Masuda et al., 1989) and Aquatica lateralis (Tatsumi et al.,

1992). To date, firefly luciferase genes have been isolated from more than 30 lampyrid species

in the world. Two different types of luciferase genes, Luc1 and Luc2, have been reported from

Photuris pennsylvanica (Ye et al., 1997) (Photurinae), L. cruciata (Oba et al., 2010b)

(Luciolinae), A. lateralis (Oba et al., 2013a) (Luciolinae), Luciola parvula (Bessho-Uehara and

Oba, 2017) (Luciolinae), and Pyrocoelia atripennis (Bessho-Uehara et al., 2017) (Lampyrinae).

Luciferase genes have also been isolated from members of the other luminous beetles

families: Phengodidae, Rhagophthalmidae, and Elateridae (Wood et al., 1989; Viviani et al.,

1999a; Viviani et al., 1999b; Ohmiya et al., 2000) with amino acid identities to firefly

luciferases at >48% (Oba, 2014). The chemical structures of the substrates for these enzymes

are identical to firefly luciferin. These results that the bioluminescence systems of luminous

beetles are essentially the same, supports a single origin of the bioluminescence in elateroid

beetles. Recent molecular analyses based on the mitochondrial genome sequences strongly

support a sister relationship between the three luminous families: Lampyridae, Phengodidae,

and Rhagophthalmidae (Timmermans et al., 2010; Timmermans and Vogler, 2012),

suggesting the monophyly of Elateroidea and a single origin of the luminescence in the

ancestor of these three lineages (Oba, 2014). However, ambiguity in the evolutionary

relationships among luminous beetles, including luminous Elaterids, does not yet exclude

multiple origins.

Molecular analyses have suggested that the origin of Lampyridae was dated back to late

Jurassic (McKenna and Farrell, 2009) or mid-Cretaceous periods (Mckenna et al., 2015).

Luciolinae and Lampyrinae was diverged at the basal position of the Lampyridae

(Martin et al., 2017) and the fossil of the Luciolinae firefly dated at Cretaceous period was

discovered in Burmese amber (Shi et al., 2012; Kazantsev, 2015). Taken together, the

divergence of Luciola and Lampyridae is dated back at least 100 Mya.

PpyrLuc1

AlatLuc1

PpyrLuc2

AlatLuc2

IlumiLuc

[~3500] [~500]

~ ~

Exon 1 Exon 2 Exon 3 Exon 4 Exon 5 Exon 6 Exon 7

300 bp

(129) (206) (330) (320) (354) (167) (132)

Appendix 4—figure 4. Intron-exon structure of beetle luciferases. (A) Intron-exon structure of

P. pyralis and A. lateralis Luc1 and Luc2 from Ppyr1.3 and Alat1.3, and IlumLuc from Ilumi1.2.

Between fireflies and click-beetles, the structure of the luciferase genes are globally similar,

with seven exons, similar intron lengths, and identical splice junction locations (Appendix 4—

figure 5). The intron-exon structure of IlumLuc is consistent with the reported intron-exon

structure of Pyrophorus plagiophthalamus luciferase (Velez and Feder, 2006).
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PpyrLuc1        ATG---------GAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCTCTAGAGGATGGAACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCT
AlatLuc1        ATGGAAAACATGGAGAACGATGAAAATATTGTATATGGTCCTGAACCATTTTACCCTATTGAAGAGGGATCTGCTGGAGCACAATTGCGCAAGTATATGGATCGATATGC---AAAACTT
PpyrLuc2        ATG------------GAAAATAAGAATATCTTGTATGGACCTAAACCATTTTATCCTGTTTCGGATGGTACGGCAGGCGAGGAGATATTTAGGGCACTTAAAAAGTATGCAAGGATACCA
AlatLuc2        ATG---------------AACAAGAATATATTATACGGTCCACCACCGGTACACCCTCTTGACGATGGGACGGGTGGTGAACAATTGTACAAATGTATTTTAAAATACGCTCAAATTCCC
 
PpyrLuc1        GGAACAATTGCTTTTgtgagt---------atttctgtc---tgatttctttcgagttaacgaaatgttcttaatgtttctttagACAGATGCACATATCGAGGTGAACATCACGTACGC
AlatLuc1        GGAGCAATTGCTTTTgtaagttcgaaattaatttttataaaaaaattcttctaaactcaattttttgtattaaactaaaatttagACTAACGCACTTACCGGTGTCGATTATACGTACGC
PpyrLuc2        GGTTGTATTGCTATGgtaagc-----ttgtacctatgca--------------cattgcttgcagcttgttcaaacattttttagACGAACGCGCATACTAAAGAAAATCTGCTGTATGA
AlatLuc2        GGATGCATTGCTTTGgtaagtacc--ttttatttttata-----------------ttaagtcgttagctttttttatactttagACAAGTGCGCATACTAAAGAAAATATGCTATATAA
 
PpyrLuc1        GGAATACTTCGAAATGTCCGTTCGGTTGGCAGAAGCTATGAAACGATATGGGCTGAATACAAATCACAGAATCGTCGTATGCAGTGAAAACTCTCTTCAATTCTTTATGCCGGTGTTGGG
AlatLuc1        CGAATACTTAGAAAAATCATGCTGTCTAGGAGAGGCTTTAAAGAATTATGGTTTGGTTGTTGATGGAAGAATTGCGTTATGCAGTGAAAATTGTGAAGAATTCTTTATTCCTGTATTAGC
PpyrLuc2        AGACGTACTGACATTAACCACTCGATTGGCGGTTGCTTACAAAAACTACGGTCTCGACATTAACAGCACAATTGCGGTGTGCAGCGAAAACAGCTTGCAATTCTTTCTACCAGTGATCGC
AlatLuc2        AGACTTATTACAATCAACATGCCGATTAGCCGAAAGTTTAAAAAAATATGGAATTACAACAAATAGCACAATTGCCGTGTGCAGTGAAAATAACTTACAGTACTTTATTCCTGTTATTGC
 
PpyrLuc1        CGCGTTATTTATCGGAGTTGCAGTTGCGCCCGCGAACGACATTTATAATGAACgtaagcaccctcgccatcagacccaaagg--gaatgacgtatttaat--ttttaagGTGAATTGCTC
AlatLuc1        CGGTTTATTTATAGGTGTCGGTGTGGCTCCAACTAATGAGATTTACACTCTACgtaagcacctaaacgtttagtagaacgtagtatttacagtaaacaaa--tttttagGTGAATTGGTT
PpyrLuc2        CGCCTTATACCTCGGAGTGACCGTTGCGTCCATAAATGACAAGTACACCGAGCgtaagta-------aagtgctcggtattg--ctgaaaagaaaacaat--attttagGTGAACTACTT
AlatLuc2        AGCTTTATACATCGGAGCTGCTACCGCAGCTGTTAACGACAAATACAATGAACgtaagaacgtaagaatgtaatagaaactg--actagctttataaaataatttttagGAGAGTTAATT
 
PpyrLuc1        AACAGTATGAACATTTCGCAGCCTACCGTAGTGTTTGTTTCCAAAAAGGGGTTGCAAAAAATTTTGAACGTGCAAAAAAAATTACCAATAATCCAGAAAATTATTATCATGGATTCTAAA
AlatLuc1        CACAGTTTAGGCATCTCTAAGCCAACAATTGTATTTAGTTCTAAAAAAGGATTAGATAAAGTTATAACTGTACAAAAAACGGTAACTGCTATTAAAACCATTGTTATATTGGACAGCAAA
PpyrLuc2        CATAACTTTGAGATAACGAAACCTAGCGTGGTTTTCTGTTCCAAAAGGGCCGTAAAGAACATTCAGACAGTGAAGCACCGGCTAACTTACATTAATACAGTGGTCATATTGGATGACATC
AlatLuc2        AATTGTTTAAATTTATCAAAACCGACTTTTTTATTCTGTTCAAAAGAAACTTGGCCAAAAATACGTCAAGCTAAAAAAAAACTAGATTTTATTAAAAAAATAATTATTCTTGATAATAAA
 
PpyrLuc1        ACGGATTACCAGGGATTTCAGTCGATGTACACGTTCGTCACATCTCATCTACCTCCCGGTTTTAATGAATACGATTTTGTACCAGAGTCCTTTGATCGTGACAAAACAATTGCACTGATA
AlatLuc1        GTGGATTATAGAGGTTATCAATCCATGGACAACTTTATTAAAAAAAACACTCCACCAGGTTTCAAAGGATCAAGTTTTAAAACTGTAGAAGTTAACCGCAAAGAACAAGTTGCGCTTATA
PpyrLuc2        ACCGACTGGCAAGATTTCCCTTGCCTAAACAACTTCATTTTGAAGTTTTGCGATCCAAATTTAAATATTGGAGATTTCAAGCCCAATTCGTTCGATCGTGATAACCAAGTTGCACTTGTT
AlatLuc2        AACGACAGTGATTCACCACAATCCTTAGAAAATTTTATTTTTCAAAATTGTGACAAAGATTTTAACGTAAGTCAATTTAAACCAAATATATTTAACCGCGATGAGCACGTTGCATTGATA
 
PpyrLuc1        ATGAATTCCTCTGGATCTACTGGGTTACCTAAGGGTGTGGCCCTTCCGCATAGAACTGCCTGCGTCAGATTCTCGCATGCCAGgtat------gtcgta-taacaagagattaagtaatg
AlatLuc1        ATGAACTCTTCGGGTTCTACCGGTTTGCCAAAAGGTGTGCAACTTACTCATGAAAATGCAGTCACTAGATTTTCTCACGCTAGgtacatattagttata-tagtaaaaagtctatattta
PpyrLuc2        ATGTACTCATCTGGCACAACAGGCGTGTCTAAAGGTGTCATGATAACCCATAAGAACATCATTGCTCGATTTTCGCACTGCAAgtcc------gtaatactcgcatcgcgcttgttaacc
AlatLuc2        TTAAATTCGTCGGGGTCGAGTGGATTGCCTAAAGGTGTAATGTTAACACATAAAAACTTAGCGGTGAGATTTTGTCATTGCAAgtaa------gtaaaa-aaattacacatgctttttct
 
PpyrLuc1        ttgctacacacattgtagAGATCCTATTTTTGGCAATCAAATCATTCCGGATACTGCGATTTTAAGTGTTGTTCCATTCCATCACGGTTTTGGAATGTTTACTACACTCGGATATTTGAT
AlatLuc1        taatttc-----tattagAGATCCAATTTATGGAAACCAAGTTTCACCAGGCACGGCTATTTTAACTGTAGTACCATTCCATCATGGTTTTGGTATGTTTACTACTTTAGGCTATCTAAC
PpyrLuc2        acgctat-aatttttcagAGATCCGACTTTTGGGAACCAAATCAATCCGACCACTGTCATTTTAACGGTGGTACCATTCCAACACAGCTTTGGTATGTTTACAAGTCTAGGATACATGAC
AlatLuc2        ttacgtttaacacttaagGGATCCCATTTTTGGTAATCAAATAAGTCCGGGTACTGCAATTTTAACAGTTATACCATTTCACCATGGATTTGGAATGTTCACTACTTTGGGATATTTTAC
 
PpyrLuc1        ATGTGGATTTCGAGTCGTCTTAATGTATAGATTTGAAGAAGAGCTGTTTTTACGATCCCTTCAGGATTACAAAATTCAAAGTGCGTTGCTAGTACCAACCCTATTTTCATTCTTCGCCAA
AlatLuc1        TTGTGGTTTTCGTATTGTCATGTTAACAAAATTTGACGAAGAAACTTTTTTAAAAACACTGCAAGATTACAAATGTTCAAGCGTTATTCTTGTACCGACTTTGTTTGCAATTCTTAATAG
PpyrLuc2        CTGCGGATTTCGAATCGTCGTATTAACCACGTTTGATGAAAAGCTCTTTTTGCAATCCCTTCAAGATTATAAAGTGGCAAGCACTTTACTAGTGCCTACCCTGATGTCCTTGTTCGCAAA
AlatLuc2        ATGCGGGTTTCGAATTGTTTTAATGCATACATTTGAAGAACATTTGTTTTTACAATCATTACAAGATTATAAAGTTAAAAGTACTTTGTTGGTACCTACGTTAATGACTTTTTTTGCCAA
 
PpyrLuc1        AAGCACTCTGATTGACAAATACGATTTATCTAATTTACACGAAATTGCTTCTGGGGGCGCACCTCTTTCGAAAGAAGTCGGGGAAGCGGTTGCAAAACGgtgagttaagcgcattgctag
AlatLuc1        AAGTGAATTACTCGATAAATATGATTTATCAAATTTAGTTGAAATTGCATCTGGCGGAGCACCTTTATCTAAAGAAATTGGTGAAGCTGTTGCTAGACGgtaatttttgtttataaattt
PpyrLuc2        AAGCGCAATCGTCGAGAACTACGATCTGTCGCACTTGGAAGAGATCGCCTCGGGTGGAGCACCTTTATCCAAGCAAATCAGCGATGCGGTTAGGAAACGgtgagtctgcggcgttttttg
AlatLuc2        AAGTCCATTAGTAGACAAATTTCATTTGCCTTATTTACACGAAATTGCGTCGGGAGGTGCACCTCTGTCAAAAGAAATTGGTGAAGCTGTTGCACTAAGgtaatattttttgaattattt
 
PpyrLuc1        tatttcaa--ggctctaaaacggcgcgtagCTTCCATCTTCCAGGGATACGACAAGGATATGGGCTCACTGAGACTACATCAGCTATTCTGATTACACCCGAGGGGGATGATAAACCGGG
AlatLuc1        ttaatcaaatactttataaatctgttgcagTTTTAATTTACCGGGTGTTCGTCAAGGCTATGGTTTAACAGAAACAACCTCTGCAATTATTATCACACCGGAAGGCGATGATAAACCAGG
PpyrLuc2        accat-----cctcttatcttccagtacagATTTAAGCTAAACCAGATCAGGCAAGGATACGGGCTCACCGAAACTACCTCGGCAGTGTTAATTACGCCAGATACCGGCGTCATACCGGG
AlatLuc2        tcaat-----attaattacgtaaagtttagATTTAAATTGAAATCAATTAGACAAGGTTATGGTTTAACCGAAACAACTTCGGCTATTTTATTAACACCTGAAGGAGAAATAGTACCTGG
 
PpyrLuc1        CGCGGTCGGTAAAGTTGTTCCATTTTTTGAAGCGAAGGTTGTGGATCTGGATACCGGGAAAACGCTGGGCGTTAATCAGAGAGGCGAATTATGTGTCAGAGGACCTATGATTATGTCCGG
AlatLuc1        TGCTTCTGGCAAAGTTGTGCCATTATTTAAAGCAAAAGTTATCGATCTTGATACTAAAAAAACTTTGGGCCCGAACAGACGTGGAGAAGTTTGTGTAAAGGGTCCTATGCTTATGAAAGG
PpyrLuc2        CTCTACCGGAAAAATTGTCCCCTTTCACGCCGTAAAAGTTGTCGATACAGCTACTGGAGAAAACTTGGGGCCCAATCGAACTGGCGAATTGTATTTCAAAGGTGACATGATAATGAAGGG
AlatLuc2        ATCGACAGGAAAAGTAGTACCCTTTTTTGCAGCTAAAGTTGTAGATAACGACACTGGTAGAATACTAGGACCAAATGAAGTTGGAGAATTGTGCTTTAAAGGAGATATGAATATGAAAGG
 
PpyrLuc1        TTATGTAAACAATCCGGAAGCGACCAACGCCTTGATTGACAAGGATGGATGGCTACATTCTGGAGACATAGCTTACTGGGACGAAGACGAACACTTCTTCATAGTTGACCGCTTGAAGTC
AlatLuc1        TTATGTAGATAATCCAGAAGCAACAAGAGAAATCATAGATGAAGAAGGTTGGTTGCACACAGGAGATATTGGGTATTACGATGAAGAAAAACATTTCTTTATCGTGGATCGTTTGAAGTC
PpyrLuc2        CTACTGTAACAACGCCCCAGCTACCGACGCAATTATTGACCCAAATGGGTGGTTGCGATCCGGCGACATCGGCTATTACGATGGGAATGGAAATTTTTTCATCGTGGACAGAATTAAATC
AlatLuc2        TTACTGTAATGATATCAAAGCTACCAACGCTATTATTGATAAAGAAGGATGGTTACATTCAGGTGATCTCGGATATTATGACGAAAACGAACATTTTTTTATTGTTGATCGACTAAAATC
 
PpyrLuc1        TTTAATTAAATACAAAGGATATCAGgtaatgaagatttttacatgcacacacgctacaatacc------tgtagGTGGCCCCCGCTGAATTGGAATCGATATTGTTACAACACCCCAACA
AlatLuc1        TTTAATCAAATACAAAGGATATCAAgtaatattttttaaccgataaaaataattctaaatatt---taatttagGTACCACCTGCTGAATTAGAATCTGTTCTTTTGCAACATCCAAATA
PpyrLuc2        ACTAATAAAGTACAAGGGCTTCCAGgcaggttttcctacagttttggtcgattttaaaatg-----tattgtagGTTGCACCCGCCGAAATTGAAGCAGTACTACTGCAACACCCGGACA
AlatLuc2        TTTAATCAAATACAAAGGATACCAGgtacgttttttaaagtcatttctttgtgttattttgtccgatgctttagGTTGCTCCTGCCGAATTGGAAGGAATATTATTAACTCATCCAAGTA
 
PpyrLuc1        TCTTCGACGCGGGCGTGGCAGGTCTTCCCGACGATGACGCCGGTGAACTTCCCGCCGCCGTTGTTGTTTTGGAGCACGGAAAGACGATGACGGAAAAAGAGATCGTGGATTACGTCGCCA
AlatLuc1        TTTTTGATGCCGGCGTTGCTGGCGTTCCAGATCCTATAGCTGGTGAGCTTCCGGGAGCTGTTGTTGTACTTGAAAAAGGAAAATCTATGACTGAAAAAGAAGTAATGGATTACGTTGCAA
PpyrLuc2        TTCTCGACGCGGGCGTTACGGGTATTAAAGACGACGAAGCGGGCGAAATACCGGCGGCGGCTATAGTCATAAAGAAAGGCGCACATTTAGACGAAGAAGACGTGAAGAAATACGTTGAAA
AlatLuc2        TCATGGACGCGGGTGTTACTGGTATACCGGATGAACACGCTGGTGAACTTCCAGCAGCATGTGTCGTAGTTAAACCAGGGCGAAACCTCACTGAAGAAAATGTCATAAATTACGTCTCAA
 
PpyrLuc1        gtaaatgaat-------tcgttttacgttactcgtactaca-attcttttcatagGTCAAGTAACAACCGCGAAAAAGTTGCGCGGAGGAGTTGTGTTTGTGGACGAAGTACCGAAAGGT
AlatLuc1        gtaactattattcaacactagttaaagtaaatactactaca---tttttgtgtagGTCAAGTTTCAAATGCAAAACGTTTGCGTGGTGGTGTCCGTTTTGTGGACGAAGTGCCTAAAGGT
PpyrLuc2        gtaagtgtcg-gcatcaagaggccgacgaactaatttt------tcggttttcagGCCAAATGTCTTCGACAAGGTGGTTACGGGGCGGTGTGCGCTTTTTGGATGAAATCCCAAAAGGT
AlatLuc2        gtaattcttt-tttatattggtattttttaatatttatatataattttctattagGCCAGGTATCTTCTTCGAAGAGATTGCGTGGAGGTGTTCGTTTTATAGATAACATTCCAAAAGGA
 
PpyrLuc1        CTTACCGGAAAACTCGACGCAAGAAAAATCAGAGAGATCCTCATAAAGGCCAAGAAGGGCGGAAAGTCCAAATTGTAA
AlatLuc1        CTTACTGGTAAAATTGACGGTAAAGCAATTAGAGAAATACTGAAGAAA------------CCAGTTGCTAAGATGTAA
PpyrLuc2        CCGACCGGTAAAATTGATGGAAAAGCCATACGGGAAATATTTGAGAAG------------CAAAAATCTAAGCTGTAA
AlatLuc2        TCTACCGGCAAAATTGACACAAAAGCTTTAAAACAAATTTTACAAAAA------------CAAAAATCCAAGTTATAA

Appendix 4—figure 5. Multiple sequence alignment of firefly luciferase genes.

