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1 Introduction

The author instructions of this journal (OUP Bioinformatics) in-
clude several detailed requirements for manuscripts to be considered
for publication (https://academic.oup.com/bioinformatics/pages/
instructions_for_authors). Such requirements clarify expectations
for authors and establish important peer-review standards.
Importantly, it also allows for an open discussion of these require-
ments, which for a leading journal such as Bioinformatics contrib-
utes to shaping the fields of computational biology and
bioinformatics. One of the requirements is that manuscripts present-
ing new methodology must include ‘actual biological data’ as
opposed to simulated data. We find this requirement potentially
counterproductive for several reasons and argue for emphasizing the
complementarity of simulated and experimental data.

Before we outline our argument, we would like to remark that
terminology has connotations that may influence how different
types of scientific evidence are valued. Specifically, we find the term
‘actual biological data’ to be problematic because primary data in
the biological research domain is generated either from wet-lab
experiments or computational simulations, both of which have their
idiosyncrasies relative to the underlying biology (Leek et al., 2010).
The aim, and often the very purpose, of computational methodology
in bioinformatics is to model biological phenomena at a resolution
and scale that transcends the current experimental state-of-the-art,
to prepare for the arrival of biological data generation at a scale that
allows better coverage of biological phenomena. Thus, a term such
as ‘experimental calibration’ may be more appropriate to describe
the use and purpose of experimental data in the majority of the
bioinformatics literature, as opposed to the currently predominant
denomination of ‘experimental validation’ (Jafari et al., 2021).

Here, we argue that in the majority of bioinformatics settings,
available experimental data do not have the size, resolution and suf-
ficient set of controls (hereafter referred to as ‘limited data’) that
would allow for rigorous method assessment. With limited data,

performance estimates may be uncertain and sensitive to external
factors such as parameter choices. This makes it challenging to judge
whether observed improvements over previous methods are substan-
tial, that is, biologically relevant, or merely the result of deliberate
tuning of a method to perform particularly well on the experimental
dataset(s) at hand (Castaldi et al., 2011; Salzberg, 1997). As a re-
viewer or critical reader, it is usually unfeasible to generate corrobo-
rating (or falsifying) experimental data with similar properties and
thus not possible to rule out chance or tuning. Therefore, we argue
that increased emphasis on experimental data may lead to insuffi-
cient and potentially misleading method evaluation.

In contrast, simulation enables the generation of datasets of vir-
tually unconstrained size, with precise control over introduced sig-
nals (ground truth) (Morris et al., 2019). This confers a critical
reader the competence to challenge a reported assessment (Meyer
and Birney, 2018) and rule out chance results and inappropriate tun-
ing by simply generating new data from the same simulation
process, thereby ensuring that conclusions can be meaningfully
reproduced and cover a biologically relevant parameter range.
Additionally, the specification of a simulation algorithm makes data
assumptions for a method explicit and thus contributes to the trans-
parency of a method both in terms of advances over the state of the
art as well as its limitations. For example, in immunoinformatics of
adaptive immunity, natural immune receptor sequence diversity,
which is of the order of >1013, is routinely modeled using simula-
tion frameworks for testing biological assumptions and the bench-
marking of novel methods (Davidsen et al., 2019; Marcou et al.,
2018; Pavlovic et al., 2021; Safonova et al., 2015; Weber et al.,
2020).

We stress that simulated data are only meaningful for bioinfor-
matics method development and assessment if it reflects method-
relevant underlying biology. The same criterion should be applied to
experimental data. We agree that, if available at a sufficient scale,
resolution and quality, experimental data are unsurpassed for assess-
ing the capacity of bioinformatics methods to handle the types of
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signal complexities and data distributions that distinguishes bio-
informatics method development from general informatics. Thus,
novel methods should indeed be required to be evaluated on experi-
mental data in domains where the available data are sufficiently ro-
bust to admit a rigorous assessment. However, we have several
concerns with the quality of typically available experimental data
for assessment purposes. A first concern is one of size. The perform-
ance of a method on a given dataset is always an uncertain estimate
of its true performance on the underlying distribution that the
observed data reflects. For many biological problems, available ex-
perimental datasets are so small that estimate uncertainties can eas-
ily be larger than any performance differences observed between
competing methods. We fear that a strict journal requirement of
employing experimental data may push authors to draw unwarrant-
ed conclusions from too small datasets and that reviewers may allow
this to pass through due to the lack of good alternatives for the
authors. An author’s requirement to include at least rudimentary
measures of uncertainty for any reported performance measurement
could alleviate these concerns (Walsh et al., 2021). A second con-
cern is that experimental data are often available only for one par-
ticular problem setup. This leaves no opportunities to test the
sensitivity of a method to variation in problem configuration (to as-
sess how broadly it generalizes) or to test how it performs on data
outside the training distribution (whether it is robust to domain
shift). A third concern is that there is no possibility to know whether
the patterns that a method extracts from experimental data reflect
underlying causal relations or not. Furthermore, suboptimal study
designs may introduce spurious correlations in datasets, and there is
a risk that the best-performing methods at least partly exploit such
artificial data patterns.

