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The neural coding framework for learning
generative models

Alexander Ororbia® '™ & Daniel Kifer?

Neural generative models can be used to learn complex probability distributions from data, to
sample from them, and to produce probability density estimates. We propose a computa-
tional framework for developing neural generative models inspired by the theory of predictive
processing in the brain. According to predictive processing theory, the neurons in the brain
form a hierarchy in which neurons in one level form expectations about sensory inputs from
another level. These neurons update their local models based on differences between their
expectations and the observed signals. In a similar way, artificial neurons in our generative
models predict what neighboring neurons will do, and adjust their parameters based on how
well the predictions matched reality. In this work, we show that the neural generative models
learned within our framework perform well in practice across several benchmark datasets and
metrics and either remain competitive with or significantly outperform other generative
models with similar functionality (such as the variational auto-encoder).
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ARTICLE

ne way to understand how the brain adapts to its

environment is to view it as a type of generative pattern-

creation modell, one that is engaged in a never-ending
process of self-correction, often without external teaching signals
(or labels)®. Under this perspective, the brain is continuously
making predictions about elements of its environment, a process
that allows it to infer useful representations of the sensory data
that it receives® as well as to synthesize novel patterns, which
could serve as the potential basis for long-term planning and
imagination itself*. From the theoretical viewpoint of predictive
processing?, the brain could be likened to a hierarchical model®
whose levels are implemented by neurons (or clusters of neu-
rons). If levels are likened to regions of the brain, the neurons at
one level (or region) attempt to predict the state of neurons at
another level (or region) and adjust their local model synaptic
parameters based on how different their predictions were from
the observed signal. Furthermore, these neurons utilize various
mechanisms to laterally stimulate and suppress each other® to
facilitate contextual processing (such as grouping and segmenting
visual components of objects in a scene). As we will demonstrate
in this article, this viewpoint can be turned into a powerful fra-
mework for learning generative models.

In machine learning, one central goal is to construct agents that
learn representations that extract the underlying structure of data,
without the use of explicit supervisory signals such as human-
crafted labels, i.e., unsupervised learning. Generative models, or
models capable of synthesizing instances of data that resemble a
database of collected patterns, that are based on deep artificial
neural networks (ANNSs), e.g., variational autoencoders’ or gen-
erative adversarial networks®, have been shown to be one way of
acquiring these representations. Once trained, an ANN model is
used to fantasize patterns by injecting it with noise and propa-
gating this noise through the system until the output nodes are
reached.

However, despite the success in deploying ANNs as generative
models across various applications, the way that ANNs operate
and learn is a far-cry from the neuro-mechanistic story we
described earlier®10. Specifically, ANN generative models are
trained with the popular algorithm known as back-propagation of
errors (backprop)!l, which is an elegant mathematical solution to
the credit assignment problem in deep networks—synaptic
weights are adjusted through the use of teaching signals that are
created by propagating an error, which exists exclusively at the
output of the ANN, backwards along a feedback pathway!?, a
path created by re-using the very same weights that transmitted
those signals forward!3. By virtue of this formulation, backprop
imposes the constraint that the ANN takes the form of a directed
feedforward structure (and does not permit the use of non-
differentiable activation functions and makes integrating
mechanisms such as lateral connectivity difficult). While the
neurons in an ANN are usually arranged hierarchically, they do
not make local predictions and they do not laterally affect each
other’s activity. Furthermore, synaptic adjustment in backprop-
based models is done non-locally, while in neurobiological net-
works this adjustment is often argued to be done locally!4-17
(there are far more local connections than long-range
connections!® with the neocortex adhering to a local con-
nectivity pattern!®). In other words, neurons make use of the
information immediately available to them, in both time and
space, and do not wait on distant regions in order to adjust their
synapses, with global information provided through neuro-
transmitters such as dopamine. In response to the above pro-
blems, the statistical learning community has developed a
plethora of mechanisms that modify backprop through a heuristic
or additional constraint!=?2 or, recently, has worked on devel-
oping learning procedures that embody elements of biological

neuronal function while enabling backprop-level learning!2-23-27
(see Supplementary Note 2 for a more detailed review). However,
while insights from each development have proven valuable in
bridging backprop with brain-like computation, many of these
ideas only address one or a few of the issues described earlier and
tend to focus on simple problems in classification. While the
question as to how credit assignment is exactly implemented in
the brain is an open one, it would prove useful to machine
learning, (computational) neuroscience, and cognitive science to
have a framework that demonstrates how a neural system can
learn something as complex as a generative model without
backprop, using mechanisms and rules that are brain-inspired.

In this work, inspired by predictive processing theory*28-30
and building on free energy minimization>3!, which crucially
casts predictive processing formally as variational Bayesian
inference, we propose the neural generative coding (NGC)
computational framework as a powerful way to learn generative
ANNs, resolving several of the key backprop-centric issues
described above. Furthermore, we show that certain settings of
NGC recover the work proposed in ref. 32 and ref. . We find
that NGC models, including ref. 32 and ref. >, not only remain
competitive with backprop-based generative ANNs across sev-
eral datasets in terms of pattern creation, such as the variational
autoencoder’, but they also outperform these models on tasks
that they are not directly trained for, such as classification and
pattern completion. Our results further demonstrate that,
besides unifying predictive processing models, NGC allows for
integration of improvements such as learnable recurrent error
synapses and laterally-driven sparsity. As a result, our work
presents promising evidence that brain-inspired alterations to
traditional deep learning techniques can be a viable source of
performance gains.

Results

Notation. In this paper, © indicates a Hadamard product, @
indicates element-wise division, and - indicates a matrix/vector
multiplication (or dot product if the two objects it is applied to are
vectors of the same shape) and ()T denotes the transpose. We
denote v; (bold font indicates vector/matrix) means that we retrieve
the ith element v; (italic indicates single scalar element) in the vector
v and W;; means that we retrieve the element Wj; in the ith row and
jth column of matrix W. < denotes the overriding of a variable.