MAFFT (Katoh and Standley, 2013) L-INS-i multiple sequence alignment of luciferase gene

nucleotide sequences from PpyrOGS1.1 and AlatOGS1.0 demonstrates the location of intron-

exon junctions (bolded blue text) is completely conserved amongst the four luciferases. Exonic

sequence is capitalized, whereas intronic sequence is lowercase.

DOI: https://doi.org/10.7554/eLife.36495.059

4.3.2 Luciferase homolog gene tree (Figure 3C)
From our reference genesets, a protein BLAST search detected 24, 20, 32, and two luciferase

homologs (E-value <1 � 10�60) to P. pyralis luciferase (PpyrLuc1; Genbank accession

AAA29795) from the P. pyralis, A. lateralis, I. luminosus genesets, and Drosophila

melanogaster, respectively. We defined the luciferase co-orthology as followings: (1) shows an

BLASTP E-value lower than 1.0 � 10�60 toward DmelPACS (CG6178), (2) phylogenetically

sister to DmelPACS, which is the most similar gene to firefly luciferase in D. melanogaster,

based on a preliminary maximum likelihood (ML) phylogenetic reconstruction (Appendix 4—

figure 6). Preliminary ML phylogenetic reconstruction was performed as follows: The

sequences of luciferase homologs from Mengenilla moldrzyki, Pediculus humanus, Limnephilus

lunatus, Ladona fulva, Frankliniella occidentalis, Zootermopsis nevadensis, Onthophagus

taurus, Anoplophora glabripennis, Agrilus planipennis, Harpegnathos saltator, Blattella

germanica, Acyrthosiphon pisum, Tribolium castaneum, Bombyx mori, Anopheles gambiae,
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Apis mellifera, Leptinotarsa decemlineata, and Dendroctonus ponderosae were obtained from

OrthoDB (https://www.orthodb.org) (Zdobnov et al., 2017). The sequences which show 99%

similarity were filtered by CD-HIT (v4.7) (Fu et al., 2012). The resulting sequences and beetle

luciferases were aligned using (MAFFT v7.309) (Katoh and Standley, 2013) using the

BLOSUM62 matrix and filtered for spurious sequences and poorly aligned regions using trimAl

(v.1.2rev59) (Capella-Gutiérrez et al., 2009) (parameters: -strict). The final alignment was 385

blocks and 264 sequences. Then, the best fit amino acid substitution model, LG + F Gamma,

was estimated by Aminosan (v1.0.2016.11.07) (Tanabe, 2011) using the Akaike Information

Criterion. Finally, a maximum likelihood gene phylogeny was estimated using RAxML (v8.2.9;

100 bootstrap replicates) (Stamatakis, 2006). Supporting files such as multiple sequence

alignment, gene accession numbers, and other annotations are available on FigShare (DOI: 10.

6084/m9.figshare.6687086).

To more closely examine luciferase evolution, an independent maximum likelihood gene

tree was constructed for luciferase co-orthologous genes defined above (highlighted clade as

grey in Appendix 4—figure 6) with well important genes: non-luminescent luciferase homolog

from two model insect D. melanogaster (DmelPACS and DmelACS as outgroup) and T.

castaneum (TcasPACSs and TcasACSs), biochemically characterized non-luminescent PACS

(LcruPACS1 and LcruPACS2 from Luciola cruciata, DmelPACS, and PangPACS from

Pyrophorus angustus) and biochemically characterized luciferases from Lampyrinae (PatrLuc1

and 2: Pyrocoelia atripennis), Ototoretinae (DaxiLuc1 and SazuLuc1: Drilaster axillaris and

Stenocladius azumai), Phausis (PretLuc1: Phausis reticulata) from Lampyridae,

Rhagophthalmidae (RohbLuc: Rhagophthalmus ohbai), Phengodeidae (PhirLucG and R:

Phrixothrix hirtus), and Elateridae (PangLucD and V: P. angustus). Then co-orthologous genes

were confirmed to be phylogenetically sister to DmelPACS (CG6178) and their evolution

examined using a maximum likelihood (ML) gene phylogeny approach. First, amino acid

sequences were aligned using (MAFFT v7.308) (Katoh and Standley, 2013) using the

BLOSUM62 matrix (parameters: gap open penalty = 1.53, offset value = 0.123) and filtered for

spurious sequences and poorly aligned regions using trimAl (Capella-Gutiérrez et al., 2009)

(parameters: gt = 0.8). The final alignment was 533 blocks and 67 sequences. Then, the best

fit amino acid substitution model, LG + F Gamma, was estimated by Aminosan

(v1.0.2016.11.07) (Tanabe, 2011) using the Akaike Information Criterion. Finally, a maximum

likelihood gene phylogeny was estimated using RAxML (v8.2.9; 100 bootstrap

replicates) (Stamatakis, 2006). The tree was rooted using DmelACS as an outgroup. The

peroxisomal targeting signal 1 (PST1) was predicted using the regular expressions provided by

the Eukaryotic Linear Motif database (Dinkel et al., 2012) and verified using the mendel PTS1

prediction server (Neuberger et al., 2003; Neuberger et al., 2017). Supporting files such as

multiple sequence alignment, gene accession numbers, and other annotation and expression

values are available as Figure 3—source data 1.

Fallon et al. eLife 2018;7:e36495. DOI: https://doi.org/10.7554/eLife.36495 98 of 146

Research article Genetics and Genomics

https://www.orthodb.org
https://figshare.com/s/9e530e0284cd0cc9e233
https://figshare.com/s/9e530e0284cd0cc9e233
https://doi.org/10.7554/eLife.36495