Also, we fear that a strict, general requirement to assess novel
methodology on experimental data may impede progress in method
development in the many domains where available data are scarce.
In data-scarce domains, we hold that authors should instead be
urged to provide a rigorous assessment on simulated data, where
authors should explicitly argue for the biological relevance based on
either underlying mechanistic knowledge or by calibrating their
simulation procedure with experimental data. In particular, we con-
sider such experimentally calibrated simulation to often provide a
better assessment of the capabilities of a method than the (in our
opinion) too common reliance on anecdotal findings on small ex-
perimental datasets, which may reveal more about the ingenuity of
the authors than of the proposed method. The discovery of novel
biological knowledge does not in itself establish the usefulness or
novelty of a new bioinformatics method—it is merely a corollary of,
for example, a new method’s greater sensitivity, applicability to a
wider parameter range or scalability. While it may be tempting to
boost impact by combining novel methodology and novel biological
findings in the same paper, this interferes with the assessment of
methods on their own merit and thus undermines the selection pres-
sures for the evolutionary process of method improvement in the
field.

Our view on the complementarity of simulated and experimental
data is in line with the approach to method assessment taken in the
machine learning field. Here, the evaluation of simulated data has
always had a prominent role. Nowadays, the availability of large
and well-curated databases such as ImageNet (Deng et al., 2009)
and MNIST (Deng, 2012) make it natural to expect that novel meth-
odologies are also assessed in such real-world data collections.
However, when for instance the long short-term memory model was
introduced in 1997 (Hochreiter and Schmidhuber, 1997), the
authors explicitly asked in their paper ‘which tasks are appropriate
to demonstrate the quality of a novel long-time-lag algorithm’ and
answered their question based on a collection of exclusively synthet-
ic datasets. Years later, improved data availability revealed that the
model is indeed able to learn relevant patterns in a wide variety of
real-world domains. The top-cited paper of the present journal
(according to ISI web of science) (Li and Durbin, 2009) contains
two sections in the Results section entitled ‘Evaluation on simulated
data’ and ‘Evaluation on real data’.

While we suggest that well-argued exceptions to the inclusion of
experimental data assessment should be allowed for bioinformatics
methods research, we can hardly think of any circumstance with
compelling reasons for not including any assessment on simulated
data. Since method developers should always have a conscious rela-
tionship to the data assumptions that they build their models and
algorithms on, it should usually be straightforward to implement a
simulation of data according to these same assumptions. This allows
method developers to confirm that their method behaves as expected
(e.g. identification of any bugs), it reveals to developers and readers
the range of data parameters within which the method provides
sensible results (method transparency) and allows developers or
readers to reproduce assessments under identical or modified data
assumptions (method reproducibility). We thus encourage basic as-
sessment on simulated data to be considered an integral part of good
bioinformatics method craftsmanship. Once simulated data have
shown that a method works as intended, experimental data may be
used to show that the software works on the field-specific experi-
mental data formats and, ideally, recovers orthogonally validated
biological or technological signals.

2 Conclusion

We have argued that simulated and experimental data should be
considered complementary and of equal importance for assessing
methods in typical bioinformatics settings. They should both be
strongly encouraged as part of a rigorous review process of novel
methodology, where reviewers should ensure that a given paper
exploits the best available data sources for assessment (be it experi-
mental or well-established simulated datasets) and when necessary
combines data sources for a comprehensive assessment. When avail-
able in high quantity, fidelity and generality, experimental data may
ensure assessment validity—that a method handles relevant signals
and noise profiles from the biological domain. But for many bio-
informatics application areas, experimental data are not available at
sufficient scale or annotation quality to allow conclusive assessment.
Through full control over ground truth and unconstrained data
size, simulated data may ensure assessment reliability—that the
reported performance of a given method is representative and can
be reproduced under the same or modified assumptions of the
underlying data generating process. Importantly, sophisticated
simulation processes, where signals and noise are calibrated by ex-
perimental data or knowledge of underlying mechanisms (Cao
et al., 2021; Prakash et al., 2021; Schuler et al., 2017), allows
methodology to be developed, assessed and improved early in a
field so as to reach a good level of maturity at the time large-scale
experimental data starts to become available. Well-calibrated
simulation schemes may even be used to explore targeted hypothe-
ses relating to complex biological systems in a way that can
guide future experimental data collection (Azencott et al., 2017).
In addition, simulation makes explicit the assumptions and layers
of biological complexity understood so far and helps identify meth-
odological errors or software bugs.

In summary, we suggest that new bioinformatics methods
should be shown to perform comparatively well on ground truth
data of a size that allows reliable assessment, be it experimental or
simulated. Method developers should be encouraged to make use
of both simulated and experimental data, in complementary ways,
to cover the multiple purposes of method assessment. When certain
roles of assessments are not fully covered, method developers
should be expected to provide compelling, explicit reasons—be it
reasons for not including assessments involving simulated or ex-
perimental data.
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