Problem setting. We start with a description of the problem
setting—an agent must learn to approximate a probability dis-
tribution from a dataset X of samples. For notational reasons, this
dataset is presented in column-major order, so that each column
x represents a record (also known as an example or item). X has
D rows and S total columns. The items are assumed independent,
so that p(X) =TIlxex p(x) and logp(X) =>_, x logp(x). We are
interested in directed generative models that are capable of pro-
ducing explicit density estimates of the data distribution, i.e.,
models that estimate a probability density function (PDF) over a
sample space, and we will leave the examination of most implicit
density estimators, ie., models that do not produce explicit
density estimates of the PDF but yield a function that produces
samples from the estimated distribution, based on generative
adversarial networks® for future work.

The typical deep learning approach. In modern-day deep
learning practice, a feedforward ANN, also called a decoder,
would be constructed to model the desired input distribution. The
decoder (NN) takes in as input a noise vector or a sampled latent
variable z and maps it to the parameters of a probability dis-
tribution, such a mean and covariance of a multivariate Gaussian,
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Fig. 1 Backprop in contrast with neural coding. a Credit assignment in backprop requires a strict, global feedback pathway, which requires the completion
of the forward pass that carries information upstream (right to left). This feedback pathway carries the error message e0 at the output layer back along (left
to right) the same synapses used in the forward pass to update downstream neurons z' and z2. b Our proposed neural generative coding (NGC) model
sidesteps this neurobiologically implausible requirement by learning with short, local error transmission pathways made possible through recurrent error
synapses and stateful neural activities. Credit assignment under NGC operates with local mismatch signals, e! and e?, that readily communicate this

information to their respective layers, Z' and z2. Black arrows indicate forward propagation while red arrows indicate backwards transmission. Solid lines
indicate that a signal is transformed along a synapse(s) while dashed arrows indicate direct copying of information (in other words, it represents the

identity function, or that no transformation is applied to the incoming information). d¢ shows communication of the neuron'’s first derivative, A represents
the computed change to the synapse (of the forward pass) that will use the (nearby) error signal, and ® indicates multiplication of the incoming signals.

or, as in this paper, the mean of a multivariate Bernoulli dis-
tribution, i.e, z=NN(z) where x; ~ B(n=1,p =z?). This
artificial neural network would typically be made up of L +1
layers of neurons, or L layers of hidden neurons and one output
layer of neurons, where the state in layer £ is represented by a
vector z¢. Each layer ¢ is interpreted as a transformation of the
layer before it. In essence, zt—1 = ¢¢—1(W¥¢ - z£) where z of layer
L is set to be the same as the input noise vector z. The output z0 of
this decoder (Fig. 1a) would be the parameters of a probability
distribution, such as the mean of a Bernoulli distribution, or
mean and covariance of a Gaussian (see Supplementary Note 7
for descriptions of the backprop-based networks used in this
study). One can sample from this distribution to get a sample
point x or use the mean of the distribution directly. To stabilize
and speed up the model’s learning process, an encoder is typically
introduced which also takes in as input the sensory input x to be
predicted. The encoder is designed to drive the parameters of a
distribution, normally a multivariate Gaussian, that shapes and
controls the form of the latent variable z, ie., y,, 02 = NN,(x)
where Uﬁ =2, O I (or diagonal covariance).

To fit this model to the data, one would choose the weight
parameters W¥ to minimize a loss function v such as the negative
log-likelihood, typically using some variant of stochastic gradient
descent. Often the backprop algorithm is used to compute the
partial derivatives of % needed for this optimization. Computing
the necessary derivatives according to backprop entails first
computing an error signal at the output (downstream) layer, or

el =%

50 This error signal is then transmitted to internal
(upstream) neurons by carrying this signal back along the
forward synapses that were originally used to transform zL—this
is done by multiplying the signal with the transpose of the
forward weight matrices. Furthermore, knowledge of the
derivative of each activation function ¢f is required during these

computations (as shown in Fig. 1a).

Backprop-learning versus brain-like learning. While the back-
prop algorithm described above has proven to be popular and
effective in training ANNs, including generative models3, it has
certain mechanisms that differ from the current understanding of
brain-like learning. For example, in backprop:

1. Synapses that make up the forward information pathway
need to directly be used in reverse to communicate teaching
signals, i.e., the weight-transport problem!3,

2. Neurons need to know about and communicate their own
activation function’s first derivative,

3. Neurons must wait for the neurons ahead of them to
percolate their own error signals backwards before they
know when/how to adjust their own synapses, ie., the
update-locking problem34,

4. There is a distinct form of information propagation for
error feedback, one that starts from the system’s output and
works its way back to the input layer (see Fig. 1a), which
does not influence neural activity, i.e., the global feedback
pathway problem!? (backprop creates signals that only
affect weights but do not, at least directly, affect/improve
the network’s representations of the environment),

5. The error signals have a one-to-one correspondence with
neurons.

The goal of this paper is to present a modeling and learning
framework that uses fewer mechanisms that are incompatible
with current understanding of brain-like learning. Specifically, we
aim to address the first four items.

The neural generative coding framework. In contrast to the
backprop-based way of designing and training ANN generative
models, our proposed framework, neural generative coding
(NGC, see Fig. 1b), provides one way to emulate the several
neurobiological principles and properties described above by
proposing a family of models and their corresponding training
procedure. In this framework, any single model is referred to as a
generative neural coding network (GNCN, see Supplementary
Note 1 for naming convention details). A GNCN model has L + 1
layers of neurons (also called state variables) 9°, 9", ... 0t
where 0’ is the output layer. Each layer 9 has J¢ neurons and
each neuron has a latent state value represented by a single
number. The combined latent state of all neurons in layer %' is
represented by the vector z’ € R/**! (initially zf = 0 when a new
data point is encountered), with z0 being the same as the data x (it
is typically clamped to the input, ie., z°=x). The network is
interpreted as a specification of the probability P(z0 = x, zl, ---,
zL) = P(20)2!) --- P(zL~1|2L)P(zL), similar to a Bayesian network,
and we use the notation Z = {z!, --- , zL} to refer to the state of all
of the intermediate neurons (ie., excluding the output). Thus,
layer N’ represents the conditional probability P(zf|zf+1), with
the last layer M" representing P(zL). For image data, the dis-
tribution P(z0|z!) associated with the output layer is multivariate
Bernoulli with mean vector z° (which depends on z!). All of the
other distributions P(zf|zf*1) are multivariate Gaussians with
mean vector Z° (which depends on zf*!) and covariance matrix
3¢, The mean vector Z' for layer 9" is obtained in a feed-forward
manner from the latent state of the neighboring layer (biases/
offset terms have been omitted for clarity). Specifically, we model
this generative process with the following equation:

local, top—down prediction local, auxiliary prediction

zl <—g[ (1)