T
rib

o
liu

m
_
c
a
s
ta

n
e
u
m

_
0
0
3
6
6
5

AQULA 011665-PA

A
Q

U
L
A

 0
0
6
1
7
8
-P

A

Limnephilus_lunatus_001bf7

AlatLuc2

Bombyx_mori_000e6c

O
n
th

o
p
h
a
g
u
s_

ta
u
ru

s_
0
0
2
fd

4

A
n
o
p
lo

p
h
o
ra

_
g
la

b
rip

e
n
n
is

_
0
0
0
e
5
5

Diaphanes_pectinealis_ABD66580

Pect
oce

ra
_fo

rtu
nei_

BAQ
25864

PPYR 07414-PA

L
e
p
tin

o
ta

rs
a
_
d
e
c
e
m

lin
e
a
ta

_
0
0
0
a
6
1

Lucidina_biplagiata_BAJ07977

IL
U

M
I 
2
0
1
8
7
-P

A

ILUMI 27328-PA

Ladona_fulva_00245a

IL
U

M
I 
2
3
6
4
4
-P

A

Phrixothrix_hirtus-red_AAD34543

A
no

pl
op

ho
ra

_g
la

br
ip

en
ni

s_
00

48
fe

AQULA 012558-PA

A
la

tA
C

S
1

A
la

tP
A

C
S

2

PPYR 06858-PA

ILUMI 27329-PA

L
u
c
io

la
 c

ru
c
ia

ta
 L

c
L
L
1
 B

A
E

8
0
7
2
8

Drosophila_m
elanogaster_002384_CG6178

Ilu
m

P
A

C
S

5

Anophele
s_

gam
bia

e_002064

Harpegnathos_saltator_002573

A
g
rilu

s
_
p
la

n
ip

e
n
n
is

_
0
0
2
6
8
9

Ilu
mPACS9

Tribolium
_castaneum

_00192f_TcasP
A
C

S
3

Luciola_cruciata_BAJ41368

Apis_mellifera_001160

Ilu
mPACS8

A
la

tP
A

C
S

3

P
p

y
rP

A
C

S
2

A
n
o
p
lo

p
h
o
ra

_
g
la

b
ri
p
e
n
n
is

_
0
0
3
1
0
d

L
e
p
tin

o
ta

rs
a
_
d
e
c
e
m

lin
e
a
ta

_
0
0
0
a
6
0

P
P

Y
R

 1
4
0
8
7
-P

A

IL
U

M
I 
1
3
7
7
6
-P

A

P
P

Y
R

 1
4
2
8
2
-P

A

A
no

pl
op

ho
ra

_g
la

br
ip

en
ni

s_
00

48
ff

Anopheles_
gam

biae_001e38

A
Q

U
L

A
 0

0
6
1
7
4
-P

A

A
g
rilu

s
_
p
la

n
ip

e
n
n
is

_
0
0
2
6
8
8

A
n
o
p
lo

p
h
o
ra

_
g
la

b
ri
p
e
n
n
is

_
0
0
3
a
b
a

Harpegnathos_saltator_001762

Ilu
m

A
C

S
1

Anophele
s_

gam
bia

e_000314

D
en

dr
oc

to
nu

s_
po

nd
er

os
ae

_0
02

65
c

A
Q

U
L

A
 0

0
3
4
8
7
-P

A

Luciola_parvula_BAU71688

Franklin
iella

_occidentalis
_001708

M
engenilla_m

oldrzyki_0060cb

A
n
o
p
lo

p
h
o
ra

_
g
la

b
rip

e
n
n
is

_
0
0
3
6
a
e

Anopheles_gambiae_00100e

PPYR 07006-PA

Limnephilus_lunatus_0027eb

A
la

tP
A
C
S4

Anopheles_gambiae_0031a3

Bombyx_mori_0025ca

Ilu
m

A
C

S
8

Franklin
iella

_occidentalis_00101a

A
la

tA
C

S
3

Fra
nklin

iella
_occidentalis

_00423b

ILUMI 22981-PA

Bombyx_mori_0025cb

O
nthophagus_taurus_001aeb

Cratomorphus_distinctus_AAV32457

Ppyr
PA

C
S4

B
om

by
x_

m
or

i_
00

32
8c

Drosophila_melanogaster_NP_572988

Harpegnathos_saltator_0011e2

A
g
rilu

s
_
p
la

n
ip

e
n
n
is

_
0
0
0
3
d
1

P
p

y
rA

C
S

2

A
g
rilu

s_
p
la

n
ip

e
n
n
is_

0
0
1
e
9
9

P
ed

ic
ul

us
_h

um
an

us
_0

02
4a

6

Harpegnathos_saltator_001049

Photophorus_jansonii_BAN28458

Onthophagus_taurus_001a2c

Pyrophorus_angustus_luscus_AB47911
4

Ilum
PACS3

Agry
pnus_

binodulus_
BAF96580

Leptinotarsa_decem
lineata_000223

Ilu
m

A
C

S
7

Zooterm
opsis_nevadensis_001ac0

Le
pt

in
ot

ar
sa

_d
ec

em
lin

ea
ta

_0
01

64
9

IL
U

M
I 1

90
56

-P
A

PpyrLuc1

O
n
th

o
p
h
a
g
u
s_

ta
u
ru

s_
0
0
0
e
2
e

H
a
rp

e
g
n
a
th

o
s
_
s
a
lta

to
r_

0
0
0
d
0
b

T
ri
b
o
liu

m
_
ca

st
a
n
e
u
m

_
0
0
1
c3

4
_
Tc

a
sP

A
C

S
4

P
ed

ic
ul

us
_h

um
an

us
_0

02
34

4

Ilu
m

A
C

S
5

A
no

pl
op

ho
ra

_g
la

br
ip

en
ni

s_
00

47
8f

M
engenilla_m

oldrzyki_00616c

A
la

tA
C
S
6

Zootermopsis_nevadensis_00079b

AQULA 003467-PA

A
la

tA
C

S
4

Lampyris_turkestanicus_AAU85360

Pyrocoelia_atripennis_BAW87787

Ilu
m

PACS2

H
arpegnathos_saltator_003602

AQULA 011669-PA

Stenocladius_azumai_BAL46509

Pyrocoelia_pygidialis_ACF61063

A
n
o
p
lo

p
h
o
ra

_
g
la

b
ri
p
e
n
n
is

_
0
0
3
6
a
9

O
n
th

o
p
h
a
g
u
s
_
ta

u
ru

s
_
0
0
0
d
a
8

D
endroctonus_ponderosae_002d80

Ilu
m

PACS1

O
n
th

o
p
h
a
g
u
s_

ta
u
ru

s_
0
0
1
cd

a

A
g
rilu

s_
p
la

n
ip

e
n
n
is_

0
0
11

ff

ILUMI 11818-PA

P
pyr

PA
C
S
3

B
lattella_germ

anica_00684b

Ilu
mLuc

Drilaster_axillaris_BAL40875

D
ro

so
ph

ila
_m

el
an

og
as

te
r_

00
18

ad

H
arpegnathos_saltator_0035e2

O
n
th

o
p
h
a
g
u
s
_
ta

u
ru

s
_
0
0
3
b
1
4

A
la

tP
A

C
S

1

O
n
th

o
p
h
a
g
u
s_

ta
u
ru

s_
0
0
0
e
2
d

A
g
rilu

s
_
p
la

n
ip

e
n
n
is

_
0
0
0
3
c
e

A
g
rilu

s
_
p
la

n
ip

e
n
n
is

_
0
0
0
3
d
0

D
e
n
d
ro

c
to

n
u
s
_
p
o
n
d
e
ro

s
a
e
_
0
0
2
6
e
e

IL
U

M
I 
1
2
8
8
7
-P

A

Harpegnathos_saltator_0011e0

Phrixothrix_hirtus-green_ACT68597

Photuris_pensylvanica_Q27757

Anopheles_gambiae_000c0c

P
p

y
rA

C
S

4

Cyphonocerus_ruficollis_BAL40874

IL
U

M
I 
0
7
2
4
1
-P

A

L
e
p
tin

o
ta

rs
a
_
d
e
ce

m
lin

e
a
ta

_
0
0
11

6
c

Pyrophorus_plagiophthalamus_AAQ11689Rhagophthalmus_ohbai_BAF34360

O
n
th

o
p
h
a
g
u
s_

ta
u
ru

s_
0
0
2
f5

a

AQULA 011674-PA

PPYR 07063-PA

A
g
rilu

s_
p
la

n
ip

e
n
n
is_

0
0
2
6
8
a

P
ed

ic
ul

us
_h

um
an

us
_0

02
34

3

Franklin
iella

_occidentalis_002827

A
p
is

_
m

e
llife

ra
_
0
0
2
b
c
4

B
lattella_germ

anica_0034fb

A
g
rilu

s
_
p
la

n
ip

e
n
n
is

_
0
0
0
3
d
2

AQULA 012559-PA

P
P

Y
R

 0
1
1
0
8
-P

A

Frankliniella_occidentalis_0020ed

O
n
th

o
p
h
a
g
u
s_

ta
u
ru

s_
0
0
1
cd

9

M
engenilla_m

oldrzyki_0021e2

AlatLuc1

PpyrLuc2

D
ro

so
ph

ila
_m

el
an

og
as

te
r_

00
20

74

Bombyx_mori_001338

Frankliniella_occidentalis_0029a4

D
ro

so
ph

ila
_m

el
an

og
as

te
r_

00
15

66

Ilu
m

P
A

C
S

6

PPYR 07415-PA
PPYR 07271-PA

A
no

pl
op

ho
ra

_g
la

br
ip

en
ni

s_
00

49
01

P
p

y
rA

C
S

3

A
g
rilu

s
_
p
la

n
ip

e
n
n
is

_
0
0
0
3
d
3 L

e
p
ti
n
o
ta

rs
a
_
d
e
c
e
m

lin
e
a
ta

_
0
0
2
c
f8

O
n
th

o
p
h
a
g
u
s
_
ta

u
ru

s
_
0
0
2
e
3
b

P
p

y
rP

A
C

S
7

PPYR 07064-PA

H
arpegnathos_saltator_00177a

Limnephilus_lunatus_000d00

Harpegnathos_saltator_001763

Anophele
s_

gam
bia

e_001e39

Harpegnathos_saltator_0011e3

T
ribolium

_castaneum
_00015e

O
n
th

o
p
h
a
g
u
s
_
ta

u
ru

s
_
0
0
3
c
d
3

D
endroctonus_ponderosae_00221c

M
engenilla_m

oldrzyki_002eef

Ilu
m

A
C

S
3

P
ed

ic
ul

us
_h

um
an

us
_0

00
ef

d

PatrLuc1

Phausis_reticulata_AOG74999

Leptinotarsa_decem
lineata_000ea2

Pyrophorus_angustus_luscus-dorsal_BAI66600

A
n
o
p
lo

p
h
o
ra

_
g
la

b
rip

e
n
n
is

_
0
0
0
e
5
6

Frankliniella_occidentalis_0007b1

T
ri
b
o
liu

m
_
c
a
s
ta

n
e
u
m

_
0
0
0
9
a
b

Leptinotarsa_decem
lineata_00312d

B
lattella_germ

anica_0034fc

Bombyx_mori_00137b

Ilu
m

A
C

S
6

AQULA 012556-PAPyrocoelia_miyako_AAC37254

Frankliniella_occidentalis_000fdf

Pyrocoelia_atripennis_BAW87786

T
rib

o
liu

m
_
ca

sta
n
e
u
m

_
0
0
0
9
0
8

Le
pt

in
ot

ar
sa

_d
ec

em
lin

ea
ta

_0
02

d8
3

A
n
o
p
lo

p
h
o
ra

_
g
la

b
ri
p
e
n
n
is

_
0
0
3
a
b
8

Ilu
m

P
A

C
S

7

Lampyris_noctiluca_AAW72003

Apis_m
ellifera_001766

A
la

tP
A
C
S
6

A
Q

U
L

A
 0

0
5
6
1
2
-P

A

Lampyris_noctiluca_AAR20794

IL
U

M
I 2

07
48

-P
A

Ilu
m

A
C

S
2

A
cyrthosiphon_pisum

_001c1d

Ilu
m

PACS11

Ilu
m

P
A

C
S

1
0

Pyrophorus_melliflu
us_AAQ19142

IL
U

M
I 
1
0
3
3
5
-P

A

Anopheles_gambiae_000c0b

A
g
rilu

s
_
p
la

n
ip

e
n
n
is

_
0
0
0
3
c
f

Anopheles_gambiae_000c0a

Bombyx_mori_00142b

Blattella_germanica_005418

Photinus_scintillans_AOG75000

O
n
th

o
p
h
a
g
u
s_

ta
u
ru

s_
0
0
1
9
8
9

O
n
th

o
p
h
a
g
u
s
_
ta

u
ru

s
_
0
0
0
d
a
5

T
rib

o
liu

m
_
ca

sta
n
e
u
m

_
0
0
0
9
0
9

PPYR 07416-PA

O
n
th

o
p
h
a
g
u
s_

ta
u
ru

s_
0
0
3
3
a
2

T
ribolium

_castaneum
_001174_TcasP

A
C

S
2

IL
U

M
I 
1
6
6
5
0
-P

A

T
rib

o
liu

m
_
c
a
s
ta

n
e
u
m

_
0
0
0
4
a
d

D
ro

so
ph

ila
_m

el
an

og
as

te
r_

00
22

66

Harpegnathos_saltator_002571

Anophele
s_

gam
bia

e_0014a7

Ilu
m

A
C

S
4

Ano
ph

el
es

_g
am

bi
ae

_0
00

08
2

O
n
th

o
p
h
a
g
u
s_

ta
u
ru

s_
0
0
0
0
9
e

AlatACS5

T
ri
b
o
liu

m
_
ca

st
a
n
e
u
m

_
0
0
1
c3

5
_
Tc

a
sP

A
C

S
5

Cry
pta

laus_
beru

s_
BAQ25863

Pyrophorus_melliflu
us_AAQ19141

A
n
o
p
lo

p
h
o
ra

_
g
la

b
ri
p
e
n
n
is

_
0
0
3
a
b
b

Ilu
mPACS4

P
p

y
rA

C
S

1

AQULA 002668-PA

P
p

y
rP

A
C

S
5

Amdetes_fanestratus

Anopheles_gambiae_003077

Pediculus_hum
anus_001991

A
Q

U
L

A
 0

0
3
0
6
6
-P

A

IL
U

M
I 
0
7
2
4
2
-P

A

Luci
ola

 c
ru

ci
ata

 L
cL

L2 B
AE80729

Anoplophora_glabripennis_003288

O
n
th

o
p
h
a
g
u
s_

ta
u
ru

s_
0
0
3
4
1
b

Bombyx_mori_001337

Pyrophorus_angustus_luscus-ventra
l_BAI66601

T
rib

o
liu

m
_
ca

sta
n
e
u
m

_
0
0
0
9
0
7

A
la

tA
C

S
2

ILUMI 08719-PA

O
n
th

o
p
h
a
g
u
s_

ta
u
ru

s_
0
0
1
cd

c

A
Q

U
L

A
 0

1
3
3
8
1
-P

A

A
la

tP
A

C
S

5

P
p

y
rP

A
C

S
6

O
n
th

o
p
h
a
g
u
s
_
ta

u
ru

s
_
0
0
0
d
a
7

O
n
th

o
p
h
a
g
u
s_

ta
u
ru

s_
0
0
1
cd

b

Harpegnathos_saltator_0011e1

Anopheles_
gam

biae_003157

M
engenilla_m

oldrzyki_004904

Frankliniella_occidentalis_002efe

Tribolium
_castaneum

_000417_TcasPACS1

A
noplophora_glabripennis_004900

75

72

1
0
0

86

100

1
0
0

82

84

9
6

99

1
0
0

75

1
0
0

79

87

100

10
0

70

82

9
4

99

100

99

9
9

77

87

88

9
9

100

100

8
4

79

96

94

83

96

75

10
0

100

99

100

71

1
0
0

88

1
0
0

9
9

72

72

95

93

1
0
0

100

7
0

1
0
0

82

100

8
8

100

7
1

7
8

10
0

8
9

100

91

97

1
0
0

1
0
0

97

97

9
9

97

97

100

90

96

94

98

100

9
8

1
0
0

1
0
0

9
4

92

89

8
7

1
0
0

94

85

100

1
0
0

10
0

100

70

100

8
1

100

76

85

1
0
0

9
9

1
0
0

100

10
0

73

100

77

9
9

100

7
6

100

72

80

100

75

9
9

1
0
0

100

100

99

84

96

97

100

74

1
0
0

73

1
0
0

72

99

98

100

71

77

100

1
0
0

100

77

1
0
0

77

100

73

99

9
8

9
2

9
9

Tree scale: 0.1

Appendix 4—figure 6. Preliminary maximum likelihood phylogeny of luciferase homologs. A

preliminary maximum likelihood tree was reconstructed from a 385 amino acid multiple

sequence alignment, generated via a BLASTP and orthoDB search using P. pyralis luciferase as

query (e-value: 1.0 � 10�60). Members of the clade that includes both known firefly luciferase

and CG6178 of D. melanogaster (bold) are defined as luciferase co-orthologous genes

(highlighted in gray), and were selected and used for the independent maximum likelihood

analysis in Figure 3C (Appendix 4.3.2). Branch length represents substitutions per site. Genes

found from this study are indicated in blue. Lampyridae Luc1-type and Luc2-type luciferases

are highlighted in yellow-green and green. Rhagophthalmidae and Phengodidae luciferases

are highlighted in lime-green. Elateridae luciferases are highlighted in yellow. Genbank

accession numbers of luciferase orthologs genes are indicated after the species name.

OrthoDB taxon and protein IDs of luciferase co-orthologs are indicated after species name.

Bootstrap values are indicated on the nodes. The genes from Coleoptera are indicated as

purple strip. Grey closed circles indicate genes that have PTS1.

DOI: https://doi.org/10.7554/eLife.36495.060

4.3.3 Ancestral state reconstruction of luciferase activity (Figure 4A)
We performed an ancestral character state reconstruction of luciferase activity on the

luciferase homolog gene tree within Mesquite (v3.31) (Maddison and Maddison, 2017), using

an unordered parsimony analysis, and maximum likelihood (ML) analyses. First, the gene tree

from Figure 3C in Newick format was filtered using Dendroscope(v3.5.9) (Huson and

Scornavacca, 2012) to include only the clade descending from the common ancestor of

TcasPACS4 and PpyrLuc1. TcasPACS4 was set as the rooting outgroup. Luciferase activity of
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these extant genes was coded as a character state within Mesquite with: (0 = no luciferase

activity, 1 = luciferase activity, ?=undetermined). A gene was given the 1-state if it had been

previously characterized as having luciferase activity, or was directly orthologous to a gene

with previously characterized luciferase activity against firefly D-luciferin. A gene was given the

0-state if it had been previously characterized as a non-luciferase, or was directly orthologous

to a gene previously characterized to not have luciferase activity towards firefly D-luciferin. The

non-luciferase activity determination for TcasPACS4 was inferred via orthology to the

previously characterized non-luciferase Tenebrio molitor enzyme Tm-LL2 (Oba et al., 2006b).

The non-luciferase activity of AlatPACS4 (AQULA_005073-PA) was inferred via orthology to

the non-luciferase enzyme LcruPACS2 (Oba et al., 2006a). The non-luciferase activity of

IlumPACS4 (ILUMI_06433-PA) was inferred via orthology to the non-luciferase Pyrophorus

angustus enzyme PangPACS (Oba et al., 2010a; Mofford et al., 2017). IlumLuc luciferase

activity was inferred via orthology to the P. angustus dorsal and ventral luciferases (Oba et al.,

2010a). The luciferase activity of PpyrLuc2 (PPYR_00002-PA) was inferred via orthology to

other Luc2s, e.g. A. lateralis Luc2 (Oba et al., 2013a). The luciferase activity of the included

phengodid (Viviani et al., 1999a; Arnoldi et al., 2010; Amaral et al., 2017), rhagophthalmid

(Ohmiya et al., 2000; Li et al., 2007), and firefly luciferases (Oba et al., 2012; Viviani et al.,

2011; Branchini et al., 2017) were annotated from the literature. We then reconstructed the

ancestral luciferase activity character state over the tree, using an unordered parsimony

model, and a maximum likelihood (ML) model. ML analyses were performed under the

AsymmMk model with default parameters (i.e. Root State Frequencies Same as Equilibrium).

NEXUS files with presented parsimony and ML reconstructions are available as Figure 4—

source data 1.

4.3.4 Testing for ancestral selection of elaterid ancestral luciferase
(Figure 4B)
Discovery

Peptide sequences for elaterid luciferase homologs descending from the putative common

ancestor of firefly and elaterid luciferase as determined by a preliminary maximum likelihood

molecular evolution analysis of luciferase homologs (not shown), were selected from Uniprot,

whereas their respective CDS sequences were selected from the European Nucleotide Archive

(ENA) or National Center for Biotechnology Information (NCBI). These sequences include: The

dorsal (PangLucD; ENA ID = BAI66600.1) and ventral (PangLucV; ENA ID = BAI66601.1)

luciferases, and a luciferase-like homolog without luciferase-activity (PangPACS; ENA

ID = BAI66602.1) from Pyrophorus angustus (Oba et al., 2010a), and two unpublished but

database deposited luciferase homologs without luciferase-activity (data not shown) from

Cryptalaus berus (CberPACS; ENA ID = BAQ25863.1) and Pectocera fortunei fortunei

(PffPACS; ENA ID = BAQ25864.1). The peptide and CDS sequence of the Pyrearinus

termitilluminans luciferase (PtermLuc) were manually transcribed from the

literature (Viviani et al., 1999b), as these sequences were seemingly never deposited in a

publically accessible sequence database. The dorsal (PmeLucD; NCBI ID = AF545854.1) and

ventral (PmeLucV; NCBI ID = AF545853.1) luciferases of Pyrophorus mellifluus (Stolz et al.,

2003). The dorsal (AF543412.1) and ventral (AF543401.1) luciferase alleles of Pyrophorus

plagiophthalmus (Stolz et al., 2003), which were most similar to that of Pyrophorus mellifluus

in a maximum likelihood analysis (data not shown). The CDS sequence of the complete I.

luminosus luciferase (IlumLuc; ILUMI_00001-PA), two closely related paralogs (IlumPACS9:

ILUMI_26849-PA, IlumPACS8: ILUMI_26848-PA), and two other paralogs (IlumPACS2:

ILUMI_02534-PA; IlumPACS1: ILUMI_06433-PA), and the CDS for Photinus pyralis luciferase

(PpyrLuc1: PPYR_00001-PA) were added as an outgroup sequence.

Alignment and Gene Phylogeny

The 20 merged CDS sequences were multiple-sequenced-aligned with MUSCLE

(Edgar, 2004) in ‘codon’ mode within MEGA7 (Kumar et al., 2016), using parameters (Gap

Open = �0.2.9; Gap Extend = 0; Hydrophobicity Multiplier 1.2, Clustering Method = UPGMB,

Min Diag Length (lambda) = 24, Genetic Code = Standard), producing a nucleotide multiple-

sequence-alignment (MSA). A maximum likelihood gene tree was produced from the

nucleotide MSA within MEGA7 using the General Time Reversible model (Nei and Kumar,
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2000), with five gamma categories (+G, parameter = 0.8692). The analysis involved 20

nucleotide sequences. Codon positions included were 1st + 2nd + 3rd + Noncoding. There

were a total of 1659 positions in the final dataset. Initial tree(s) for the heuristic search were

obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of

pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and

then selecting the topology with the superior log likelihood value. The tree with the highest

log likelihood (�16392.22) was selected. 1000 bootstrap replicates were performed to

evaluate the topology, and the percentage of trees in which the associated taxa clustered

together is shown next to the branches in Figure 4B.

Tests of selection: aBSREL

An adaptive branch-site REL test for episodic diversification was performed on the

previously mentioned gene-tree and nucleotide MSA using the adaptive branch-site REL test

for episodic diversification (aBSREL) method (Smith et al., 2015) within the HyPhy program

(v2.3.11) (Pond et al., 2005). The input MSA contained 20 sequences with 553 sites (codons).

All 37 branches of the gene phylogeny were formally tested for diversifying selection. The

aBSREL analysis found evidence of episodic diversifying selection on 3 out of 37 branches in

the phylogeny. Significance was assessed using the Likelihood Ratio Test at a threshold of

p�0.01, after the Holm-Bonferroni correction for multiple hypothesis testing. The intermediate

files and results of this analysis, including the nucleotide MSA, GTR based gene-tree, and

aBSREL produced adaptive rate class model gene tree are available as Figure 4—source data

2.

Tests of selection: MEME

After identification of the selected branch via the aBSREL method, we turned to the MEME

method within the HyPhy program (v2.3.11) (Pond et al., 2005), to identify those sites which

may have adaptively evolved. We tested the branch leading to EAncLuc, which was previously

identified as under selection in the aBSREL analysis. A single partition was recovered with 28

sites under episodic diversifying positive selection at p<=0.1 (Appendix 4—table 5). Input

files and full results are available on FigShare (10.6084/m9.figshare.6626651).

Tests of selection: PAML-BEB

To validate our findings from aBSREL and MEME using a different method, we applied

Phylogenetic Analysis by Maximum Likelihood (PAML) branch by site analysis to the luciferase

sequences. We tested the alternative hypothesis, that there is a class of sites under selection

(w >1) on the EAncLuc ancestral branch identified as under selection in the aBSREL analysis,

against the null hypotheses, that all classes of sites on all branches are evolving either under

constraint (w <1) or neutrality (w = 1). A likelihood ratio test supported the alternative

hypothesis, that 13% of sites in luciferase were in a positively selected class (w = 3.25).

Subsequent Bayes Empirical Bayes (BEB) estimation identified 31 sites with evidence of

selection on these branches, 5 of which were significant. Full results are available on FigShare

(10.6084/m9.figshare.6725081).

Tests of selection: Overlap

Nineteen of the overall sites were shared between the MEME analysis, and are shown in

Appendix 4—table 5. The frequency of extant amino acids at these sites are shown in

Appendix 4—figure 7.
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Appendix 4—table 4. Results of PAML branch x sites analysis. Proportion indicates the

proportion of sites in each site class (0, 1, 2a, 2b). Site classes 0 and 1 are those in the

constrained and neutral classes, respectively. 2a are sites that were constrained on the

background branches, but are either neutral (H0) or in the selective class (HA) on the foreground

branches. 2b are sites that were neutral on the background branches, but are either neutral (H0)

or in the selective class (HA) on the foreground branches.

Hypothesis Site class: 0 1 2a 2b lnL

H0: no selection proportion 0.62 0.14 0.18 0.04 �15888.16

background ! 0.12 1 0.12 1

foreground ! 0.12 1 1 1

HA: selection proportion 0.71 0.15 0.11 0.02 �15833.50*

background ! 0.12 1 0.12 1

foreground ! 0.12 1 3.25 3.25

*significant (LRT: 9.32, df = 1)

DOI: https://doi.org/10.7554/eLife.36495.061

Appendix 4—table 5. Sites identified as under selection on foreground branches using both

Bayes Empirical Bayes (BEB) and Mixed Effects Model of Evolution (MEME).

Site numbering MEME2 PAML-BEB

MSA IlumLuc
IlumLuc
site AA1 a b+ LRT

Episodic
selection
p-value

#
branches

BEB site
class
probability

BEB
significance

28 28 M 0.986 *

34 34 K 0.47 23.5 4.1 0.0603 0

41 41 Q 0.5

46 44 V 0 3 4.5 0.0485 0

49 47 I 0.93 792.4 3.8 0.0692 0

50 48 G 0.57 3332.3 4.8 0.0427 0 0.836

72 70 N 0.55 3333.1 3.1 0.0998 0 0.776

77 75 M 0.964 *

85 83 A 0.962 *

89 87 K 0.958 *

99 97 W 0.598

105 103 V 0.44 6.8 4.3 0.0549 0 0.768

118 116 C 0.3 3333.1 7.4 0.0109 1

122 120 G 0.82

146 144 L 0.34 12.8 4.9 0.039 0

147 145 G 0.75 3333.6 5.9 0.0236 0

172 170 A 0.698

189 185 F 0.534

223 219 L 0.507

226 222 T 1.44 29.6 4.8 0.0427 0 0.889

234 230 I 1.13 9.6 3.1 0.0991 0 0.613

279 275 A 0.559

290 286 N 0.92 3333 4 0.064 0

315 311 L 0.69 29.5 5.1 0.0362 0 0.884

329 325 L 0.766

Appendix 4—table 5 continued on next page
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Appendix 4—table 5 continued

Site numbering MEME2 PAML-BEB

MSA IlumLuc
IlumLuc
site AA1 a b+ LRT

Episodic
selection
p-value

#
branches

BEB site
class
probability

BEB
significance

337 333 P 0.26 13.3 6.3 0.0198 0

341 337 C 0.812

365 361 L 0.58 7.6 4.4 0.052 0 0.912

369 365 T 0.21 6.8 6.6 0.0169 0 0.843

379 375 R 0.932

383 379 E 0 2.8 4.1 0.0594 0

389 385 Q 0.792

398 394 P 0.96 1999.2 4.5 0.05 0 0.951 *

401 397 S 0.617

406 402 N 0.58 5.5 3.7 0.0745 0 0.949

423 419 S 0.67 1574.6 4.7 0.043 0 0.569

432 428 E 0 2.9 3.1 0.0999 1

441 437 Y 1.43 39.3 4.2 0.0573 0 0.912

478 474 V 0 10.3 6.9 0.0139 1 0.646

502 498 Y 0.5 1790.4 4.9 0.0393 0 0.583

508 504 R 0.519

528 524 N 0 2.2 3.6 0.0772 0

541 537 Q 0 1999.2 10.4 0.0024 1

542 538 L 0.56 68 6.3 0.0197 0

550 542 T 0.74 3332.9 4.3 0.0541 0

1 = amino acid. 2=All recovered sites in a single partition with a p+ value of 1.000.

DOI: https://doi.org/10.7554/eLife.36495.062
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Elaterid luciferases (Clade D subset; n=10)
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Appendix 4—figure 7. Amino acid variation at sites recovered in selection analysis. Amino

acid variation of extant Elaterid luciferases (Clade D ‘Eluc’ subset; Figure 3) at all sites

recovered via both the MEME and PAML-BEB selection analysis (Appendix 4—table 5). Site

numbering relative to IlumLuc. Figure produced with seqkit (Shen et al., 2016) and

WebLogo(v3.6.0) (Crooks et al., 2004).

DOI: https://doi.org/10.7554/eLife.36495.063

4.4 Non-enzyme highly and differentially expressed genes of the
firefly lantern
PPYR_04589, a predicted fatty acid binding protein is almost certainly orthologous to the

light organ fatty acid binding protein reported from Luciola cerata (Goh and Li, 2011). This

fatty acid binding protein was previously reported to bind strongly to fatty acids, and weakly

to luciferin. Notably, PPYR_04589 is the most highly expressed gene in the P. pyralis adult

lantern, ahead of firefly luciferase. Three G-coupled protein receptors (GCPRs) with similarity

to annotated octopamine/tyramine receptors were also detected to be highly and

differentially expressed in the P. pyralis light organ (PPYR_11673-PA, PPYR_11364-PA,

PPYR_12266-PA). Octopamine is known to be the key effector neurotransmitter of the adult

and larval firefly lantern and this identified GPCR likely serves as the upstream receptor of

octopamine activated adenylate cyclase, previously reported as abundant in P. pyralis

lanterns (Nathanson et al., 1989).

The neurobiology of flash control, including regulation of flash pattern and intensity, is a

fascinating area of behavioral research. Our data generate new hypotheses regarding the

molecular players in flash control. A particularly interesting highly and differentially

expressed gene in both P. pyralis and A. lateralis is the full length ‘octopamine binding

secreted hemocyanin’(PPYR_14966; AQULA_008529; Appendix 4—table 6) previously

identified from P. pyralis light organ extracts via photoaffinity labeling with an octopamine

analog and partial N-terminal Edman degradation (Nathanson et al., 1989). This protein is

intriguing as hemocyanins are typically thought to be oxygen binding. We speculate that this

octopamine binding secreted hemocyanin, previous demonstrated to be abundant,
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octopamine binding, and secreted from the lantern (presumably into the hemolymph of the

light organ), could be triggered to release oxygen upon octopamine binding, thereby

providing a triggerable O2 store within the light organ under control of neurotransmitter

involved in flash control. As O2 is believed to be limiting in the adult light reaction, such a

release of O2 could enhance flash intensity or accelerate flash kinetics. Further research is

required to test this hypothesis.