W[+l . ¢[+l(zi+l) + a, (M[+2 . ¢[+2(z[+2))
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(GNCN-t1/Rao) (GNCN-t1-3/Friston)
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Fig. 2 Neural generative coding computation and circuitry. a The two key computation steps taken by an entire NGC network (a GNCN-t2-LX) when
processing an input (z0 =x): (1) prediction and laterally-weighted error computation, (2) error-correction of neural states. In this diagram, we depict a toy
network with 3 layers of 2 state neurons (gray circles), i.e., 2> = ([2(2),212])7, z' = ([25,21])T, 20 = ([zg,z?])T, that are updated iteratively over T time steps.
Two of these layers are linked to error neurons (orange diamonds), i.e., ' = ([e}, el]) , e = ([eg,e?]) , which compute mismatch messages that are
propagated throughout the system. The bottom layer 20 receives sensory input, i.e., an image. b The basic neural computational unit that an NGC model is
composed of, consisting of a single state neuron zf and an error neuron ef at layer Z. In the circuit, observe that a state neuron not only receives messages
from error neurons (carried by Ef~1 synapses) but also a self-excitation signal and inhibition signals from laterally connected neurons (via V¢ synapses).
The error neuron receives a gain signal (via (E”)f1 synapses) from laterally connected error neurons. Note that filled diamonds indicate inhibitory signals,
non-filled circles indicate excitatory signals, and empty squares indicate multiplicative signals. ¢ The different GNCN architectures (under the NGC
framework) experimented with in this study. Solid black arrow represents generative weights, dashed black arrow represents error weights, and dashed
light pink arrow represents a temporary (virtual) backwards error pathway that is a function of the generative weights, i.e., the transpose of the error

weights (the horizontal solid pink arrow indicates which forward weights are used to create the backward path weights).

where W¥ is a forward/generative weight matrix, a,, = 0, g, and
¢¢*+1 are activation functions, and - indicates matrix multi-
plication. Thus each layer 9" is specified by two functions gf and
¢¢, a trainable weight matrix W¢ and a covariance matrix ¢ (the
last layer M is specified just by the activation function ¢L). Note
in Eq. (1), the mean vector Z' depends on the sampled realization
of zf+1 from the previous layer, making this a hierarchical,
Gaussian latent variable model. Notice that, optionally, if the
binary coefficent «,, is set to one, each layer also incorporates a
learnable auxiliary generative matrix M¢*2, which conveys and
injects state value information from the layer N*2 into the
prediction of layer 9"’ through a linear combination. We append
the suffix “-PDH” (partially decomposable hierarchy) to a GNCN
model name when «,, =1 (see Fig. 2¢ for a visual depiction).

The goal of any GNCN model is to learn a joint distribution
over its L + 1 neural states, ie., p(z0,zl, ---,zL), from which the
marginal distribution of the data may be obtained via p(x) =
Jzp(x, 2!, -+, ZLYdZ = [,p(2°, 2}, ---, zL)dZ. Given that minimizing
—logp(x) directly is intractable in general, our approach for
training is to approximately minimize the log-likelihood based on
the ideas behind the Expectation-Maximization (EM) algorithm.
Specifically, we work with the analog of the complete-data
likelihood, which adds in the latent variables of the network (it
does not marginalize over them) and sets up a 2 step process that
adjusts the latent variables (like an E-step) and then updates the
network parameters (M step).

Training the model. The complete data log-likelihood y (also
referred to as total discrepancy?) of the observed data x and the
latent variables z!, ..., zL is defined formally as follows:

v = ;(x] logz! + (1 — x;) log(1 — zj?))

L 1 -1, 1 T -1 _
+E<——log|(2‘) | =5 =7) () ~(zf—z"')).
(=1 2 2
@

Importantly, the above complete data log-likelihood connects our
NGC models (and total discrepancy) to the principle of free
energy!, given that the sum of (weighted) prediction errors
defined in Eq. (2) can be shown to be a form of free energy that is
minimized through variational inference. Explicitly characterizing
a neural system engaged with optimizing the above objective as a
generative model, as we do in this paper, grounds NGC as per-
forming a form of approximate Bayesian inference (much as® did
for the early predictive coding model of ref. 32) and connects it to
perception as (unconscious) inference3> and the larger theoretical
framework of the Bayesian brain36:37,

Since all of the latent variables are continuous, the updates
below follow the form of the exact gradient, i.e., differentiation
(allowing for gradient descent), to optimize the latent variables
and the parameters. The log-likelihood has the following partial
derivatives:

0 1, 1 , _ -
e TR N L VN

oy | e ¢ =0T 1
. B . .
= 22 +22 z—-z)(z —-7) -X (4)

oW’ \oh’
where @ is element-wise division, © is element-wise product, and
hé = W€ . ¢€+1(Z€+1)

o _ (agOQ x0Z -(1-x001 —io))> (#'@)" ©)

o) 0 T
= ) ®
% = % (?(x,- logz] + (1 — x;) log(1 — iﬁ-’))) - @ -2
()
—l—1
% — (agzg . ((2£—1)71 . (zf—l _ 25—1))) _ (26)71 . (Zé _ ié).
(®)
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In this work, we incorporate two key concepts from local
representation alignment (LRA)12-38: (1) the use of error synapses
to directly resolve the weight-transport problem, and (2) the
omission of derivatives of activation functions which vyield
synapse rules that function like error-Hebbian updates. To
incorporate these modifications, we introduce a vector of error
neurons ef (depicted in Fig. 1b) that are tasked with computing
how far off the mean vector is from the relevant nearby state.
Note that the error neurons themselves are derived from the
likelihood function:

=Y _xoP-(1-vo1-7) ©)

a—O

lateral modulation

(10)

mismatch signal
0 —
ol — 1/’ @
oz'

and are implemented as separate sets of activities (like the state
neurons)—note that Eq. (9) simplifies further if g°(z?) =
1/(1 + exp(—z) to €® = x — z°. In Fig. 2b, we depict the circuit
for a single pair of neurons at a layer 9’, i.e,, a state neuron z!
and an error neuron ef . Notice that, in Eq. (10) above, in order to
compute the state of the error neuron e/, the covariance matrix X¢
acts as a lateral modulation matrix, which is inspired by the
neuro-mechanistic concept of precision weighting in predictive
processing theory>?. Specifically, it allows the error neuron e! to
dynamically amplify/reduce the learning signal (i.e., z! — z!) of its
corresponding state neuron z!, based on the learning signals of
the other state neurons in the same layer. Empirically, we found
these modulatory synapses to improve the crispness of the final
model samples. Note that Eq. (10) is applied to the J, error
neurons in each layer £=1,---,L — L.