AQULA 004530-PA

PPYR 09401-PA

PPYR 14372-PA

ILUMI 25296-PA

AQULA 001585-PA

PPYR 14583-PA

ILUMI 27376-PA

D7EKF1 TRICA

ILUMI 25295-PA

Q961A8 DROME

Tree scale: 0.1

PTS1
Orthogroup 698 

Appendix 4—figure 8. Maximum likelihood gene tree of the combined adenylyl-sulfate kinase

and sulfate adenylyltransferase (ASKSA) orthogroup. Peptide sequences from P. pyralis, A.

lateralis, I. luminosus, T. castaneum, and D. melanogaster were clustered (orthogroup # 698),

multiple sequence aligned, and refactored into a species rooted maximum likelihood tree,

via the OrthoFinder pipeline (Appendix 4.2.1). As this is a genome-wide analysis where

bootstrap replicates would be computationally prohibitive, no bootstrap replicates were

performed to evaluate the support of the tree topology. PTS1 sequences were predicted

from the peptide sequence using the PTS1 predictor server (Neuberger et al., 2017). Figure

produced with iTOL (Letunic and Bork, 2016).

DOI: https://doi.org/10.7554/eLife.36495.065

4.5 Opsin analysis
Opsins are G-protein-coupled receptors that, together with a bound chromophore, form

visual pigments that detect light, reviewed here (Briscoe and Chittka, 2001). While opsin

genes are known for their expression in photoreceptors and function in vision, they have also

been found to be expressed in other tissues, suggesting non-visual functions in some cases.

Insects generally use rhabdomeric opsins (r-opsins) for vision, while mammals generally use

ciliary opsins (c-opsins) for vision, products of an ancient gene duplication (Briscoe and

Chittka, 2001; Porter et al., 2012). Both insects and mammals may retain the alternate

opsin type, generally in a non-visual capacity. The ancestral insect is hypothesized to have

three visual opsins - one sensitive to long-wavelengths of light (LW), one to blue-wavelengths

(B), and one to ultraviolet light (UV). Previously, two opsins, one with sequence similarity to

other insect LW opsins and one with similarity to other insect UV opsins, were identified as

highly expressed in firefly heads (Sander and Hall, 2015; Martin et al., 2015). A likely non-

visual c-opsin was also detected, although not highly expressed (Sander and Hall, 2015;

Martin et al., 2015).

To confirm the previously documented opsin presence and expression patterns, we

collected candidate opsin genes via BLASTP searches (e-value threshold: 1 � 10�20) of the

PPYR_OGS1.0, AQULA_OGS1.0 and ILUMI_OGS1.0 reference genesets against UV opsin of

P. pyralis (Genbank Accession: ALB48839.1), as well as collected non-firefly opsin sequences

via literature searches, followed by maximum likelihood phylogenetic reconstruction
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(Appendix 4—figure 9A), and expression analyses of the opsins (Appendix 4—figure 9B.B).

The amino acid sequences of opsin were multiple aligned using MAFFT and trimmed using

trimAL (parameters: -gt 0.5). The amino acid substitution model for ML analysis was

estimated using Aminosan (v1.0.2016.11.07) (Tanabe, 2011). In P. pyralis, A. lateralis, and I.

luminosus, we detected three r-opsins, including LW, UV, and an r-opsin homologous to

Drosophila Rh7 opsin, and one c-opsin. While LW and UV opsins were highly and

differentially expressed in heads of both fireflies, c-opsin was lowly expressed, in P. pyralis

head tissue only (Appendix 4—figure 9B). In contrast, Rh7 was not expressed in the P.

pyralis light organ, but was differentially expressed in the light organ of A. lateralis

(Appendix 4—figure 9B). The detection of Rh7 in our genomes is unusual in

beetles (Feuda et al., 2016), although emerging genomic resources across the order have

detected it in two taxa: Anoplophora glabripennis (McKenna et al., 2016) and Leptinotarsa

decemlineata (Schoville et al., 2017). Rh7 has an enigmatic function - a recent study in

Drosophila melanogaster showed that Rh7 is expressed in the brain, functions in circadian

photoentrainment, and has broad UV-to-visible spectrum sensitivity (Ni et al., 2017;

Sakai et al., 2017). Extraocular opsin expression has been detected in other eukaryotes: a

photosensory organ is located in the genitalia at the posterior abdominal segments in

butterfly (Lepidoptera) (Arikawa and Aoki, 1982). In the bioluminescent Ctenophore

Mnemiopsis leidyi, three c-opsins are co-expressed with the luminous photoprotein in the

photophores (Schnitzler et al., 2012). In the bobtail squid, Euprymna scolopes, one of the

c-opsin isoforms is expressed in the bacterial symbiotic light organ (Tong et al., 2009;

Pankey et al., 2014). Thus, it is possible that Rh7 has a photo sensory function in the lantern

of A. lateralis, although this putative function is seemingly not conserved in P. pyralis. Future

study will confirm and further explore the biological, physiological, and evolutionary

significance of Rh7 expression in the light organ across firefly taxa.
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Appendix 4—figure 9. ML tree and gene expression levels of opsin genes.

DOI: https://doi.org/10.7554/eLife.36495.066
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4.6 LC-HRAM-MS of lucibufagin content in P. pyralis, A. lateralis,
and I. luminosus
We assayed the hemolymph of adult P. pyralis and A. lateralis, as well as body extracts from

P. pyralis and A. lateralis larvae, and I. luminosus adult male thorax, for lucibufagin content

using liquid-chromatography high-resolution accurate-mass mass-spectrometry (LC-HRAM-

MS) and MS2 spectral similarity networking approaches. We chose to analyze extracted

hemolymph from both P. pyralis, and A. lateralis for lucibufagin content, as lucibufagins are

known to accumulate in the adult hemolymph and hemolymph samples give less complex

extracts than tissue extracts. For P. pyralis and A. lateralis larvae, and I. luminosus thorax,

tissue extracts were sampled as we do not have a reliable hemolymph extraction protocol for

these life stages and species. Specific tissues were chosen for extracts to enable a smaller

quantity of tissue to go into the metabolite extraction, and to explore possible difference in

compound abundance across tissues, but we expected that defense compounds like

lucibufagins would be roughly equally abundant present in all tissues.

Adult male P. pyralis and A. lateralis hemolymph was extracted by the following methods:

A single live adult P. pyralis male was placed in a 1.5 mL microcentrifuge tube with a 5-mm-

glass bead underneath the specimen, and centrifuged at maximum speed (~20,000 xg) for 30

s in a benchtop centrifuge. This centrifugation crushed the specimen on top of the bead, and

allowed the hemolymph to collect at the bottom of the tube. Approximately 5 mL was

obtained. The extracted hemolymph was diluted with 50 mL methanol to precipitate proteins

and other macromolecules. For A. lateralis adult hemolymph, three adult male individuals

were placed in individual 1.5 mL microcentrifuge tubes with 5-mm-glass beads, and spun at

5000 RPM for 1 min in a benchtop centrifuge. The pooled extracted hemolymph (~5 mL), was

diluted with 50 mL MeOH, and air dried. The P. pyralis extracted hemolymph was filtered

through a 0.2 mm PFTE filter (Filter Vial, P/No. 15530–100, Thomson Instrument Company),

whereas the A. lateralis hemolymph residue was redissolved in 100 mL 50% MeOH, and then

filtered through the filter vial.

For extraction of P. pyralis larval partial body, the posterior two abdominal segments

were first cut off from a single laboratory reared larvae (Appendix 1.3.2), and the remaining

partial body was placed in 180 mL 50% acetonitrile, and macerated with a pipette tip. The

extract was sonicated in a water bath sonicator for ~10 min, not letting the temperature of

the bath go above 50˚C. The extract was then centrifuged (20,000 x g for 10 min), and

filtered through a 0.2 mm PFTE filter (Filter Vial, P/No. 15530–100, Thomson Instrument

Company).

For extraction of A. lateralis larval whole body, laboratory reared A. lateralis larvae were

flash frozen in liquid N2, lyophilized, and the whole body (dry weight: 29.1 mg) was placed in

200 mL 50% methanol, and macerated with a pipette tip. The extract was sonicated in a

water bath sonicator for 30 min, centrifuged (20,000xg for 10 min), and filtered through a 0.2

mm PFTE filter (Filter Vial, P/No. 15530–100, Thomson Instrument Company).

For extraction of I. luminosus adult thorax, the mesothorax through the two most anterior

abdominal segments (ventral lantern containing segment +1 segment) of a lyophilized I.

luminosus adult male (Appendix 3.3), was separated from the prothorax plus head and

posterior three abdominal segments. This mesothorax + abdomen fragment was then placed

in 0.5 mL 50% methanol, and macerated with a pipette tip. The extract was then sonicated in

a water bath sonicator for ~10 min, not letting the temperature of the bath go above 50˚C,

centrifuged (20,000xg for 10 min), and filtered through a 0.2 mm PFTE filter (Filter Vial, P/No.

15530–100, Thomson Instrument Company).

Injections of these filtered extracts (P. pyralis adult male hemolymph 10 mL; A. lateralis

adult male hemolymph 5 mL; P. pyralis partial larval body extract 5 mL; A. lateralis whole

larval body 5 mL; I. luminosus thorax extract 20 mL) were separated and analyzed using an

UltiMate 3000 liquid chromatography system (Thermo Scientific) equipped with a 150 mm

C18 Column (Kinetex 2.6 mm silica core shell C18 100 Å pore, P/No. 00F-4462-Y0,

Phenomenex, USA) coupled to a Q-Exactive mass spectrometer (Thermo Scientific, USA).
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Two different instrument methods were used, a slow ~44 min method, and an optimized ~28

min method. Chromatographically both methods are identical up to 20 min.

P. pyralis hemolymph compounds were separated by the optimized method (28 min), with

separation via reversed-phase chromatography on a C18 column using a gradient of Solvent

A (0.1% formic acid in H2O) and Solvent B (0.1% formic acid in acetonitrile); 5% B for 2 min,

5–40% B until 20 min, 40–95% B until 22 min, 95% B for 4 min, and 5% B for 5 min; flow rate

0.8 mL/min. All other sample extracts were separated by the slow (44 min) reversed-phase

chromatography method, using a C18 column with a gradient of Solvent A (0.1% formic acid

in H2O) and Solvent B (0.1% formic acid in acetonitrile); 5% B for 2 min, 5–80% B until 40

min, 95% B for 4 min, and 5% B for 5 min; flow rate 0.8 mL/min.

The mass spectrometer was configured to perform one MS1 scan from m/z 120–1250

followed by 1–3 data-dependent MS2 scans using HCD fragmentation with a stepped

collision energy of 10, 15, 25 normalized collision energy (NCE). Positive mode and negative

mode MS1 and MS2 data were obtained in a single run via polarity switching for the

optimized method, or in separate runs for the slow method. Data was collected as profile

data. The instrument was always used within 7 days of the last mass accuracy calibration. The

ion source parameters were as follows: spray voltage (+) at 3000 V, spray voltage (-) at 2000

V, capillary temperature at 275˚C, sheath gas at 40 arb units, aux gas at 15 arb units, spare

gas at one arb unit, max spray current at 100 (mA), probe heater temp at 350˚C, ion source:

HESI-II. The raw data in Thermo format was converted to mzML format using ProteoWizard

MSConvert (Chambers et al., 2012). Data analysis was performed with Xcalibur (Thermo

Scientific) and MZmine2 (v2.30) (Pluskal et al., 2010). Raw LC-MS data is available on

MetaboLights (Accession: MTBLS698).

Within MZmine2, data were from all five samples on positive mode, and were first

cropped to 20 min in order to compare data which was obtained with the same LC gradient

parameters. Profile MS1 data was then converted to centroid mode with the Mass detection

module(Parameters: Mass Detector = Exact mass, Noise level = 1.0E4), whereas MS2 data

was converted to centroid mode with (Noise level = 1.0E1). Ions were built into

chromatograms using the Chromatogram Builder module with parameters

(min_time_span = 0.10,min_height = 1.0E4, m/z tolerance = 0.001 m/z or five ppm.

Chromatograms were then deconvolved using the Chromatogram deconvolution module

with parameters (Algorithm = Local Minimum Search, Chromatographic threshold = 5.0%,

Search Minimum in RT range = 0.10 min, Minimum relative height = 1%, Minimum absolute

height = 1.0E0, Min ratio of peak top/edge = 2, Peak duration range = 0.00–10.00). Isotopic

peaks were annotated to their parent features with the Isotopic peaks grouper module with

parameters (m/z tolerance = 0.001 or five ppm, Retention time tolerance = 0.2 min,

Monotonic shape = yes, Maximum charge = 2, Representative isotope = Most intense). The

five peaklists (P. pyralis hemolymph, P. pyralis larval partial body, A. lateralis adult

hemolymph, A. lateralis larval whole body, I. luminosus thorax) were then joined and

retention time aligned using the RANSAC algorithm with parameters (m/z tolerance = 0.001

or 10 ppm, RT tolerance = 1.0 min, RT tolerance after correction = 0.1 min, RANSAC

iterations = 100, Minimum number of points = 5%, Threshold value = 0.5). These aligned

peaklists were then gap-filled. Systematic mass accuracy error was determined with the

endogenous tryptophan [M + H]+ ion (m/z = 205.09, RT = 3.5–4.5 mins), and was measured

to be +0.6 ppm,+9.9 ppm,+1.6 ppm,+1.1 ppm, and +0.6 ppm, for P. pyralis adult

hemolymph, P. pyralis partial larval body extract, A. lateralis adult hemolymph, A. lateralis

larval body extract, and I. luminosus thorax extract, respectively.
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Appendix 4—figure 10. Positive mode MS1 total-ion-chromatogram (TIC) of P.pyralis adult

hemolymph LC-HRAM-MS data. Figure produced using MZmine2 (Pluskal et al., 2010).

DOI: https://doi.org/10.7554/eLife.36495.067
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Appendix 4—figure 11. Negative mode MS1 total-ion-chromatogram (TIC) of P. pyralis adult

hemolymph LC-HRAM-MS data. Figure produced using MZmine2 (Pluskal et al., 2010).

DOI: https://doi.org/10.7554/eLife.36495.068
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Appendix 4—figure 12. Positive mode MS1 total-ion-chromatogram (TIC) of P. pyralis larval

whole body minus two posterior segments LC-HRAM-MS data. Figure produced using

MZmine2 (Pluskal et al., 2010).

DOI: https://doi.org/10.7554/eLife.36495.069

XIC, m/z: 116.8281 - 1515.1436

L3_body_50ACN_5uL.mzML

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00 42.00 44.00

Retention time

0.0E0

5.0E8

1.0E9

1.5E9

2.0E9

2.5E9

3.0E9

3.5E9

4.0E9

4.5E9

5.0E9

5.5E9

6.0E9

6.5E9

7.0E9

7.5E9

8.0E9

8.5E9

9.0E9

9.5E9

1.0E10

1.1E10

1.1E10

1.2E10

272.9563

217.0463

191.0180

203.0811

250.0920

535.2144

350.1079

641.2742

577.2244

577.2244

591.2412

605.2554

605.2552

331.2459
566.3433 524.2963

412.9631

Appendix 4—figure 13. Negative mode MS1 total-ion-chromatogram (TIC) of P. pyralis larval

whole body minus two posterior segments LC-HRAM-MS data. Figure produced using

MZmine2 (Pluskal et al., 2010).

DOI: https://doi.org/10.7554/eLife.36495.070
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Appendix 4—figure 14. Positive mode MS1 total-ion-chromatogram (TIC) of A. lateralis adult

hemolymph LC-HRAM-MS data. Figure produced using MZmine2 (Pluskal et al., 2010).

DOI: https://doi.org/10.7554/eLife.36495.071
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Appendix 4—figure 15. Negative mode MS1 total-ion-chromatogram (TIC) of A. lateralis adult

hemolymph LC-HRAM-MS data. Figure produced using MZmine2 (Pluskal et al., 2010).

DOI: https://doi.org/10.7554/eLife.36495.072
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Appendix 4—figure 16. Positive mode MS1 total-ion-chromatogram (TIC) of A. lateralis larval

whole body LC-HRAM-MS data. Figure produced using MZmine2 (Pluskal et al., 2010).

DOI: https://doi.org/10.7554/eLife.36495.073

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00 42.00 44.00

Retention time

0.0E0

2.0E8

4.0E8

6.0E8

8.0E8

1.0E9

1.2E9

1.4E9

1.6E9

1.8E9

2.0E9

2.2E9

2.4E9

2.6E9

2.8E9

3.0E9

3.2E9

3.4E9

3.6E9

3.8E9

4.0E9

4.2E9 209.0665

335.0501

142.0503

178.0506

447.1075

461.1225

385.2231

395.2198

443.2199

666.4240

431.2192

442.2241

588.3315

162.9820
162.9820

383.1898

Appendix 4—figure 17. Negative mode MS1 total-ion-chromatogram (TIC) of A. lateralis lar-

val whole body extract LC-HRAM-MS data. Figure produced using MZmine2 (Pluskal et al.,

2010).

DOI: https://doi.org/10.7554/eLife.36495.074
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Appendix 4—figure 18. Positive mode MS1 total-ion-chromatogram (TIC) of I. luminosus

mesothorax +abdomen extract LC-HRAM-MS data. Figure produced using

MZmine2 (Pluskal et al., 2010).

DOI: https://doi.org/10.7554/eLife.36495.075
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Appendix 4—figure 19. Negative mode MS1 total-ion-chromatogram (TIC) of I.luminosus

mesothorax + abdomen extract LC-HRAM-MS data. Figure produced using

MZmine2 (Pluskal et al., 2010).

DOI: https://doi.org/10.7554/eLife.36495.076

4.6.5 MS2 similarity search for P. pyralis lucibufagins
We first performed a MS2 similarity search within P. pyralis adult hemolymph for ions that

showed a similar MS2 spectra to the MS2 spectra arising from the diacetylated lucibufagin

[M + H]+ ion from the same run ([M + H]+ m/z 533.2385, RT = 15.10 mins) (Appendix 4—

figure 20). This search was performed through the MS2 similarity search module of MZmine2

(v2.30) with parameters (m/z tolerance: 0.0004 m/z or 1 PPM; minimum # of ions to report:

3). This MS2 similarity search revealed nine putative lucibufagin isomers with highly similar

MS2 spectra (Appendix 4—figure 21), which expanded to 17 putative lucibufagin isomers

when considering features without MS2 spectra, but with identical exact masses and close

retention times (DRT <2 min) to the previously identified 9 (Appendix 4—table 7). Chemical

formula prediction was assigned to each precursor ion using the Chemical formula search

module of MZmine2, whereas chemical formula predictions for product ions was performed
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within MZmine2 using SIRUIS (v3.5.1) (Böcker et al., 2009). The structural identity of the nine

putative lucibufagins detected via the MS2 spectra similarity search was easily interpreted in

light that the different chemical formula represented the core lucibufagins that had

undergone acetylation (COCH3) or propylation (COCH2CH3), in different combinations.