——
(Eﬂ—l)_l if—l)

Updating the states and synapses. To transmit the error neuron
activity values needed to calculate the update to state zf, we
replace the term ag;‘ with a learnable error matrix Ef. This

substitution allows us to rewrite Eqs. (7) and (8) as follows:

g%%Af:Eh(§Cm)—w =E'.-(2"-2°) —¢ (11

0
_‘/;% Az' =E' -1 — ¢
2z

(12)

Once the update for any layer Rt has been calculated, the
corresponding state neurons will proceed to update their state
values. By analogy with latent variable models, where the state
neurons z¢ correspond to latent variables, this act can be viewed
as an attempt to modify the states in a way that improves the
complete data log-likelihood (i.e., modifying the z¢ to cause
p(x,zl,---,zL) to increase). One possible neuroscience-inspired
way to perform this update is shown in Eq. (13) (here f8 is a
hyperparameter akin to the machine learning concept of a
learning rate). Specifically, this update is:

Az,

1

¢ ¢ ¢ N
z, <zt Pl vz + 2, (EBg ) — €

(13)

Here z! is modified through three terms. The first is a decaying
pressure caused by the leak term —z, controlled by the strength
factor y. The second term, —e!, can be interpreted as top-down
pressure where e/ is a measure of how much the ith neuron’s state

differs from the predicted state value Z that is computed by the

layer above. Finally, the third term adds in the error message

from each error neuron ef !in the layer below, communicated by

special error synapses Ef, acting as a form of bottom-up pressure.
It is important to mention that, in this paper, we investigated
another particular form of Eq. (13) as follows:

9¢(z;)
zl <12 +,3(— zi + (ng Lgfil(Ufjf 1) —e} —Amgn(z))
(14)

where the last term —Asign(z;) is a kurtotic prior that can be
imposed to encourage most activity values to be closer to zero
within a given neural state z£. Under the NGC framework, models
that use separate, learnable error synapses Ef will be referred to as
“Type 2” (t2) and those that use (non-learnable, virtual) error
synapses that are a function of the forward weights W¢ will be
labeled as “Type 17 (t1) (see Fig. 2c for visual depictions of these
models and Supplementary Note 1 for details on the NGC
framework, the naming convention, and other alternative possible
structures). We can then manipulate certain variable values to
recover different classical predictive coding models: (1) if y =0,
U=wW)T, zf = 02l, and ¢(v) = tanh(v), then we recover the
model proposed in ref. 32—we will refer to this as GNCN-t1/Rao
(using p > 0 yields the state equation of ref. 40), and (2) if y=0,
U=-W)T, and gb[ (v) = max(0, v), then we recover the neural
implementation of the graphical model proposed in ref. >—we
will refer to this as GNCN-t1-X/Friston (see Fig. 2c).

However, instead of directly using the update rule in Eq. (13),
we may further incorporate another property of the brain—
activation sparsity (through lateral inhibition/excitation). Sparsity
in real neuronal and artificial systems is often argued to be useful
for learning compact representations (most activity values will be
at or near zero), allowing for efficient storage and vastly improved
energy efficiency. To emulate this type of sparsity, we integrate an
explicit mechanism to force neurons to compete for activation (in
contrast to the kurtotic prior used in Eq. (14)), where we take
inspiration from the known occurrence of lateral synapses in
cortical regions of the brain (which are thought to facilitate
contextual processing®!). To do this, we introduce two terms to
Eq. (13) that use excitatory/inhibitory synapses stored in a matrix
VE. This means that state neurons are updated as follows:

bottom-up+top-down pressures lateral inhibition o
leak self -excitation

4 <+ | —yz + QE Efe[” 1) —el QZ ¢ (zj:)) + Vi)

(15)
Depending on the values set in V¥, different types of sparsity
patterns emerge, creating a flexible means for testing the benefits/
drawbacks of different kinds of lateral competition patterns in an
interpretable manner. Figure 3 provides a graphical example of
the type of interaction pattern we found that worked well for the
GNCN in this study, i.e., we forced J,/K groups (or columns) of K
neurons to compete with each other (see Supplementary Note 6).
The model employing Eq. (15) with «,, =0 (in its Eq. (1)) will be
referred to as GNCN-t2-LX and when «,, =1 (in its Eq. (1)) is
used, the model will be referred to as the GNCN-PDH.
The synaptic matrix updates in Egs. (5) and (6) can be written
in terms of the error neurons:

a?vpo AW =€ - (g!(z) (16)
81//[ o AW = e (¢/+1(Z/+1)) (17)

oW
and, following in line with LRA, the error synapses can be
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Fig. 3 Lateral dynamics of generative neural coding. Depending on how
the lateral connectivity matrices, V! and V2, are designed, different
competition patterns emerge among neurons in the network. In the system
with lateral matrices (shown below), each neuron is driven by its own self-
excitation (red-colored blocks) and laterally inhibits (blue-colored blocks)
other neurons that inhabit the same group (of 2 or 3 units). In the figure,
one possible outcome (or agent state) of such a competition is shown (at
the end of a T-step stimulus presentation window). Self-excitation and
lateral inhibition strengths are controlled by coefficients set a priori. Dashed
orange edges show actively used synapses, filled diamonds indicate
inhibitory signals, and non-filled circles indicate excitatory signals.
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updated as:

AEZ — A(¢[+l(zf+1) X (eZ)T> (18)
where 1€[0,1] controls the strength of the error synaptic
adjustment (usually set to a value<1). Note that no partial
derivative of the activation function ¢¢ is required (in Type 2 GNCN
models)—we are using an error-driven, Hebbian-like update rule,
which has been shown to be effective empirically and crucially
removes the need for state neurons to be aware of their own point-
wise activation derivative. Note that this means ¢¢ could easily be a
discrete function in this case, such as the signum or Heaviside.
Putting all of the components above together, given a data
point(s) x, we can characterize the neural dynamics of the NGC
system (graphically depicted in Fig. 2a) and train any GNCN
following an online alternating maximization approach as
follows:
// Initialization:
1. Set z% = x (clamp data to output neurons), and set zf = 0, V
=1
2. Compute mean estimates Zt, VE=0 (Eq. (1))
3. Use Eq. (9) and Eq. (10) to update (or initialize) all error
neurons ef, V £>0
// Latent Update Step: Search for the most probable value
ofz,, Vv ¢
4. Use Eq. (11) to get Az! and Eq. (12) to get Azf,V £> 1.
States are modified via the vectorized form of Eq. (15):

2t =17 +ﬂ(Azl —vi.zt - yzl)
Zf = ze—i-ﬂ(Az[ -Vl - yz[), Ve >1
5. Repeat Steps 2, 3, and 4 for T iterations
/! Parameter Update Step: Update parameters given
estimated latent states

6. Update synaptic matrices using Eqs. (16), (17), (3), and (18)
(and normalize the matrices).

At test time, to reconstruct x, one should only use Steps 1-5 of
the recipe above. y controls the strength of the decay/leak applied
to zf and corresponds to placing an additional A'(u = 0,2 = AI)
prior over the latent states. In essence, the above complete process
depicts that the GNCN adjusts it synaptic weight matrices once
activity values for all zf and ef have been found after a T-step
episode. The synaptic matrix updates are simply the products
between relevant state activities and error neurons. Finally, after
each weight update has been made, a GNCN’s weight matrices are
normalized such that the Euclidean norms of their columns are
1.0 (this step, which requires non-local information to perform,
could possibly be induced biologically through the use of external
neuromodulatory signals). In essence, the steps described above
and shown in Fig. 2a illustrate that the NGC framework embodies
the idea that neural state and synaptic weight adjustment are the
result of a process of generate-then-correct, or continual error
correction, in response to collected samples of the agent’s
environment.

Generative neural coding learns viable auto-associative gen-
erative models. The model framework that we have described so
far would be immediately useful for creating an auto-associative
memory of sensory input, i.e., upon receiving a particular sensory
input, the model would be able to recall seeing it by accurately
reconstructing it. Furthermore, since the model is learning an
estimator of the input distribution p(x), we may sample from it
(see “Methods”) to synthesize or hallucinate data patterns, as we
will demonstrate later in this section.

To evaluate our framework (see “Methods”), nine approaches
were compared across four image datasets (Table 1), each of
which contained a training subset (from which we created an
additional validation subset) and a test subset (see “Methods”).
One is a Gaussian mixture model (GMM) and eight are neural
models—four of these are backprop-based (see Methods and
Supplementary Note 7) and four are NGC models, i.e., a GNCN-
t1/Rao (which is equivalent to the model of ref. 32 and ref. 49), a
GNCN-t1-3/Friston (which is equivalent to the model of ref. °), a
GNCN-t2-L%, and a GNCN-PDH. All neural models were
constrained to have their topmost layer to contain 20 processing
elements (the GNCN-t2-L¥ and GNCN-PDH were restricted to
20 neural columns) and all had approximately the same total
number of synapses. With respect to NGC models, T=50 (see
Supplementary Note 4). The regularized auto-encoder (RAE), the
auto-associative network least equipped to serve as a data
synthesizer, reaches lower reconstruction error, in terms of
binary cross entropy (BCE), compared to the other backprop-
based generative models, i.e., the Gaussian variational autoenco-
der (GVAE), the constant-variance GVAE (GVAE-CV), and the
adversarial autoencoder (GAN-AE). However, while the GVAE-
CV, GVAE, and GAN-AE models yield worse reconstruction
than the RAE, they obtain much better log-likelihoods, especially
compared to the GMM baseline, indicating that they are strong
data samplers. It makes sense that these models obtain better
likelihood at the expense of BCE given that their optimization
objective imposes a strong pressure to craft a proper (Gaussian)
distribution over latent variables in addition to reconstructing
data samples (in the case of the GAN-AE, the pressure comes
from forcing the discriminator to distinguish between fake and
real latent variables). Interestingly enough, we see that the
GNCN-t2-LX and GNCN-PDH obtain competitive log-likelihood
with the GVAE-CV, GVAE, and GAN-AE with the GNCN-PDH
yielding the best log-likelihood out of all GNCN models for all
four datasets. Notably, the GNCN models result in the best
reconstruction across all four datasets, with the GNCN-t1-X/
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Table 1 Reconstruction and likelihood measurements: Generative modeling results across datasets.
Model BCE log p(x) BCE log p(x)

MNIST KMNIST
GMM - —18537+0.47 - —426.73+£1.03
RAE 60.94 +0.58 —117.01£0.18 175.60 £ 0.51 —234.41£1.7
GVAE-CV 69.90+0.30 —106.41£0.06 180.81+1.05 —229.12+0.95
GVAE 75.52+£2.19 —100.10 £2.26 199.37+£0.91 —218.67 £ 0.43
GAN-AE 7354 +£3.49 —94.42 £ 0.07 199.68 £ 3.01 —216.76 £ 1.16
GNCN-t1/Rao 66.47 +0.07 —102.22+£0.02 136.49 £ 0.15 —226.37+0.19
GNCN-t1-Z 47.25 +0.19 —101.92+0.24 114.63 £ 0.35 —229.04+£0.52
GNCN-t2-LX 59.66 £0.02 —98.27+0.25 135.86 +0.17 —220.41+£0.22
GNCN-PDH 44.86 £ 0.05 —97.26 + 0.08 128.39 £ 0.23 —219.82+£0.64