Notably, the most substituted isomers, dipropylated lucibufagin ([M + H]+ m/z 561.2695,

RT = 19.54 mins) were close to the edge of the cropped data (20 min), thus it may be

possible that more highly substituted lucibufagins with a longer retention times are present,

but not detected in the current analysis.

We then performed a MS2 similarity search within P. pyralis partial body extract for ions

that showed a MS2 spectra similar to that of the dipropylated lucibufagin [M + H]+ ion from

the same run ([M + H]+ m/z 561.2738, RT = 19.53). This search was performed through the

MS2 similarity search module of MZmine2 (v2.30) with parameters (m/z tolerance: 0.0004 m/z

or 1 PPM; minimum # of ions to report: 5). This MS2 similarity search revealed 14 putative

lucibufagin isomers with highly similar MS2 spectra (Appendix 4—table 7). Complexes and

fragments were manually removed from the analysis. Comparison of the theoretical and

observed exact mass indicated that this experimental run had an unusual degree of

systematic m/z error, of ~+10 ppm. After manual correction m/z, chemical formula prediction

revealed a several putative lucibufagins of unknown structure with nitrogen in their chemical

formula, suggesting that the nitrogen containing lucibufagins reported by by Gronquist and

colleagues from Lucidota atra (Gronquist et al., 2005) may be present in P. pyralis larvae.
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Appendix 4—figure 20. Positive mode MS2 spectra of (A) diacetylated lucibufagin [M + H]+

and (B) dipropylated lucibufagin [M + H]+.

DOI: https://doi.org/10.7554/eLife.36495.077
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Chemical 

formula
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Appendix 4—figure 21. MS2 spectral similarity network for P.pyralis adult hemolymph lucibu-

fagins. (A) MS2 similarity network produced with the MZmine2 MS2 similarity search module.

Nodes represent MS2 spectra from the initial dataset, whereas edges represent an MS2

similarity match between two MS2 spectra. Thickness/label of the edge represents the

number of ions matched between the two MS2 spectra. (B) Table of matched ions between

diacetylated lucibufagin (m/z: 533.2385 RT:15.1), and core (unacetylated) lucibufagin (m/z:

449.2171 RT:10.8 min). MS1 adducts and complexes of the presented ions were manually

removed.

DOI: https://doi.org/10.7554/eLife.36495.078
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Appendix 4—table 7. Putative lucibufagin compounds from LC-HRAM-MS of P. pyralis adult

hemolymph. Retention time and m/z values are not calibrated to the other samples.

Assigned ion
identity Ion type

Chemical
formula

Expected
M/z

Measured
M/z

M/z
error*
(ppm)

Retention
time
(mins)

Feature
area
(arb)

Core lucibufagin
isomer 1

[M + H]+ C24H33O8 449.2175 449.2171 �0.89 7.9 6.7E + 05

Core lucibufagin
isomer 2

"" “” “” "" “” 9.3 1.1E + 07

Monoacetylated
lucibufagin iso-
mer 1

"" C26H35O9 491.2281 491.2277 �0.81 10.2 4.2E + 07

Core lucibufagin
isomer 3

"" C24H33O8 449.2175 449.2171 �0.89 10.8 1.7E + 07

Monoacetylated
lucibufagin iso-
mer 2

"" C26H35O9 491.2281 491.2277 �0.81 11.4 1.1E + 06

Monoacetylated
lucibufagin iso-
mer 3

"" “” “” "" “” 11.9 1.8E + 07

Monoacetylated
lucibufagin iso-
mer 4

"" “” “” "" “” 13.0 2.7E + 08

Monoacetylated
lucibufagin iso-
mer 5

"" “” “” "" “” 13.2 6.0E + 07

Monoacetylated
lucibufagin iso-
mer 6

"" “” “” "" “” 14.5 6.2E + 06

Diacetylated luci-
bufagin isomer 1

"" C28H37O10 533.2387 533.2385 �0.37 15.1 4.0E + 09

Diacetylated luci-
bufagin isomer 2

"" “” “” "" “” 15.4 1.9E + 09

Monoacetylated,
mono propylated
lucibufagin iso-
mer 1

"" C29H39O10 547.2543 547.2542 �0.18 17.0 1.5E + 07

Monoacetylated,
mono propylated
lucibufagin iso-
mer 2

"" “” “” "" “” 17.4 2.8E + 08

Monoacetylated,
mono propylated
lucibufagin iso-
mer 3

"" “” “” "" “” 17.7 1.2E + 08

Dipropylated luci-
bufagin isomer 1

"" C30H41O10 561.2700 561.2695 �0.89 18.9 1.4E + 08

Dipropylated luci-
bufagin isomer 2

"" “” “” "" “” 19.5 3.9E + 07

Dipropylated luci-
bufagin isomer 3

"" “” “” "" “” 19.8 1.8E + 08

DOI: https://doi.org/10.7554/eLife.36495.079
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Appendix 4—table 8. Putative lucibufagin compounds from LC-HRAM-MS of P. pyralis larval

partial body extracts. Retention time and m/z values are not calibrated to the other samples.

*=m/z error and expected m/z extrapolated from ions with similar m/z, and chemical formula

predicted from resulting extrapolated m/z. **=Likely chemical formula cannot be determined

due to many possible chemical formula from the expected m/z.

Assigned ion
identity Ion type

Chemical
formula

Expected
m/z

Measured
m/z

m/z
error
(ppm)

Retention
time
(mins)

Feature
area
(arb)

Core lucibufagin
isomer 2

[M + H]+ C24H33O8 449.2175 449.2215 +8.9 9.15 8.5E + 06

Monoacetylated
lucibufagin iso-
mer 1

“” C26H35O9 491.2277 491.2326 +9.9 10.04 1.2E + 07

Unknown unknown C28H39O10* 535.2543* 535.2592 +9.1* 12.40 1.6E + 07

Unknown unknown C24H38NO6* 436.2695* 436.2735 +9.1* 13.30 2.2E + 07

Unknown unknown C27H45N2O8* 525.3173* 525.3221 +9.1* 13.35 1.3E + 08

Unknown unknown C24H40NO7* 454.2799* 454.2840 +9.1* 13.73 1.3E + 07

Diacetylated lu-
cibufagin isomer
1

[M + H]+ C28H37O10 533.2387 533.2426 +7.3 14.93 1.7E + 09

Diacetylated lu-
cibufagin isomer
2

[M + H]+ “” “” 533.2426 +7.3 15.16 3.5E + 08

Unknown Unknown C29H46NO8* 536.3216* 536.3256 +7.3* 16.57 4.1E + 07

Unknown Unknown Unknown** 563.2854* 563.2896 +7.3* 16.80 1.3E + 07

Unknown Unknown C26H31O7 455.2056 455.2097 +9.1* 17.22 5.8E + 07

Dipropylated lu-
cibufagin isomer
3

Unknown C30H41O10 561.2700 561.2738 +6.7 19.53 2.0E + 09

Dipropylated lu-
cibufagin isomer
4

Unknown C30H41O10 561.2700 561.2738 +6.7 19.82 2.2E + 08

DOI: https://doi.org/10.7554/eLife.36495.080
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Appendix 4—table 9. Putative lucibufagin [M + H]+ exact masses adjusted for instrument run

specific systematic m/z error (Figure 6B). Used for multi-ion-chromatogram (MIC) traces in

Figure 6B.

Chemical
formula

Predicted
exact
mass

Exact mass
adjusted to
P. pyralis
hemolymph
data (+0.6
ppm)

Exact mass
adjusted to
P. pyralis
partial larval
body data
(+9.9 ppm)

Exact mass
adjusted to
A. lateralis
hemolymph
data (+1.6
ppm)

Exact
mass
adjusted
to
A.
lateralis
larval
body
data
(+1.1
ppm)

Exact mass
adjusted to
I. luminosus
thorax data
(+0.6 ppm)

C24H33O8 449.2175 449.2178 449.2219 449.2182 449.2180 449.2178

C24H38NO6* 436.2699 436.2702 436.2742 436.2706 436.2704 436.2702

C24H40NO7* 454.2804 454.2807 454.2849 454.2811 454.2809 454.2807

C26H31O7 455.2069 455.2072 455.2114 455.2076 455.2074 455.2072

C26H35O9 491.2281 491.2284 491.2330 491.2289 491.2286 491.2284

C27H45N2O8* 525.3175 525.3178 525.3227 525.3183 525.3181 525.3178

C28H37O10 533.2386 533.2389 533.2439 533.2395 533.2392 533.2389

C28H39O10* 535.2543 535.2546 535.2596 535.2552 535.2549 535.2546

C29H39O10 547.2543 547.2546 547.2597 547.2552 547.2549 547.2546

C29H46NO8* 536.3223 536.3226 536.3276 536.3232 536.3229 536.3226

C30H41O10 561.2699 561.2702 561.2755 561.2708 561.2705 561.2702

*=Chemical formula assigned for structurally unclear putative lucibufagins

DOI: https://doi.org/10.7554/eLife.36495.081

4.6.7 MS2 similarity search for A. lateralis lucibufagins
Although our earlier LC-HRAM-MS analysis (Figure 6B; Appendix 4.6) indicated A. lateralis

adult male hemolymph does not contain detectable quantities of the P. pyralis lucibufagins,

this does not exclude that structurally unknown lucibufagins with chemical formula not

present in P. pyralis, are present in A. lateralis. To address this, we performed a MS2

similarity search against the A. lateralis adult male hemolymph MS2 spectra, with the MS2

spectra of lucibufagin C (m/z 533.2385, RT = 15.1) as bait, using the MZmine2 similarity

search module with parameters (m/z tolerance = 0.001 or 10 ppm, Minimum # of matched

ions = 10). After filtering to those precursors that were mostly likely to be the [M + H]+ of a

lucibufagin-like molecule (m/z 350–800, RT = 8–20 mins), 9 MS2 spectra were matched

(Appendix 4—table 10). None of these features were detected in P. pyralis (Appendix 4—

table 10). Chemical formula prediction was difficult due to the high m/z of the ions, but in

those cases where it was successful, the additions of nitrogens and/or phosphorus to the

chemical formula was confident. Notably, the most confident chemical formula predictions

reported �23 carbons, and as the core lucibufagin of P. pyralis contains 24 carbons, it is

unlikely that these ions derive from lucibufagins. The notable degree of MS2 similarity may

be due to the A. lateralis compounds also being steroid derived compounds. That being

said, the identity and role of the compound giving rise to ion 460.2462 is intriguing, as it is

highly abundant in the A. lateralis adult hemolymph, is absent from the P. pyralis adult

hemolymph, and is possibly a steroidal compound.

Appendix 4—table 10. Relative quantification of A. lateralis features identified by lucibufagin

MS2 similarity search
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Assigned
identity M/z

Chemical
formula

RT
(mins)

Similarity
score

# of ions
matched

A. lateralis
feature area
(arb)

P. pyralis
feature area
(arb)

Unknown 460.2462 C22H38NO7P*;
C25H29N7O2*

15.27 4.10E + 11 34 7.04E + 08 0.00E + 00

"" 657.2229 N.D. 12.01 9.50E + 11 29 6.13E + 07 ""

"" 414.2043 N.D. 18.07 1.20E + 11 25 5.61E + 06 ""

"" 381.2176 C23H28N2O3* 15.77 3.80E + 11 18 1.22E + 08 ""

"" 476.1839 N.D. 15.93 3.80E + 11 16 9.87E + 06 ""

"" 456.2148 N.D. 19 2.30E + 11 14 5.03E + 06 ""

"" 351.228 N.D. 19.42 2.60E + 11 13 1.56E + 07 ""

"" 479.1948 N.D. 19.83 2.20E + 11 12 1.11E + 07 ""

*Determined with Sirius (MS2 analysis), and MZmine2 (isotope pattern analysis).
N.D., Not determined

DOI: https://doi.org/10.7554/eLife.36495.082
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Appendix 5

DOI: https://doi.org/10.7554/eLife.36495.083

Microbiome analyses

5.1 Assembly and annotation of the complete Entomoplasma
luminosum subsp. pyralis genome
The complete genome of the molicute (Phylum: Tenericutes) Entomoplasma luminosum subsp.

pyralis was constructed by a long-read metagenomic sequencing and assembly approach from

the P. pyralis PacBio data. First, BUSCO v.3 with the bacterial BUSCO set was used to identify

those contigs from the PacBio only Canu assembly (Ppyr0.1-PB) which contained conserved

bacterial genes. A single 1.04 Mbp contig with 73 bacterial BUSCO genes was the only contig

identified with more than 1 BUSCO hit. Inspection of the Canu produced assembly graph with

Bandage v0.8.1 (Wick et al., 2015), revealed that the contig had a circular assembly path.

BLASTN alignment of the contig to the NCBI nt database indicated that this contig had a high

degree of similarity to annotated Mycoplasmal genomes. Together this data suggested that

this contig represented a complete Mycoplasmal genome. Polishing of the contig was

performed by mapping and PacBio consensus-calling using SMRTPortal v2.3.0.140893 with the

‘RS_Resequencing.1’ protocol with default parameters. The median coverage was ~50x. The

resulting consensus sequence was restarted with seqkit (Shen et al., 2016) to place the FASTA

record junction 180˚ across the circular chromosome, and reentered into the polishing process

to enable efficient mapping across the circular junction. This mapping, consensus calling, and

rotation process was repeated three times total, after which no additional nucleotide changes

occurred. The genome was ‘restarted’ with seqkit such that the FASTA start position began

between the ribosomal RNAs, and annotation was conducted through NCBI using their

prokaryotic gene annotation pipeline (PGAP). Analysis with BUSCO v.3 of the peptides

produced from the aforementioned genome annotation indicated that 89.8% of expected

Tenericutes single-copy conserved orthologs were captured in the annotation (C:89.8%

[S:89.8%,D:0.0%], F:2.4%, M:7.8%, n:166). Comparison of the predicted 16S RNA gene

sequence to the NCBI 16S RNA gene database indicated that this gene had 99% identity to

the E. luminosum 16S sequence (ATCC 49195 - formerly Mycoplasma luminosum; NCBI

Assembly ID ASM52685v1) (Kyrpides et al., 2014; Williamson et al., 1990), leading to our

description of this genome as the genome of Entomoplasma luminosum subspecies (subsp.)

pyralis. Protein overlap comparisons using the OrthoFinder pipeline (v1.1.10) (Emms and

Kelly, 2015) between our predicted protein geneset for E. luminosum var. pyralis and the

protein geneset of Entomoplasma luminosum (ATCC 49195 - formerly M. luminosum; NCBI

Assembly ID ASM52685v1), indicated that 94% (670/709) of the previously annotated E.

luminosum proteins are present in our genome of E. luminosum subsp. pyralis.

5.2 Assembly and annotation of Phorid mitochondrial genome
The complete mitochondrial genome of the dipteran parasatoid Apocephalus antennatus, first

detected via BLASTN of mtDNAs as a concatemerized sequence in the Canu PacBio only

assembly (Ppyr0.1-PB) was constructed in full by a long-read metagenomic sequencing and

assembly approach. First, PacBio reads were mapped to the NCBI set of mitochondrial

genomes concatenated with the P. pyralis mitochondrial genome assembly reported in this

manuscript (NCBI accession KY778696.1), using GraphMap v0.5.2 with parameters ‘align -C -t

4 -P’. Of the mitochondrially mapped reads (45949 reads), 98% (45267 reads) were partitioned

to the P. pyralis mtDNA. The next most abundant category at 1.1% (531 reads), was

partitioned to the mtDNA of the Phorid fly Megaselia scalaris (NCBI accession: KF974742.1).

The next most abundant category at 0.11% (53 reads) was partitioned to the mitochondrion of

the Red algae Galdieria sulphuraria (NCBI accession: NC_024666.1). The reads were then split

into three partitions: P. pyralis mapping, M. scalaris mapping, and other, and input into Canu

(v1.6+44) (Koren et al., 2017) for assembly. Each partitioned assembly by Canu produced a
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single circular contig, notably the ‘other’ and Megaselia partitions produced highly similar

sequences, whereas the P. pyralis partition produced a circular sequence that was highly

similar to the P. pyralis mtDNA. We inspected the M. scalaris partition further as it was

produced with more reads. Notably, although an inspection of the contig was circular, and

showed a high degree of similarity upon blastn to the M. scalaris mtDNA, the contig was ~2x

larger than expected (29,821 bp). An analysis of contig’s self-complementarity with Gepard

(v1.40) (Krumsiek et al., 2007), indicated that this contig had 2x tandem repetitive regions,

and was duplicated overall twice. Similarly, the. GFA output of Canu noted an overlap of

29,821, indicating that the assembler was unable to determine an appropriate overlap, other

than the entire contig. Manual trimming of the contig to the correct size, 180˚ restarting with

seqkit, and polishing using SMRTPortal v2.3.0.140893 with the ‘RS_Resequencing.1’ protocol

with default parameters, followed by 180˚ seqkit ‘restarting’, followed by another round of

polishing, produced the final mtDNA (18,674 bp; Appendix 5—figure 1). This mtDNA was

taxonomically identified in a separate analysis to originate from A. antennatus (Appendix 5.3).

Coding regions, tRNAs, and rRNAs were predicted via the MITOSv2 mitochondrial genome

annotation web server (Bernt et al., 2017). Small mis-annotations (e.g. low scoring additional

predictions of already annotated mitochondrial genes) were manually inspected and removed.

Tandem repetitive regions were manually annotated. The complete A. antennatus genome

annotation plus assembly is available on NCBI Genbank (Accession: MG546669).
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Appendix 5—figure 1. Mitochondrial genome of Apocephalus antennatus. The mitochondrial

genome of A. antennatus was assembled and annotated as described in the Appendix 5.2,
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and taxonomically identified as described in Appendix 5.3. Figure produced with Circos

(Krzywinski et al., 2009).

DOI: https://doi.org/10.7554/eLife.36495.084

5.3 Taxonomic identification of Phorid mitochondrial genome origin
After the successful metagenomic assembly of the mitochondrial genome of an unknown

Phorid fly species from the P. pyralis PacBio library (Appendix 5.2), we sought to characterize

the species of origin for this mitochondrial genome. We planned to achieve this by collecting

the Phorid flies which emerged from adult P. pyralis, taxonomically identifying them, and

performing targeted mitochondrial PCR and sequencing experiments to correlate their

mitochondrial genome sequence to our mtDNA assembly. We successfully obtained phorid fly

larvae emerging from P. pyralis adult males collected from MMNJ (identical field site to

PacBio collection), and Rochester, NY (RCNY), in the summer of 2017. The MMNJ phorid

larvae did not successfully pupate, however we obtained five adult specimens from successful

pupations of the RCNY larvae. Two adults from this batch were identified as A. antennatus

(Malloch), by Brian V. Brown, Entomology Curator of the Natural History Museum of Los

Angeles County. DNA was extracted from one of the remaining three specimens and a COI

fragment was PCR-amplified and Sanger sequenced. The forward primer was 5’-

TTTGATTCTTCGGCCACCCA-3’, the reverse primer 5’-AGCATCGGGGTAGTCTGAGT-3’. This

COI fragment from had 99% identity (558/563 nt) to the COI gene of our mitochondrial

assembly. This sequenced COI fragment has been submitted to GenBank (GenBank Accession:

MG517481). We conclude that this is sufficient evidence to denote that our assembled Phorid

mitochondrial genome is the mitochondrial genome of A. antennatus. Notably, A. antennatus

was previously reported by Lloyd (1973) to be a parasite of several firefly species in genera

Photuris, Photinus, and Pyractomena, from collection sites ranging from Florida to New York.