FMNIST CalTech
GMM - —302.96+0.47 - —88.63+0.43
RAE 102.72+0.78 —138.76 £1.43 40.41£0.76 —-50.47 £2.07
GVAE-CV M1.71£0.13 —131.82+0.30 4958 £4.59 —4134+0.84
GVAE 121.62 £ 0.45 —127.64 £ 0.04 3835+£0.74 —44.07+0.24
GAN-AE 132.94 + 437 —130.87£1.80 40.40+0.74 —40.68+0.13
GNCN-t1/Rao 95.80+0.03 —136.63+0.47 34.60 £0.06 —44.62+0.13
GNCN-t1-2 81.73+0.42 —133.51£0.27 31.17 £ 0.02 —42.53+£0.06
GNCN-t2-L.2 97.80+0.71 —132.04+0.31 33.29+0.01 —41.52+0.06
GNCN-PDH 90.06 £ 0.38 —130.03 £ 0.16 26.76 £ 0.02 —40.82+0.20
The binary cross entropy (BCE) of the model reconstructions and the marginal log-likelihood log p(x) (in nats) on the test set are reported (lower BCE is better and log p(x) closer to 0.0 is better). We set
in bold font the best two scores across the set of models with respect to BCE (first column) as well as with respect to log p(x) (second column). Metrics are averaged over 10 trials—we report their mean
and standard deviation (note that GNCN-t1-X is the same as GNCN-t1-X/Friston and GNCN-t1 is the same GNCN-t1/Rao.).

Friston and GNCN-PDH offering the lowest BCE. On MNIST,
we note that the GNCN-PDH outperforms some other related
prior models*? that used our same experimental setup, e.g., a
restricted Boltzmann machine with logp(x) = —112nats, a
denoising autoencoder with logp(x) = —142 nats (trained via
backprop) and logp(x) = —116 nats (using the walk-back algo-
rithm). As indicated by our results, NGC’s sampling and
reconstruction ability are promising. Worthy of note, however,
is that we find that backprop-based autoencoders appear to do
better at matching the data’s class frequency than the GNCNs
studied in this article (see Supplementary Note 3).

As shown in Fig. 4, we measured the data efficiency of the
GNCN-t1-%/Friston, GNCN-t2-LX, and GNCN-PDH as well as
several representative backprop-models (RAE, GVAE, and GAN-
AE). Specifically, we train each model (to convergence) using a
subset of the training data of varying size (we created six versions
of each dataset’s training subset using either 2%, 10%, 20%, 50%,
75%, or 100% of the original sample), and plot final test BCE at
convergence (versus percentage of original data used on the x-
axis), for each of the models. Desirably, the result demonstrates
that the NGC models generalize better given varying amounts of
data, even with less data compared to the autoencoders. This
benefit is useful given that it offsets the higher per-sample
processing cost of the predictive processing models. Further-
more, in Fig. 5, we present random samples from each class
obtained from either: (1) the original dataset, (2) ancestrally
sampling the GAN-AE, or (3) ancestrally sampling the GNCN-
PDH. Note that we trained a well-regularized MLP classifier on
the original dataset and then used it to automatically annotate
the samples produced by each model. Observe that both the
GNCN-PDH and GAN-AE yield reasonably good-looking
sample images for all four datasets and the differences in
perceptual quality between the models’ sets of samples is
marginal. This is encouraging, given that our goal was to
demonstrate that an NGC model could be competitive with
backprop-based generative models (see Supplementary Table 1
for additional visualization of nearest-neighbor samples that
match an original data point for each class).

Neural generative coding yields strong downstream pattern
classifiers. All of the generative models that we have experi-
mented with in this paper are unsupervised in nature, meaning
that by attempting to learn a density estimator of the data’s
underlying distribution, the representations acquired by each
might prove useful for downstream applications, such as image
categorization. To evaluate each how useful each model’s latent
representations might be when attempting to discriminate
between samples, we evaluate the performance of a simple log-
linear classifier, i.e., maximum entropy, that is fit to each model’s
topmost latent variable using the labels accompanying each
dataset. For all models, we measure the classification error (Err),
as a percentage, on the test set of each benchmark in Table 2,
where the closer a model is to 0%, the better. In addition, we
provide, for context, the results of a simple, purely discriminative
baseline (the DSRN), which is simply a backprop-trained deep
sparse recitfier network®? that is constrained to have the same
number of synapses as the generative models. As we see in
Table 2, in terms of test error, the NGC models (GNCN-t1/Rao,
GNCN-t1-Z/Friston, GNCN-t2-L%, and GNCN-PDH) are com-
petitive with the purely discriminatively-trained DSRN and out-
perform all of the other generative models (even outperforming
the DSRN in one out of the four cases).

In Fig. 6a, we provide qualitative evidence that the latent
representations of NGC (GNCN-PDH) appear to yield a stronger,
natural separation of the test data points into seemingly class-
respective clusters as compared to the GAN-AE (which was one
of the best performing backprop-based models with respect to
both log-likelihood and reconstruction error). Again, we
emphasize that the GNCN-PDH acquired these representations
without labeled information, meaning that the class-based
relationships have emerged as a result of its very sparse neural
activities. This offers some promising evidence that an NGC
model’s representations offer benefits beyond the original density
estimation task, allowing reuse of the same system for down-
stream tasks like categorization.

We hypothesize that the GNCN-t2-LE/GNCN-PDH’s latent
codes make it easier for a linear classifier to separate out patterns

| (2022)13:2064 | https://doi.org/10.1038/s41467-022-29632-7 | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

225 - I RAE BN GNCN-t2-L%
GVAE N GNCN-PDH
200 - N GAN-AE GNCN-t1-3
~ 175-
%]
©
c 150 -
L 125 -
@]
[aa] 100 -
75-
N =
2“’/0 ld%& 20% 50% 75%
Subset Percentage (%)
c 240
I RAE BN GNCN-t2-L%
220- GVAE N GNCN-PDH
N GAN-AE GNCN-t1-3
200 -
Y 180-
©
£ 160-
L
Q 140-
[an]

120 -

100 -

80-
2% 10% 20% 50% 75%

Subset Percentage (%)

350 - EEE RAE BN GNCN-t2-L%
. GVAE I GNCN-PDH
Emm GAN-AE GNCN-t1-2

300 -

250 -

200 -

BCE (nats)

150 -

|

2% 10% 20% 50% 75%

Subset Percentage (%)

NN RAE B GNCN-t2-L%
GVAE I GNCN-PDH
Emm GAN-AE GNCN-t1-

140 -

120 -

100 -

80-

BCE (nats)

60 -

. ¥
\

2% 10% 20% 50% 75%

Subset Percentage (%)

Fig. 4 Data efficiency measurements. Test BCE loss measurements (lower is better) for pattern reconstruction on data subsets (measured in terms of
percentage % of the original database sampled, with data points being extracted randomly without replacement) of increasing size for a MNIST,

b KMNIST, ¢ FMNIST, and d CalTech. Curves depict the mean (solid line) and the standard deviation (lighter-colored envelope) over 10 trials. Plotted are
the resulting curves for three backprop-based autoencoder models, i.e., RAE, GVAE, and GAN-AE, and three neural generative coding models, i.e., GNCN-
t2-L¥, GNCN-PDH, and GNCN-t1-Z. (Note that GNCN-t1-X is also referred to as GNCN-t1-X/Friston.).

by category as a result of the fact that they are sparse. Crucially,
the lateral structure of these models creates columns of neural
processing units that fight for the right to explain the input,
meaning that only a few within a group would be active when
processing particular patterns. To quantity this sparsity in the
GNCN-t2-LY/GNCN-PDH, we measure and report in Table 3
the (mean) proportion p of neurons at layer ¢ that were active
(we counted whether each unit for a given pattern satisfied z! > ¢,
where ¢ = 1e=©) in each model on each dataset. We compare this
to the GNCN-t1-3/Friston>, one of the best performing GNCNs
that used a kurtotic prior to induce sparsity, and observe that the
lateral inhibition/excitation in both the GNCN-t2-L¥ and
GNCN-PDH greatly reduces the amount of neural firing required
while still allowing the models to obtain top performance.
Furthermore, the number of active neurons is lower in deeper
layers, with 16-18% sparsity for all datasets in the top layer z3 for
the GNCN-t2-LX. Notice that the GNCN-PDH appears to exhibit
activities that are a bit less sparse than the GNCN-t2-LX (though
still far more sparse than GNCN-t1-2/Friston model), although
this small increased usage of neural resources appears to have
contributed to the GNCN-PDH’s overall better performance in
reconstruction and log-likelihood, as indicated by the previous set
of experiments. We believe that the GNCN-PDH’s structured
form of sparsity aids it in modeling input, i.e., yielding strong
likelihood and reconstruction error, facilitating better separation
of nonlinear data, and opening the door to designing models that
more directly adhere to homeostatic constraints similar to those
imposed by the brain. Though models like the GAN-AE, GVAE,
and GVAE-CV reach good log-likelihoods too, it is possible that
since their learning process focuses on shaping their latent spaces
to dense, multivariate Gaussian distributions, there is a decreased
chance for useful sparsity to emerge as a by-product, reducing the
possibility that the latent space might result in beneficial side-
effects.

From a neurobiological perspective, it is well-known that
lateral synapses often facilitate contextual processing** and offer a
natural form of activity sharpening®>. We believe that this is an
important structural prior that biases an NGC model, such as the
GNCN-1t2-LX or GNCN-PDH, towards acquiring more econom-
ical representations*®, where progressively fewer neurons at layers
progressively farther away from the input stimulus work to
encode information (or are non-zero). Much like the more recent
incarnations of spike-and-slab coding?’, our form of structurally-
enforced sparsity has a much stronger regularization effect on the
model and ensures that the generative distribution of the neural
activities is truly sparse. This is unlike more traditional
approaches where sparsity is weakly enforced through the use
of factorial kurtotic priors applied during inference3>48. Our
NGC frameowrk not only yields naturally sparse codes but also
offers flexibility in exploring other types of lateral connectivity
patterns beyond the choice made in this study.

Neural generative coding can conduct pattern completion.
Another interesting ability attributed to auto-associative memory
models is their ability to complete partially-corrupted or
incomplete patterns. In the real world, this type of scenario would
often occur in the form of object occlusion, where the view of an
object might be partially obstructed from the agent’s view. Being
able to imagine the rest of the object might prove useful when
planning to grasp it or manipulate it in some fashion. To test each
model’s ability to complete patterns, we conducted an experiment
where the right half of each image in each dataset was masked
and each model was tasked with predicting the deleted portions.
In Table 2, we report the masked mean squared error (M-MSE,
see “Methods”) of each model on each dataset’s test set.
Interestingly enough, we see that the NGC models outperform
the other baselines in terms of pattern completion (with GNCN-
t1-X/Friston and GNCN-PDH offering the most competitive
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Fig. 5 Model sample visualization. Shown are samples from models with overall best BCE-log p(x) balance (each column corresponds to one class). Top
row shows dataset samples (DATA), middle row shows adversarial autoencoder (GAN-AE), and bottom row shows neural generative coding (GNCN-
PDH) samples. Columns are arranged, left to right, as: a MNIST, b KMNIST, ¢ FMNIST, and d CalTech.

performance, with respect to measured M-MSE). We furthermore
provide some examples of original data patterns that were
masked in Table 2b (the masked patterns appear in the first row
of each dataset’s image table) contrasted with the GNCN-PDH’s
completed patterns (the completed patterns appear in the second
row of each dataset’s image table). We hypothesize that an NGC
model’s ability to conduct pattern completion better than the
autoencoder models is due to its iterative inference process.