To our knowledge, this is the first report of a mitochondrial genome which was first assembled

via an untargeted metagenomic approach and then later correlated to its species of origin.

5.4 Photinus pyralis orthomyxo-like viruses
We identified the first two viruses associated to P. pyralis and the Lampyridae family. The

proposed Photinus pyralis orthomyxo-like virus 1 and 2 (PpyrOMLV1 and 2) present a

multipartite genome conformed by five RNA segments encoding a putative nucleoprotein

(NP), hemagglutinin-like glycoprotein (HA) and a heterotrimeric viral RNA polymerase (PB1,

PB2 and PA). The viral genomes for Photinus pyralis orthomyxo-like virus 1 and 2 are available

on NCBI Genbank with accessions MG972985-MG972994. Expression analyses on 24 RNA

libraries of diverse individuals/developmental stages/tissues and geographic origins of P.

pyralis indicate a dynamic presence, widespread prevalence, a pervasive tissue tropism, a low

isolate variability, and a persistent life cycle through transovarial transmission of PpyrOMLV1

and 2. Genomic and phylogenetic studies suggest that the detected viruses correspond to a

new lineage within the Orthomyxoviridae family (ssRNA(-)) (Appendix 5—figure 2A-I). The

concomitant occurrence in the P. pyralis genome of species-specific signatures of Endogenous

viral-like elements (EVEs) associated to retrotransposons linked to the identified

Orthomyxoviruses, suggest a past evolutionary history of host-virus interaction (Appendix 5.5,

Appendix 5—figure 2J). This tentative interface is correlated to low viral RNA levels,

persistence and no apparent phenotypes associated with infection. We suggest that the

identified viruses are potential endophytes of high prevalence as a result of potential

evolutionary modulation of viral levels associated to EVEs. Photinus pyralis orthomyxo-like

virus 1 and 2 (PpyrOMLV1 and PpyrOMLV2) share their genomic architecture and evolutionary

clustering (Appendix 5—figure 2A-H, Appendix 5—figure 3). They are multipartite linear

ssRNA negative strand viruses, conformed by five genome segments generating a ca. 10.8

Kbp total RNA genome. Genome segments one through three (ca. 2.3–2.5 Kbp long) encode

a heterotrimeric viral polymerase constituted by subunit Polymerase Basic protein 1 - PB1

(PpyrOMLV1: 801 aa, 91 kDA; PpyrOMLV2: 802 aa, 91.2 kDA), Polymerase Basic protein 2 -

PB2 (PpyrOMLV1: 804 aa, 92.6 kDA; PpyrOMLV2: 801 aa, 92.4 kDA) and Polymerase Acid
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protein - PA (PpyrOMLV1: 754 aa, 86.6 kDA; PpyrOMLV2: 762 aa, 87.9 kDA). PpyrOMLV1 and

PpyrOMLV2 PB1 present a Flu_PB1 functional domain (Pfam: pfam00602; PpyrOMLV1:

interval = 49–741, e-value = 2.93e-69; PpyrOMLV2: interval = 49–763, e-value = 1.42e-62)

which is the RNA-directed RNA polymerase catalytic subunit, responsible for replication and

transcription of virus RNA segments, with two nucleotide-binding GTP domains. PpyrOMLV1

and PpyrOMLV2 PB2 present a typical Flu_PB2 functional domain (Pfam: pfam00604;

PpyrOMLV1: interval = 26–421, e-value = 5.10e-13; PpyrOMLV2: interval = 1–692,

e-value = 1.57e-11) which is involved in 5’ end cap RNA structure recognition and binding to

further initiate virus transcription. PpyrOMLV1 and PpyrOMLV2 PA subunits share a

characteristic Flu_PA domain (Pfam: pfam00603; PpyrOMLV1: interval = 122–727,

e-value = 3.73e-07; PpyrOMLV2: interval = 117–732, e-value = 5.63e-10) involved in viral

endonuclease activity, necessary for the cap-snatching process (Guilligay et al., 2014).

Genome segment four (1.6 Kbp size) encodes a Hemaglutinin protein – HA (PpyrOMLV1: 526

aa, 59.7 kDA; PpyrOMLV2: 525 aa, 58.6 kDA) presenting a Baculo_gp64 domain (Pfam:

pfam03273; PpyrOMLV1: interval = 108–462, e-value = 2.16e-15; PpyrOMLV2: interval = 42–

460, e-value = 1.66e-23), associated with the gp64 glycoprotein from baculovirus as well as

other viruses, such as Thogotovirus (Orthomyxoviridae - OMV) which was postulated to be

related to the arthropod-borne nature of these specific Orthomyxoviruses. In addition, HA as

expected, presents an N-terminal signal domain, a C terminal transmembrane domain, and a

putative glycosylation site. Lastly, genome segment five (ca. 1.8 Kbp size) encodes a putative

nucleocapsid protein – NP (PpyrOMLV1: 562 aa, 62.3 kDA; PpyrOMLV2: 528 aa, 58.5 kDA)

with a Flu_NP structural domain (Pfam: pfam00506; PpyrOMLV1: interval = 145–322,

e-value = 1.32e-01; PpyrOMLV2: interval = 94–459, e-value = 1.47e-04) this single-strand

RNA-binding protein is associated to encapsidation of the virus genome for the purposes of

RNA transcription, replication and packaging (Appendix 5—figure 2E). Despite sharing

genome architecture and structural and functional domains of their predicted proteins,

PpyrOMLV1 and PpyrOMLV2 pairwise identity of ortholog gene products range between

21.4% (HA) to 49.8% (PB1), suggesting although a common evolutionary history, a strong

divergence indicating separated species, borderline to be considered even members of

different virus genera (Appendix 5—figure 3). The conserved 3’ sequence termini of the viral

genomic RNAs are (vgRNA ssRNA(-) 3’-end) 5’-GUUCUUACU-3’ for PpyrOMLV1, and and 5’-

(G/A)U(U/G)(G/U/C)(A/C/U)UACU-3’. for PpyrOMLV2. The 5’ termini of the vgRNAs are

partially complementary to the 3’ termini, supporting a panhandle structure and a hook like

structure of the 5’ end by a terminal short stem loop. PpyrOMLV1 and PpyrOMLV2 genome

segments present an overall high identity in their respective RNA segments ends

(Appendix 5—figure 2F). These primary and secondary sequence cues are associated to

polymerase binding and promotion of both replication and transcription. In influenza viruses,

and probably every OMV, the first 10 nucleotides of the 30 end form a stem-loop or ‘hook’

with four base-pairs (two canonical base-pairs flanked by an A-A base-pair). This compact RNA

structure conforms the promoter, which activates polymerase initiation of RNA synthesis

(Reich et al., 2017). The presence of eventual orthologs of OMV additional genome segments

and proteins, such as Neuraminidase (NA), Matrix (M) and Non-structural proteins (NS1, NS2)

was assessed retrieving no results by TBLASTN relaxed searches, nor with in silico approaches

involving co-expression, expression levels, or conserved terminis. Given that the presence of

those additional segments varies among diverse OMV genera, and that 35 related tentative

new virus species identified in TSA did not present any additional segments, we believe that

these lineages of viruses are conformed by five genome segments. Further experiments based

on specific virus particle purification and target sequencing could corroborate our results.

Based on sequence homology to best BLASTP hits, amino acid sequence alignments,

predicted proteins and domains, and phylogenetic comparisons to reported species we

assigned PpyrOMLV1 and PpyrOMLV2 to the OMV virus family. These are the first viruses that

have been associated with the Lampyridae beetle family, which includes over 2000 species.

The OMV virus members share diverse structural, functional and biological characters that

define and restrict the family. OMV virions are 80–120 nm in diameter, of spherical or

pleomorphic morphology. The virion envelope is derived from the host cell membrane,
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incorporating virus glycoproteins and eventually non-glycosylated proteins (one or two in

number). Typical virion surface glycoprotein projections are 10–14 nm in length and 4–6 nm in

diameter. The virus genome is multisegmented, has a helical-like symmetry, consisting of

different size ribonucleoproteins (RNP), 50–150 nm in length. Influenza RNPs can perform

either replication or transcription of the same template. Virions of each genus contain different

numbers of linear ssRNA (-) genome segments (King et al., 2011). Influenza A virus (FLUAV),

influenza B virus (FLUBV) and infectious salmon anemia virus (ISAV) are conformed of eight

segments. Influenza C virus (FLUCV), Influenza D virus (FLUDV) and Dhori virus (DHOV) have

seven segments. Thogoto virus (THOV) and Quaranfil virus (QUAV) have six segments.

Johnston Atoll virus (JAV) genome is still incomplete, and only two segments have been

described. Segment lengths range from 736 to 2396 nt. Genome size ranges from 10.0 to 14.6

Kbp (King et al., 2011). As described previously, every OMV RNA segment possess conserved

and partially complementary 50- and 30-end sequences with promoter activity (Hsu et al.,

1987). OMV structural proteins are tentatively common to all genera involving the three

polypeptides subunits that form the viral RdRP (PA, PB1, PB2) (Pflug et al., 2017); a

nucleoprotein (NP), which binds with each genome ssRNA segment to form RNPs; and the

hemagglutinin protein (HA, HE or GP), which is a type I membrane integral glycoprotein

involved in virus attachment, envelope fusion and neutralization. In addition, a non-

glycosylated matrix protein (M) is present in most species. There are some species-specific

divergence in some structural OMVs proteins. For instance, HA of FLUAV is acylated at the

membrane-spanning region and has widespread N-linked glycans (Eisfeld et al., 2015). The

HA protein of FLUCV, besides its hemagglutinating and envelope fusion function, has an

esterase activity that induces host receptor enzymatic destruction (King et al., 2011). In

contrast, the HA of THOV is divergent to influenzavirus HA proteins, and presents high

sequence similarity to a baculovirus surface glycoprotein (Leahy et al., 1997). The HA protein

has been described to have an important role in determining OMV host specificity. For

instance, human infecting Influenza viruses selectively bind to glycolipids that contain terminal

sialyl-galactosyl residues with a 2–6 linkage, in contrast, avian influenza viruses bind to sialyl-

galactosyl residues with a 2–3 linkage (King et al., 2011). Furthermore, FLUAV and FLUBV

share a neuraminidase protein (NA), which is an integral, type II envelope glycoprotein

containing sialidase activity. Some OMVs possess additional small integral membrane proteins

(M2, NB, BM2, or CM2) that may be glycosylated and have diverse functions. As an

illustration, M2 and BM2 function during un-coating and fusion by equilibrating the

intralumenal pH of the trans-Golgi apparatus and the cytoplasm. In addition, some viruses

encode two nonstructural proteins (NS1, NS2) (King et al., 2011). OMV share replication

properties, which have been studied mostly in Influenza viruses. It is important to note that

gene reassortment has been described to occur during mixed OMV infections, involving

viruses of the same genus, but not between viruses of different genera (Kimble, 2013). This is

used also as a criteria for OMV genus demarcation. Influenza virus replication and transcription

occurs in the cell nucleus and comprises the production of the three types of RNA species (i)

genomic RNA (vRNA) which are found in virions; (ii) cRNA molecules which are complementary

RNA in sequence and identical in length to vRNA; and also (iii) virus mRNA molecules which

are 5’ capped by cap snatching of host RNAs and 3’ polyadenylated by polymerase stuttering

on U rich stretches. These remarkable dynamic multifunction characters of OMV polymerases

are associated with its complex tertiary structure, of this modular heterotrimeric replicase

(Te Velthuis and Fodor, 2016). We explored in detail the putative polymerase subunits of the

identified firefly viruses. The PB1 subunit catalyzes RNA synthesis in its internal active site

opening, which is formed by the highly conserved polymerase motifs I-III. Motifs I and III

(Appendix 5—figure 2H) present three conserved aspartates (PpyrOMLV1: Asp 346, Asp 491

and Asp 492; PpyrOMLV2: Asp 348, Asp 495 and Asp 496) which coordinate and promote

nucleophilic attack of the terminal 3’ OH from the growing transcript on the alpha-phosphate

of the inbound NTP (Pflug et al., 2017). Besides presenting, with high confidence, the

putative functional domains associated with their potential replicase/transcriptase function, we

assessed whether the potential spatial and functional architecture was conserved at least in

part in FOML viruses. In this direction we employed the SWISS-MODEL automated protein
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structure homology-modelling server to generate a 3D structure of PpyrOMLV1 heterotrimeric

polymerase. The SWISS server selected as best-fit template the trimeric structure of Influenza

A virus polymerase, generating a structure for each polymerase subunit of PpyrOMLV1. The

generated structure shared structural cues related to its multiple role of RNA nucleotide

binding, endonuclease, cap binding, and nucleotidyl transferase (Appendix 5—figure 2G-H).

The engendered subunit structures suggest a probable conservation of PpyrOMLV1 POL, that

could allow the predicted functional enzymatic activity of this multiple gene product. The

overall polymerase rendered structure presents a typical U shape with two upper protrusions

corresponding to the PA endonuclease and the PB2 cap-binding domain. The PB1 subunit

appears to plug into the interior of the U and has the distinctive fold of related viral RNA

polymerases with fingers, palm and thumb adjacent to a tentative central active site opening

where RNA synthesis may occur (Reich et al., 2017; Hengrung et al., 2015). OMV Pol activity

is central in the virus cycle of OMVs, which have been extensively studied. The life cycle of

OMVs starts with virus entry involving the HA by receptor-mediated endocytosis. For

Influenza, sialic acid bound to glycoproteins or glycolipids function as receptor determinants

of endocytosis. Fusion between viral and cell membranes occurs in endosomes. The infectivity

and fusion of influenza is associated to the post-translational cleavage of the virion HA.

Cleavability depends on the number of basic amino acids at the target cleavage site

(King et al., 2011). In thogotoviruses, no requirement for HA glycoprotein cleavage have

been demonstrated (Leahy et al., 1997). Integral membrane proteins migrate through the

Golgi apparatus to localized regions of the plasma membrane. New virions form by budding,

incorporating matrix proteins and viral RNPs. Viral RNPs are transported to the cell nucleus

where the virion polymerase complex synthesizes mRNA species (Hara et al., 2017). Another

tentative function of the NP could be associated to the potential interference of the host

immune response in the nucleus mediated by capsid proteins of some RNA virus, which could

inhibit host transcription and thus liberate and direct it to viral RNA synthesis (Wulan et al.,

2015). mRNA synthesis is primed by capped RNA fragments 10–13 nt in length that are

generated by cap snatching from host nuclear RNAs which are sequestered after cap

recognition by PB2 and incorporated to vRNA by PB1 and PA proteins which present viral

endonuclease activity (Sikora et al., 2017). In contrast, thogotoviruses have capped viral

mRNA without host-derived sequences at the 50 end. Virus mRNAs are polyadenylated at the

30 termini through iterative copying by the viral polymerase stuttering on a poly U track in the

vRNA template. Some OMV mRNAs are spliced generating alternative gene products with

defined functions. Protein synthesis of influenza viruses occurs in the cytoplasm. Partially

complementary vRNA molecules act as templates for new viral RNA synthesis and are neither

capped nor polyadenylated. These RNAs exist as RNPs in infected cells. Given the diverse

hosts of OMV, biological properties of virus infection diverge between species.

Influenzaviruses A infect humans and cause respiratory disease, and they have been found to

infect a variety of bird species and some mammalian species. Interspecies transmission,

although rare, is well documented. Influenza B virus infect humans and cause epidemics, and

have been rarely found in seals. Influenzaviruses C cause limited outbreaks in humans and have

been occasionally found on dogs. Influenza spreads globaly in a yearly outbreak, resulting in

about three to five million cases of severe illness and about 250,000 to 500,000 human deaths

(Thompson et al., 2009). Influenzavirus D has been recently reported and accepted and

infects cows and swine (Hause et al., 2013). Natural transmission of influenzaviruses is by

aerosol (human and non-aquatic hosts) or is water-borne (avians). In contrast, Thogoto and

Dhori viruses which also infect humans, are transmitted by, and able to replicate in ticks.

Thogoto virus was identified in Rhipicephalus sp. ticks collected from cattle in the Thogoto

forest in Kenya, and Dhori virus was first isolated in India from Hyalomma dromedarri, a

species of camel ticks (Anderson and Casals, 1973; Haig et al., 1965). Dhori virus infection in

humans causes a febrile illness and encephalitis. Serological evidence suggests that cattle,

camel, goats, and ducks might be also susceptible to this virus. Experimental hamster infection

with THOV may be lethal. Unlike influenzaviruses, these viruses do not cause respiratory

disease. The transmission of fish infecting isaviruses (ISAV) is via water, and virus infection

induces the agglutination of erythrocytes of many fish species, but not avian or mammalian
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erythrocytes (Mjaaland et al., 1997). Quaranfil and Johnston Atoll are transmitted by ticks and

infect avian species (Presti et al., 2009).

We have limited biological data of the firefly detected viruses. Nevertheless, a significant

consistency in the genomic landscape and predicted gene products of the detected viruses in

comparison with accepted OMV species sufficed to suggest for PpyrOMLV1 and PpyrOMLV2

a tentative taxonomic assignment within the OMV family. Besides relying on the OMV

structural and functional signatures determined by virus genome annotation, we explored the

evolutionary clustering of the detected viruses by phylogenetic insights. We generated MAFFT

alignments and phylogenetic trees of the predicted viral polymerase of firefly viruses and the

corresponding replicases of all 493 proposed and accepted species of ssRNA(-) virus. The

generated trees consistently clustered the diverse sequences to their corresponding

taxonomical niche, at the level of genera. Interestingly, PpyrOMLV1 and PpyrOMLV2

replicases were placed unequivocally within the OMV family (Appendix 5—figure 2B). When

the genetic distances of firefly viruses proteins and ICTV accepted OMV species were

computed, a strong similarity was evident (Appendix 5—figure 2B-D). Overall similarity levels

of PpyrOMLV polymerase subunits ranged between 11.03% to as high as 37.30% among

recognized species, while for the more divergent accepted OMV (ISAV - Isavirus genus) these

levels ranged only from 8.54% to 20.74%, illustrating that PpyrOMLV are within the OMV by

genetic standards. Phylogenetic trees based on aa alignments of structural gene products of

recognized species and PpyrOMLV supported this assignment, placing ISAV and issavirus as

the most distant species and genus within the family, and clustering PpyrOMLV1 and

PpyrOMLV2 in a distinctive lineage within OMV, more closely related to the Quaranjavirus and

Thogotovirus genera than the Influenza A-D or Isavirus genera (Appendix 5—figure 3).

Furthermore, it appears that virus genomic sequence data, while it has been paramount to

separate species, in the case of genera, there are some contrasting data that should be taken

into consideration. For instance, DHOV and THOV are both members of the Thogotovirus

genus, sharing a 61.9% and a 34.9% identity at PB1 and PB2, respectively. However, FLUCV

and FLUDV are assigned members of two different genus, Influenzavirus C and Influenzavirus

D, while sharing a higher 72.2% and a 52.2% pairwise identity at PB1 and PB2, respectively

(Appendix 5—figure 3). In addition, FLUAV and FLUBV, assigned members of two different

genus, Influenzavirus A and Influenzavirus D present a comparable identity to that of DHOV

and THOV thogotoviruses, sharing a 61% and a 37.9% identity at PB1 and PB2, respectively. It

is worth noting that similarity thresholds and phylogenetic clustering based in genomic data

have been used differently to demarcate OMV genera, hence there is a need to eventually re-

evaluate a series of consensus values, which in addition to biological data, would be useful to

redefine the OMV family. Perhaps, these criteria discrepancies are more related to a historical

evolution of the OMV taxonomy than to pure biological or genetic standards. In contrast to

FLUDV, JOV and QUAV, the other virus members of OMV have been described, proposed

and assigned at least 34 years ago.

The potential prevalence, tissue/organ tropism, geographic dispersion and lifestyle of

PpyrOMLV1 and 2 were assessed by the generation and analyses of 29 specific RNA-Seq

libraries of P. pyralis (Appendix 1—table 1). As RNA was isolated from independent P. pyralis

individuals of diverse origin, wild caught or lab reared, the fact that we found at least one of

the PpyrOMLV present in 82% of the libraries reflects a widespread presence and potentially a

high prevalence of these viruses in P. pyralis (Appendix 5—figure 2J, Appendix 5—table 3,

S5.4.6). Wild caught individuals were collected in period spanning six years, and locations

separated as much as 900 miles (New Jersey – Georgia, USA). Interestingly PpyrOMLV1 and 2

were found in individuals of both location, and the corresponding assembled isolate virus

sequences presented negligible differences, with an inter-individual variability equivalent to

that of isolates (0.012%). A similar result was observed for virus sequences identified in RNA

libraries generated from samples collected in different years. We were not able to identified

fixed mutations associated to geographical or chronological cues. Further experiments should

explore the mutational landscape of PpyrOMLV1 and 2, which appears to be significantly

lower than of Influenzaviruses, specifically Influenza A virus, which are characterized by high

mutational rate (ca. one mutation per genome replication) associated to the absence of RNA
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proofreading enzymes (Pauly et al., 2017). In addition we evaluated the presence of

PpyrOMLV1 and 2 on diverse tissues and organs of P. pyralis. Overall virus RNA levels were

generally low, with an average of 9.47 FPKM on positive samples. However, PpyrOMLV1 levels

appear to be consistently higher than PpyrOMLV2, with an average of 20.50 FPKM for

PpyrOMLV1 versus 4.22 FPKM for PpyrOMLV2 on positive samples. When the expression

levels are scrutinized by genome segment, HA and NP encoding segments appear to be, for

both viruses, at higher levels, which would be in agreement with other OMV such as

Influenzaviruses, in which HA and NP proteins are the most expressed proteins, and thus viral

mRNAs are consistently more expressed (King et al., 2011). Nevertheless, these preliminary

findings related to expression levels should be taken cautiously, given the small sample size.

Perhaps, the more remarkable allusion derived from the analyses of virus presence is related

to tissue and organ deduced virus tropism. Strikingly, we found virus transcripts in samples

exclusively obtained from light organs, complete heads, male or female thorax, female

spermatheca, female spermatophore digesting glands and bursa, abdominal fat bodies, male

reproductive spiral gland, and other male reproductive accessory glands (Appendix 5—table

3, S5.4.6), indicating a widespread tissue/organ tropism of PpyrOMLV1 and 2. This tentatively

pervasive tropism of PpyrOMLV1 and 2 emerges as a differentiation character of these viruses

and accepted OMV. For instance, influenza viruses present a epithelial cell-specific tropism,

restricted typically to the nose, throat, and lungs of mammals, and intestines of birds. Tropism

has consequences on host restriction. Human influenza viruses mainly infect ciliated cells,

because attachment of all influenza A virus strains to cells requires sialic acids. Differential

expression of sialic acid residues in diverse tissues may prevent cross-species or zoonotic

transmission events of avian influenza strains to man (Zeng et al., 2013). Tropism has also

influence in disease associated effects of OMV. Some influenza A virus strains are more

present in tracheal and bronchial tissue which is associated with the primary lesion of

tracheobronchitis observed in typical epidemic influenza. Other influenza A virus strains are

more prevalent in type II pneumocytes and alveolar macrophages in the lower respiratory

tract, which is correlated to diffuse alveolar damage with avian influenza (Mansfield, 2007).

The presence of PpyrOMLV1 and 2 virus RNA in reproductive glands raises some potential of

the involvement of sex in terms of prospective horizontal transmission. Given that most

libraries corresponded to 3–6 pooled individuals samples of specific organs/tissue, direct

comparisons of virus RNA levels were not always possible. However, this valuable data gives

important insights into the widespread potential presence of the viruses in every analyzed

organ/tissue. Importantly, RNA levels of the putative virus segments shared co-expression

levels and a systematic pattern of presence/absence, supporting the suggested multipartite

nature of the viruses. We observed the presence of virus RNA of both PpyrOMLV1 and 2 in

eight of the RNA-Seq libraries, thus mixed infections appear to be common. Interestingly, we

did not observe in any of the 24 virus positive samples evidence of reassortment.

Reassortment is a common event in OMV, a process by which influenza viruses swap gene

segments. Genetic exchange is possible due to the segmented nature of the OMV viral

genome and may occur during mixed infections. Reassortment generates viral diversity and

has been associated to host gain of Influenzavirus (Steel and Lowen, 2014). Reassorted

Influenzavirus have been reported to occasionally cross the species barrier, into birds and

some mammalian species like swine and eventually humans. These infections are usually dead

ends, but sporadically, a stable lineage becomes established and may spread in an animal

population (Kimble, 2013). Besides its evolutionary role, reassortment has been used as a

criterion for species/genus demarcation, thus the lack of observed gene swap in our data

supports the phylogenetic and sequence similarity insights that indicates species separation of

PpyrOMLV1 and 2.

In light of the presence of virus RNA in reproductive glands, we further explored the

potential life style of PpyrOMLV1 and 2 related to eventual vertical transmission. Vertical

transmission is extremely exceptional for OMV, and has only been conclusively described for

the Infectious salmon anemia virus (Isavirus) (Marshall et al., 2014). In this direction, we were

able to generate a strand-specific RNA-Seq library of one P. pyralis adult female PpyrOMLV1

virus positive (parent), another library from seven eggs of this female at ~13 days post
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fertilization, and lastly an RNA-Seq library of four 1 st instar larvae (offspring). When we

analyzed the resulting RNA reads, we found as expected virus RNA transcripts of every

genome segment of PpyrOMLV1 in the adult female library. Remarkably, we also found

PpyrOMLV1 sequence reads of every genome segment of PpyrOMLV1 in both the eggs and

larvae samples. Moreover, virus RNA levels fluctuated among the different developmental

stages of the samples. The average RNA levels of the adult female were 41.10 FPKM, in

contrast, the fertilized eggs sample had higher levels of virus related RNA, averaging at 61.61

FPKM and peaking at the genome segment encoding NP (104.49 FPKM). Interestingly, virus

RNA levels appear to drop in first instar larvae, in the sequenced library average virus RNA

levels were of 10.42 FPKM. Future experiments should focus on PpyrOMLV1 and 2 virus titers

at extended developmental stages to complement these preliminary results. However, it is

interesting to note that the tissue specific library corresponding to female spermatheca, where

male sperm are stored prior to fertilization, presented relatively high levels of both

PpyrOMLV1 and 2 virus RNAs, suggesting that perhaps during early reproductive process and

during egg development virus RNAs tend to raise. This tentatively differential and variable

virus RNA titers observed during development could be associated to an unknown mechanism

of modulation of latent antiviral response that could be repressed in specific life cycle stages.

Further studies may validate these results and unravel a mechanistic explanation of this

phenomenon. Nevertheless, besides the preliminary developmental data, the consistent

presence of PpyrOMLV1 in lab-reared, isolated offspring of an infected P. pyralis female is

robust evidence demonstrating mother-to-offspring vertical transmission for this newly

identified OMV.

One of many questions that remains elusive here is whether PpyrOMLV1 and 2 are

associated with any potential alteration of phenotype of the infected host. We failed to unveil

any specific effect of the presence of PpyrOMLV1 and 2 on fireflies. It is worth noting that

subtle alterations or symptoms would be difficult to pinpoint in these insects. Future studies

should enquire whether PpyrOMLV1 and 2 may have any influence in biological attributes of

fireflies such as fecundity, life span or life cycle. Nevertheless, we observed in our data some

hints that could be indicative of a chronic state status, cryptic or latent infection of firefly

individuals: (i) virus positive individuals presented in general relatively low virus RNA levels. (ii)

virus RNA was found in every assessed tissue/organ. (iii) vertical transmission of the identified

viruses. The first hint is hardly conclusive, it is difficult to define what a relatively low RNA level

is, and high virus RNA loads are not directly associated with disease on reported OMV. The

correlation of high prevalence, prolonged host infection, and vertical transmission observed in

several new mosquito viruses has resulted in their classification as ‘commensal’ microbes. A

shared evolutionary history of viruses and host, based in strategies of immune evasion of the

viruses and counter antiviral strategies of the host could occasionally result in a modulation of

viral loads and a chronic but latent state of virus infection (Hall et al., 2016).
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Appendix 5—figure 2. Photinus pyralis viruses and endogenous viral-like elements. (A)

Phylogenetic tree based in MAFFT alignments of predicted replicases of Orthomyxoviridae

(OMV) ICTV accepted viruses (green stars), new Photinus pyralis viruses (underlined) and

tentative OMV-like virus species (black stars). ICTV recognized OMV genera: Quaranjavirus

(orange), Thogotovirus (purple), Issavirus (turquoise), Influenzavirus A-D (green). Silhouettes

correspond to host species. Asterisk denote FastTree consensus support >0.5. Question marks

depict viruses with unidentified or unconfirmed host. (B) Phylogenetic tree of OMV proposed

and recognized species in the context of all ssRNA (-) virus species, based on MAFFT

alignments of refseq replicases. Photinus pyralis viruses are portrayed by black stars. (C)

Phylogenetic tree of ICTV recognized OMV species and PpyrOMLV1 and 2. Numbers indicate

FastTree consensus support. (D) Genetic distances of concatenated gene products of OMV

depicted as circoletto diagrams. Proteins are oriented clockwise in N-HA-PB1-PB2-PA order
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when available. Sequence similarity is expressed as ribbons ranging from blue (low) to red

(high). (E) Genomic architecture, predicted gene products and structural and functional

domains of PpyrOLMV1 and 2. (F) Virus genomic noncoding termini analyses of PpyrOLMV1

and 2 in the context of ICTV OMV. The 3’ and 5’ end, A and U rich respectively, partially

complementary sequences are associated to tentative panhandle polymerase binding and

replication activity, typical of OMV. (G) 3D renders of the heterotrimeric polymerase of

PpyrOMLV1 based on Swiss-Expasy generated models using as template the Influenza A virus

polymerase structure. Structure comparisons were made with the MatchAlign tool of the

Chimera suite, and solved in PyMOL. (H) Conserved functional motifs of PpyrOLMV1 and 2

PB1 and related viruses. Motif I-III are essential for replicase activity of viral polymerase. (I)

Dynamic and prevalent virus derived RNA levels of the corresponding PpyrOMLV1 and 2

genome segments, determined in 24 RNA libraries of diverse individuals/developmental

stages/tissues and geographic origins. RNA levels are expressed as normalized TPM,

heatmaps were generated by Shinyheatmap. Values range from low (green) to high (red). (J)

Firefly EVEs (FEVEs) identified in the P. pyralis genome assembly mapped to the

corresponding pseudo-molecules. A 15 Kbp region flanking nucleoprotein like FEVES are

depicted, enriched in transposable elements. Representative products of a putative PB2 FEVE

are aligned to the corresponding protein of PpyrOMLV 2.

DOI: https://doi.org/10.7554/eLife.36495.085
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Appendix 5—figure 3. Pairwise identity of OMLV viral proteins amongst identified OMLV

viruses.

DOI: https://doi.org/10.7554/eLife.36495.086
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Appendix 5—table 1. Best hits from BLASTP of PpyrOMLV proteins against the NCBI database

Genome
segment

Size
(nt)

Gene
product (aa) Best hit

Best hit
taxonomy

Query
cover E value Identity

PpyrOMLV1-
PB1

2510 801 PB1 Wuhan
Mothfly Virus

Orthomyxoviridae 83% 0.0 51%

PpyrOMLV1-
PA

2346 754 PA Hubei ear-
wig
virus 1

Orthomyxoviridae 98% 4.00E-
137

35%

PpyrOMLV1-
HA

1667 526 HA Tjuloc virus Orthomyxoviridae 91% 9.00E-
25

25%

PpyrOMLV1-
PB2

2517 804 PB2 Hubei
earwig virus
1

Orthomyxoviridae 91% 3.00E-
118

31%

PpyrOMLV1-
N

1835 562 N Hubei
earwig virus
1

Orthomyxoviridae 93% 8.00E-
74

30%

PpyrOMLV2-
PB1

2495 802 PB1 Hubei ortho-
myxo-
like virus 1

Orthomyxoviridae 93% 0.0 48%

PpyrOMLV2-
PA

2349 762 PA Hubei ear-
wig virus 1

Orthomyxoviridae 98% 1.00E-
107

31%

PpyrOMLV2-
HA

1668 525 HA Wellfleet Bay
virus

Orthomyxoviridae 82% 3.00E-
40

26%

PpyrOMLV2-
PB2

2506 801 PB2 Hubei ear-
wig virus 1

Orthomyxoviridae 96% 3.00E-
86

27%

PpyrOMLV2-
N

1738 528 N Hubei ear-
wig virus 1

Orthomyxoviridae 95% 6.00E-
82

32%

DOI: https://doi.org/10.7554/eLife.36495.087

Appendix 5—table 2. InterProScan domain annotation of PpyrOMLV proteins.

Genome
product Annotation Start End Length Database Id InterPro ID InterPro name

PpyrOMLV1
-PB1

Flu_PB1 48 752 705 PFAM PF00602 IPR001407 RNA_pol_PB1_
influenza

RDRP
_SSRNA

330 529 200 PROSITE_
PROFILES

PS50525 IPR007099 RNA-dir_pol_
NSvirus

PpyrOMLV2
-PB1

Flu_PB1 54 766 713 PFAM PF00602 IPR001407 RNA_pol_PB1_
influenza

RDRP
_SSRNA

337 539 203 PROSITE_
PROFILES

PS50525 IPR007099 RNA-dir_pol_
NSvirus

PpyrOMLV1
-PB2

Flu_PB2 13 421 409 PFAM PF00604 IPR001591 RNA_pol_PB2_
orthomyxovir

PpyrOMLV2
-PB2

Flu_PB2 13 415 403 PFAM PF00604 IPR001591 RNA_pol_PB2_
orthomyxovir

PpyrOMLV1
-HA

SignalP-
noTM

1 19 19 SIGNALP_
EUK

SignalP-
noTM

Unintegrated

Baculo
_gp64

108 432 325 PFAM PF03273 IPR004955 Baculovirus_
Gp64

PpyrOMLV2
-HA

SignalP-
noTM

1 21 21 SIGNALP_
EUK

SignalP-
noTM

Unintegrated

Baculo
_gp64

66 426 361 PFAM PF03273 IPR004955 Baculovirus_
Gp64

PpyrOMLV1
-PA

Flu_PA 663 736 74 PFAM PF00603 IPR001009 RNA-dir_pol_
influenzavirus

Appendix 5—table 2 continued on next page
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Appendix 5—table 2 continued

Genome
product Annotation Start End Length Database Id InterPro ID InterPro name

PpyrOMLV2
-PA

Flu_PA 667 740 74 PFAM PF00603 IPR001009 RNA-dir_pol_
influenzavirus

PpyrOMLV1
-PB1

flu NP-like 94 459 366 SUPER
FAMILY

SSF161003 Unintegrated

PpyrOMLV2
-PB1

flu NP-like 363 483 121 SUPER
FAMILY

SSF161003 Unintegrated

DOI: https://doi.org/10.7554/eLife.36495.088

5.5 P. pyralis Endogenous virus-like Elements (EVEs)
To gain insights on the potential shared evolutionary history of P. pyralis and the IOMV

PpyrOMLV1 and 2, we examined our assembly of P. pyralis for putative signatures or

paleovirological traces (Ballinger et al., 2014; Metegnier et al., 2015; Feschotte and

Gilbert, 2012) that would indicate ancestral integration of virus related sequences into the

firefly host. Remarkably, we found Endogenous virus-like Elements (EVEs) (Katzourakis and

Gifford, 2010), sharing significant sequence identity with most PpyrOMLV1 and 2 genome

segments, spread along four P. pyralis linkage-groups. Virus integration into host genomes is

a frequent event derived from reverse transcribing RNA viruses (Retroviridae). Retroviruses

are the only animal viruses that depend on integration into the genome of the host cell as an

obligate step in their replication strategy (Temin, 1985). Viral infection of germ line cells may

lead to viral gene fragments or genomes becoming integrated into host chromosomes and

subsequently inherited as host genes.

Animal genomes are paved by retrovirus insertions (Bushman et al., 2005). These

insertions, which are eventually eliminated from the host gene pool within a few generations,

and may, in some cases, increase in frequency, and ultimately reach fixation. This fixation in

the host species can be mediated by drift or positive selection, depending on their selective

value. On the other hand, genomic integration of non-retroviral viruses, such as PpyrOMLV1

and 2, is less common. Viruses with a life cycle characterized by no DNA stage, such as OMV,

do not encode a reverse transcriptase or integrase, thus are not retro transcribed nor

integrated into the host genome. However, exceptionally and recently, several non-retroviral

sequences have been identified on animal genomes; these insertions have been usually

associated with the transposable elements machinery of the host, which provided a means to

genome integration (Gilbert and Cordaux, 2017; Palatini et al., 2017). Interestingly, when

we screened our P. pyralis genome assembly Ppyr1.2 by BLASTX searches (E-value <1e10�6)

of PpyrOMLV1 and 2 genome segments, we identified several genome regions that could be

defined as Firefly EVEs, which we termed FEVEs (Appendix 5—figure 2J; Appendix 5—

table 5-8). We found 30 OMV related FEVEs, which were mostly found in linkage group one

(LG1, 83% of pinpointed FEVEs). The majority of the detected FEVEs shared sequence

identity to the PB1 encoding region of genome segment one of PpyrOMLV1 and 2 (ca. 46%

of FEVEs; Appendix 5—table 5), followed by NP encoding genome segment five (ca. 33% of

detected FEVEs; Appendix 5—table 8). In addition we identified four FEVEs related to

genome segment three (PA region; Appendix 5—table 7) and two FEVEs associated to

genome segment two (PB2 encoding region; Appendix 5—table 6). We found no evidence

of FEVEs related to the hemagglutinin coding genome segment four (HA) via BLASTX. The

detected P. pyralis FEVEs represented truncated fragments of virus like sequences, generally

presenting frameshift mutations, early termination codons, lacking start codons, and sharing

diverse mutations that altered the potential translation of eventual gene products. FEVEs

shared sequence similarity to the coding sequence of specific genome segments of the

cognate FOLMV. We generated best/longest translation products of the corresponding

FEVEs, which presented an average length of ca. 21.86% of the corresponding PpyrOMLV

genome segment encoding gene region (Appendix 5—table 5-5.5.5), and an average

pairwise identity to the FOLMV virus protein of 55.08%. Nevertheless, we were able to
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identify FEVEs that covered as high as ca. 60% of the corresponding gene product, and in

addition, although at specific short protein regions of the putative related FOLMV, similarity

values were as high as 89% pairwise identity. In addition, most of the detected FEVEs were

flanked by Transposable Elements (TE) (Appendix 5—figure 2J) suggesting that integration

followed ectopic recombination between viral RNA and transposons. We found several

conserved domains associated to reverse transcriptases and integrases adjacent to the

corresponding FEVEs, which supports the hypothesis that these virus-like elements could be

reminiscent of an OMV-like ancestral virus that could have been integrated into the genome

by occasional sequestering of viral RNAs by the TE machinery. The finding of EVEs in the P.

pyralis genome is not trivial, OMV EVEs are extremely rare. There has been only one report

of OMV like sequences integrated into animal host genomes, which is the case of Ixodes

scapularis, the putative vector of Quaranfil virus and Johnston Atoll virus corresponding to

genus Quaranjavirus (Katzourakis and Gifford, 2010). The fact that besides FEVEs, the only

other OMV EVE corresponded to an Arthropod genome, given the ample studies of bird and

mammal genomes, is suggestive that perhaps OMV EVEs are restricted to Arthropod hosts.

Sequence similarity of FEVEs and firefly viruses suggest that these viral ‘molecular fossils’

could have been tightly associated to PpyrOLMV1 and 2 ancestors. Moreover, we found

potential NP and PB1 EVEs in our genome of light emitting click beetle Ignelater luminosus

(Elateridae), an evolutionary distant coleoptera. Sequence similarity levels of the

corresponding EVEs averaging 52%, could not be related with evolutionary distances of the

hosts. We were not able to generate conclusive phylogenetic insights of the detected EVEs,

given their partial, truncated and altered nature of the virus like sequences. In specific cases

such as PB1-like EVEs there appears to be a trend suggesting an indirect relation between

sequence identity and evolutionary status of the firefly host, but this preceding findings

should be taken cautiously until more gathered data is available. The widespread presence

of DNA sequences significantly similar to OMV in the explored firefly and related genomes

are an interesting and intriguing result. At this stage is prudently not to venture to suggest

more likely one of the two plausible explanations of the presence of these sequences in

related beetles genomes: (i) Ancestral OMV like virus sequences were retrotranscribed and

incorporated to an ancient beetle, followed by speciation and eventual stabilization or lost of

EVEs in diverse species. (ii) Recent and recursive integration of OMV like virus sequences in

fireflies and horizontal transmission between hosts. These propositions are not mutually

exclusive, and may be indistinctly applied to specific cases. Future studies should enquire in

this genome dark matter to better understand this interesting phenomenon. When more

data is available EVE sequences may be combined with phylogenetic data of host species to

expose eventual patterns of inter-class virus transmission. Either way, more studies are

needed to explore these proposals, Katzourakis and Gifford (Katzourakis and Gifford,

2010) suggested that EVEs could reveal novel virus diversity and indicate the likely host

range of virus clades.

After identification and confirmation that firefly related EVEs are present in the host DNA

genome, an obvious question follows: Are these EVEs just signatures of an evolutionary

vestige of stochastic past infections; or could they be associated with an intrinsic function? It

has been suggested that intensity and prevalence of infection may be a determinant of EVEs

integration, and that exposure to environmental viruses may not (Olson and Bonizzoni,

2017). Previous reports have suggested that EVEs may firstly function as restriction factors in

their hosts by conferring resistance to infection by exogenous viruses, and the eventual

counter-adaptation of virus populations of EVE positive hosts, could reduce the EVE

restriction mechanism to a non-functional status (Aiewsakun and Katzourakis, 2015).

Recently, in mosquitoes, a new mechanism of antiviral immunity against RNA viruses has

been proposed, relying in the production and expression of EVEs DNA (Goic et al., 2016).

Alternatively, eventual EVE expression could lend to the production viral like truncated

proteins that may compete in trans with virus proteins from infecting viruses and limit viral

replication, transcription or virion assembly (Aaskov et al., 2006). In addition, integration

and eventual modulation in the host genome may be associated with an interaction between

viral RNA and the mosquito RNAi machinery (Goic et al., 2013). The piRNA pathway

Fallon et al. eLife 2018;7:e36495. DOI: https://doi.org/10.7554/eLife.36495 140 of 146

Research article Genetics and Genomics

https://doi.org/10.7554/eLife.36495


mediates through small RNAs and Piwi-Argonaut proteins the repression of TE-derived

nucleic acids based on sequence complementarity, and has also been associated to

regulation of arbovirus viral-related RNA, suggesting a functional connection among

resistance mechanisms against RNA viruses and TEs (Palatini et al., 2017; Miesen et al.,

2016). Furthermore, arbovirus EVEs have been linked to the production of viral-derived

piRNAs and virus-specific siRNA, inducing host cell immunity without limiting viral

replication, supporting persistent and chronic infection (Goic et al., 2016). Perhaps, an EVE-

dependent mechanism of modulation of virus infection could have some level of

reminiscence to the paradigmatic CRISPR/Cas system which mediates bacteriophage

resistance in prokaryotic hosts.

In sum, genomic studies are a great resource for the understanding of virus and host

evolution. Here, we glimpsed an unexpected hidden evolutionary tale of firefly viruses and

related FEVEs. Animal genomes appear to reflect as a book, with many dispersed sentences,

an antique history of ancestral interaction with microbes, and EVEs functioning as virus

related bookmarks. The exponential growth of genomic data would help to further

understand this complex and intriguing interface, in order to advance not only in the

apprehension of the phylogenomic insights of the host, but also explore a multifaceted and

dynamic virome that has accompanied and even might have shifted the evolution of the host.
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Appendix 5—table 5. FEVE hits from BLASTX of PpyrOMLV PB1.

Scaffold Start End Strand
Id with
PpOMLV E value Coverage FEVE

Ppyr1.2_LG1 12787323 12786796 (-) 56.30% 8.22E-
50

39.10% EVE PB1 like-1

Ppyr1.2_LG1 13016647 13016120 (-) 56.30% 8.22E-
50

39.10% EVE PB1 like-2

Ppyr1.2_LG1 34701480 34701560 (+) 37.00% 2.88E-
26

26.70% EVE PB1 like-3

Ppyr1.2_LG1 34701562 34701774 (+) 37.60% 2.88E-
26

30.20% EVE PB1 like-3

Ppyr1.2_LG1 34701801 34702214 (+) 45.30% 2.88E-
26

34.00% EVE PB1 like-3

Ppyr1.2_LG1 35094645 35095094 (+) 28.10% 2.15E-
10

9.50% EVE PB1 like-4

Ppyr1.2_LG1 35110084 35109956 (-) 53.50% 2.37E-
14

4.40% EVE PB1 like-5

Ppyr1.2_LG1 35110214 35110107 (-) 75.00% 2.37E-
14

14.70% EVE PB1 like-5

Ppyr1.2_LG1 35110347 35110213 (-) 42.60% 2.37E-
14

2.90% EVE PB1 like-5

Ppyr1.2_LG1 50031464 50031330 (-) 64.40% 1.18E-
09

10.00% EVE PB1 like-6

Ppyr1.2_LG1 50031498 50031457 (-) 71.40% 1.18E-
09

11.60% EVE PB1 like-6

Ppyr1.2_LG1 50613130 50612921 (+) 49.40% 3.71E-
11

4.90% EVE PB1 like-7

Ppyr1.2_LG1 50673211 50673621 (+) 38.50% 1.03E-
12

9.70% EVE PB1 like-8

Ppyr1.2_LG1 51208464 51207634 (-) 77.20% 0 56.40% EVE PB1 like-9

Ppyr1.2_LG1 51209399 51208467 (-) 68.50% 0 53.60% EVE PB1 like-9

Ppyr1.2_LG1 51209556 51209398 (-) 71.70% 0 39.20% EVE PB1 like-9

Ppyr1.2_LG1 61871682 61872158 (+) 31.10% 2.84E-
23

36.00% EVE PB1 like-
10

Ppyr1.2_LG1 61872158 61872319 (+) 46.30% 2.84E-
23

28.30% EVE PB1 like-
10

Ppyr1.2_LG1 61872355 61872456 (+) 41.20% 2.84E-
23

27.00% EVE PB1 like-
10

Ppyr1.2_LG1 61930528 61930205 (-) 38.00% 3.58E-
27

30.90% EVE PB1 like-
11

Ppyr1.2_LG1 61930686 61930504 (-) 63.60% 3.58E-
27

35.90% EVE PB1 like-
11

Ppyr1.2_LG1 68038999 68039073 (+) 60.00% 7.73E-
12

6.60% EVE PB1 like-
12

Ppyr1.2_LG1 68039072 68039314 (+) 40.70% 7.73E-
12

5.00% EVE PB1 like-
12

Ppyr1.2_LG1 68039289 68039330 (+) 64.30% 7.73E-
12

8.00% EVE PB1 like-
12

Ppyr1.2_LG1 68128820 68129008 (+) 51.50% 1.89E-
06

4.90% EVE PB1 like-
13

Ppyr1.2_LG2 34545814 34545680 (-) 58.70% 3.84E-
06

7.20% EVE PB1 like-
14

Ppyr1.2_LG2 34546169 34545801 (-) 52.80% 1.16E-
31

34.10% EVE PB1 like-
14

DOI: https://doi.org/10.7554/eLife.36495.091
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Appendix 5—table 6. FEVE hits from BLASTX of PpyrOMLV PB2.

Scaffold Start End Strand
Id with
PpOMLV E value Coverage FEVE

Ppyr1.2_LG1 50313869 50314219 (+) 82.10% 6.91E-54 48.30% EVE PB2 like-1

Ppyr1.2_LG1 50314216 50315016 (+) 82.40% 1.92E-142 57.90% EVE PB2 like-1

Ppyr1.2_LG1 50315772 50315002 (-) 89.10% 9.97E-145 60.60% EVE PB2 like-1

Ppyr1.2_LG1 58707403 58706942 (-) 52.60% 6.19E-42 35.80% EVE PB2 like-2

DOI: https://doi.org/10.7554/eLife.36495.092

Appendix 5—table 7. FEVE hits from BLASTX of PpyrOMLV PA.

Scaffold Start End Strand
Id with
PpOMLV E value Coverage FEVE

Ppyr1.2_LG1 34977392 34977231 (-) 48.10% 7.73E-07 3.50% EVE PA like-1

Ppyr1.2_LG1 62052289 62052023 (-) 28.70% 8.92E-11 7.10% EVE PA like-2

Ppyr1.2_LG1 62117077 62116811 (-) 28.70% 1.22E-10 7.10% EVE PA like-3

Ppyr1.2_LG1 62117493 62117101 (-) 26.30% 1.22E-10 8.60% EVE PA like-3

Ppyr1.2_LG1 68122348 68122440 (+) 77.40% 3.40E-06 15.70% EVE PA like-4

DOI: https://doi.org/10.7554/eLife.36495.093

Appendix 5—table 8. FEVE hits from BLASTX of PpyrOMLV NP

Scaffold Start End Strand
Id with
PpOMLV E value Coverage FEVE

Ppyr1.2_LG1 181303 181404 (+) 79.40% 7.01E-09 17.90% EVE NP like-1

Ppyr1.2_LG1 1029425 1029568 (+) 93.80% 9.59E-21 27.40% EVE NP like-2

Ppyr1.2_LG1 2027860 2027438 (-) 35.50% 3.00E-21 30.80% EVE NP like-3

Ppyr1.2_LG1 36568324 36568551 (+) 42.10% 8.99E-11 7.20% EVE NP like-4

Ppyr1.2_LG1 52877256 52877086 (-) 68.40% 3.87E-15 14.60% EVE NP like-5

Ppyr1.2_LG1 59927414 59927271 (+) 93.80% 5.60E-20 26.40% EVE NP like-6

Ppyr1.2_LG3 17204346 17204122 (-) 46.70% 7.60E-13 7.10% EVE NP like-7

Ppyr1.2_LG3 31635344 31635030 (-) 35.80% 3.30E-08 10.00% EVE NP like-8

Ppyr1.2_LG3 50175821 50175922 (+) 79.40% 7.01E-09 17.90% EVE NP like-9

Ppyr1.2_LG4 27811681 27811758 (+) 38.50% 3.22E-13 2.50% EVE NP like-10

Ppyr1.2_LG4 27811853 27812179 (+) 39.00% 3.22E-13 10.90% EVE NP like-10

DOI: https://doi.org/10.7554/eLife.36495.094
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Appendix 6

DOI: https://doi.org/10.7554/eLife.36495.095

Data availability

6.1 Files on FigShare

1. Photinus pyralis sighting records (Excel spreadsheet) - (10.6084/m9.figshare.5688826)
2. Ilumi1.0 Blobtools results - (10.6084/m9.figshare.5688952)
3. Alat1.2 Blobtools results - (10.6084/m9.figshare.5688928)
4. Ppyr1.2 Blobtools results - (10.6084/m9.figshare.5688982)
5. Protein multiple sequence alignment for P450 tree - Appendix 1—figure 13 - (10.6084/m9.

figshare.5697643)
6. Photinus pyralis orthomyxo-like virus 1 sequence and annotation - (10.6084/m9.figshare.

5714806)
7. Photinus pyralis orthomyxo-like virus 2 sequence and annotation - (10.6084/m9.figshare.

5714812)
8. OrthoFinder protein clustering analysis (Orthogroups) - (10.6084/m9.figshare.5715136)
9. PPYR_OGS1.1 kallisto RNA-Seq expression quantification (TPM) - (10.6084/m9.figshare.

5715139)
10. AQULA_OGS1.0 kallisto RNA-Seq expression quantification (TPM) - (10.6084/m9.figshare.

5715142)
11. Figure 5. PPYR_OGS1.1+AQULA_OGS1.0 Sleuth/differential expression Venn diagram

analysis (BSN-TPM) - (10.6084/m9.figshare.5715151)
12. Ilumi_OGS1.2 kallisto RNA-Seq expression quantification (TPM) - (10.6084/m9.figshare.

5715157)
13. Appendix 4—figure 2: DNA and tRNA methyltransferase gene phylogeny - (10.6084/m9.

figshare.6531311)
14. Appendix 4—figure 6 Preliminary maximum likelihood phylogeny of luciferase homologs -

(10.6084/m9.figshare.6687086)
15. Appendix 4—figure 9A Opsin gene tree - (10.6084/m9.figshare.5723005)
16. Testing for ancestral selection of elaterid ancestral luciferase (Figure 4B): MEME selected

site analysis - (10.6084/m9.figshare.6626651)
17. Testing for ancestral selection of elaterid ancestral luciferase (Figure 4B): PAML-BEB

selected site analysis - (10.6084/m9.figshare.6725081)

6.2 Files on www.fireflybase.org/www.github.org

6.2.1 Photinus pyralis genome and associated files

. Ppyr1.3 genome assembly - (http://www.fireflybase.org/firefly_data/Ppyr1.3.fasta.zip)

. P. pyralis Official Geneset (OGS) GFF3 files - (https://github.com/photocyte/

PPYR_OGS; copy archived at https://github.com/elifesciences-publications/

PPYR_OGS)
� Official geneset gene-span nucleotide FASTA files
� Official geneset mRNA nucleotide FASTA files
� Official geneset CDS nucleotide FASTA files
� Official geneset peptide FASTA files

. Supporting Non-OGS files - (https://github.com/photocyte/PPYR_OGS/tree/master/Support-

ing_non-OGS_data)
� Trinity/PASA direct coding gene models (DCGM) GFF3 file

& DCGM CDS FASTA file
& DCGM peptide FASTA file

� Stringtie stranded direct coding gene model (DCGM) GFF3 file
& DCGM CDS FASTA file
& DCGM peptide FASTA file

� Stringtie unstranded direct coding gene model (DCGM) GFF3 file
& DCGM CDS FASTA file
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& DCGM peptide FASTA file
� Expression quantification (TPM)
� InterProScan OGS functional annotation
� PTS1 OGS annotation
� Gaps GFF3 file
� Repeat library FASTA and aligned GFF3 file.
� Ab-initio gene models

6.2.2 Aquatica lateralis genome and associated files
. Alat1.3 genome assembly - (http://www.fireflybase.org/firefly_data/Alat1.3.fasta.zip)
. A. lateralis Official Geneset (OGS) GFF3 files - (https://github.com/photocyte/

AQULA_OGS; copy archived at https://github.com/elifesciences-publications/

AQULA_OGS)
� Official geneset gene-span nucleotide FASTA files
� Official geneset mRNA nucleotide FASTA files
� Official geneset CDS nucleotide FASTA files
� Official geneset peptide FASTA files

. Supporting Non-OGS files - (https://github.com/photocyte/AQULA_OGS/tree/master/Sup-

porting_non-OGS_data)
� Trinity/PASA direct coding gene models (DCGM) GFF3 file

& DCGM CDS FASTA file
& DCGM peptide FASTA file

� Stringtie unstranded direct coding gene model (DCGM) GFF3 file
& DCGM CDS FASTA file
& DCGM peptide FASTA file

� Expression quantification (TPM)
� InterProScan OGS functional annotation
� PTS1 OGS annotation
� Gaps GFF3 file
� Repeat library FASTA and aligned GFF3 file.

6.2.3 Ignelater luminosus genome and associated files
. Ilumi1.2 genome assembly - (http://www.fireflybase.org/firefly_data/Ilumi1.2.fasta.zip)
. I. luminosus Official Geneset (OGS) GFF3 files - (https://github.com/photocyte/

ILUMI_OGS; copy archived at https://github.com/elifesciences-publications/

ILUMI_OGS)
� Official geneset gene-span nucleotide FASTA files
� Official geneset mRNA nucleotide FASTA files
� Official geneset CDS nucleotide FASTA files
� Official geneset peptide FASTA files

. Supporting Non-OGS files - (https://github.com/photocyte/ILUMI_OGS/tree/master/Sup-

porting_non-OGS_data)
� Trinity/PASA direct coding gene models (DCGM) GFF3 file

& DCGM CDS FASTA file
& DCGM peptide FASTA file

� Stringtie unstranded direct coding gene model (DCGM) GFF3 file
& DCGM CDS FASTA file
& DCGM peptide FASTA file

� Expression quantification (TPM)
� ○ InterProScan OGS functional annotation
� ○ PTS1 OGS annotation
� Gaps GFF3 file
� Repeat library FASTA and aligned GFF3 file.
� Ab-initio gene models

6.3 Tracks on www.fireflybase.org JBrowse (Skinner et al., 2009)
genome browser
For each genome:

1. Gaps
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http://www.fireflybase.org/firefly_data/Alat1.3.fasta.zip
https://github.com/photocyte/AQULA_OGS
https://github.com/photocyte/AQULA_OGS
https://github.com/elifesciences-publications/AQULA_OGS
https://github.com/elifesciences-publications/AQULA_OGS
https://github.com/photocyte/AQULA_OGS/tree/master/Supporting_non-OGS_data
https://github.com/photocyte/AQULA_OGS/tree/master/Supporting_non-OGS_data
http://www.fireflybase.org/firefly_data/Ilumi1.2.fasta.zip
https://github.com/photocyte/ILUMI_OGS
https://github.com/photocyte/ILUMI_OGS
https://github.com/elifesciences-publications/ILUMI_OGS
https://github.com/elifesciences-publications/ILUMI_OGS
https://github.com/photocyte/ILUMI_OGS/tree/master/Supporting_non-OGS_data
https://github.com/photocyte/ILUMI_OGS/tree/master/Supporting_non-OGS_data
http://www.fireflybase.org
https://doi.org/10.7554/eLife.36495


2. Repeats
3. Direct gene-models (Stringtie)
4. Direct gene-models (Trinity)
5. Official geneset gene-models
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