Discussion

Generative models based on artificial neural networks (ANNSs)
have yielded promising tools for estimating and sampling from
complicated probability data distributions”-8. By re-considering
how these models might operate and learn, drawing inspiration
from one promising neuro-mechanistic account of how the brain
interacts and adapts to its environment, ie., predictive
processing?, we have shown that learning a viable generative
model is possible. Specifically, we propose the neural generative
coding (NGC) computational framework for learning neural
probabilistic models of data, implementing several concrete
instantiations of NGC which we labeled as generative neural
coding networks (GNCNSs). In our experiments, we observe that
the GNCNs are not only competitive with several powerful,
modern-day backprop-based models in estimating the marginal
distribution of the data but that they can generalize beyond the
task they were originally trained to do. Specifically, we investi-
gated the performance of all of these models on downstream tasks

such as pattern completion and pattern categorization and dis-
covered that the unsupervised NGC models outperformed all of
the examined backprop-based baselines and were even competi-
tive with an ANN that was directly trained to specialize for
classification. As a result, for systems as complex as probabilistic
generative models, we have demonstrated that crafting a more
fundamentally brain-inspired approach to information processing
and credit assignment can yield artificial neural systems that
extract rich representations of input data in an unsupervised
fashion. Our results also demonstrate, on four datasets, that even
though extra computation is needed to process each input for a
fixed (yet small) stimulus presentation time, the NGC models
converge sooner than comparable backprop-based ones, gen-
eralizing well earlier.

To offer additional insight into what an NGC model’s inter-
mediate representations might be doing, we examined, using the
MNIST dataset, the generative synaptic weights for each layer of a
trained model, of which the visualization results for the bottom
layer (where z! predicts z0) are shown in Table 4 (see Supple-
mentary Note 8 for details of the analysis). Upon examination of
these synapses, we observe that a GNCN-t2-LX appears to learn a
latent command structure in its upper layers (layers 9t* and 9 —
these appear to provide maps for turning off or on state neurons
in the level below) that work in tandem to drive a dynamic
composition of low-level visual features in layer 9t'. In Fig. 6b, we
illustrate, based on these findings, how these higher-level maps
appear to interact with the layer ' features, ultimately
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Table 2 Downstream performance across datasets.

(a) Model | Err (%) M-MSE Err (%) M-MSE __ (b) MNIST

DSRN 193 £0.04 - 10.02 £ 0.08 - 0 A

RAE 11.99+ 047 22.104+1.44 39.324+0.95 30.69 +0.45

GVAE-CV 17.25+0.50  20.37 £0.15 40.22 £0.05 23.69£1.61 ﬂ

GVAE & 9.13 £0.18 20.06 +0.57 | & 48.09+2.32 31.0440.26

GAN-AE £ 13.03+1.68 15.87+0.24 Z 38.66+0.87 22.97+0.94 KMNIST

GNCN-t1 S 857+£0.03 454+001 | F 30.75+£0.06 9.16+ 0.022 H

GNCN-t1-% 5.40 £0.01 3.11 +£0.02 22.894+0.59 7.64+0.08

GNCN-t2-LY 2.38 £ 0.04 4.15+0.02 15.45+043 9.231+0.02 rj

GNCN-PDH 2.284+0.04 3.04+0.02 17.01 +£0.32 8.43+0.04

FMNIST

DSRN 9.75 £ 0.09 - 31.56 + 0.01 - LI

RAE 25.14£0.24 56.83+0.73 38.10+0.49 23.56+0.91 =

GVAE-CV 24.19+0.24  53.46 £ 2.39 38.64£1.69 27.224+1.43 .a‘.‘}ﬁ m

GVAE 5 30.27+0.57 50.81+4.63 | 5 40.36 £0.43 24.08+2.31

GAN-AE Z 24.67+£0.35 42.31 4 3.82 é 37.34+1.01 19.47+0.88 CalTech

GNCN-t1 E 20.28 £0.01 6.81+0.01 | S 34.234+0.01 2.11+0.03 ! n

GNCN-t1-X 1778 +£0.12 6.01+0.04 30.60 £0.28 1.97 +£0.01

GNCN-t2-LY 16.85+0.04 7.46 +0.05 29.11+0.37 223+0.04 A A

GNCN-PDH 1711+ 0.26  6.01 +0.02 29544018 1.82+0.01 vl i
(a) The classification error (Err) of a log-linear model fit to each model’s latent codes and the masked mean squared error (M-MSE) of the model's pattern completion ability on the test set are reported
(lower is better—the two best scores are shown in bold font with respect to each metric/column). Metrics are averaged over 10 trials—we report their mean and standard deviation. (b) For each database,
we present for MNIST, KMNIST, FMNIST, and CalTech (in order from top to bottom) two randomly selected image patterns (from each dataset's training split), which are shown in the first row of each
ga’\t‘acs,\eﬁ'é/t;t;:,)fmd the GNCN-PDH's completion of these patterns, displayed in the second row of each dataset’s table (note that GNCN-t1-X is the same as GNCN-t1-X/Friston and GNCN-t1 is the same

composing a final output image by super-imposing an intensity-
weighted set of low-level features (this final output is shown in
the Output column of Table 4).

How the brain conducts credit assignment is a fundamental
and open question in both (computational) neuroscience and
cognitive science. There are many theories that posit how this
might happen and our proposed NGC framework represents a
scalable, computational instantiation of only one of them, the
theory of predictive processing, suggesting that cortical regions in
the brain communicate prediction errors and/or predictions
across different regions through a hierarchical message passing
scheme®®. Observe that the direction that this study takes is one
that starts from cognitive neuroscientific concepts and ends in the
development of a statistical learning algorithm. Specifically, we
have shown that one way of emulating some neurobiological
principles yield agents that learn more general-purpose repre-
sentations, as our results on downstream classification and pat-
tern completion provide evidence for. As for implications for
computational neuroscience itself, while an NGC model can
embody concepts such as lateral competition-driven sparsity,
hierarchical message passing, and local Hebbian-like synaptic
adjustment, our framework lacks many important details that
might allow it to serve as a means to make falsifiable claims that
can be proven or disproven by neurobiological experiments. In
addition, NGC models suffer from other criticisms of predictive
processing in general—for example, it currently requires a one-to-
one pairing of error neurons with state neurons>? (though this
can potentially be resolved by decoupling the error neurons and
introducing an extra synaptic weight matrix that connects a pool
of error neurons of one size to a pool of state neurons of a
different size). However, if the NGC framework is modified sig-
nificantly to more faithfully model neurobiological details, e.g.,
synapses are constrained to take on only non-negative values and
neurons communicate via spike trains (for example, the NGC
could work with leaky integrate-and-fire neurons, similar to the

model of ref. 31), it could serve as a means to facilitate refinement
of predictive brain theories such as predictive processing* and
principles such as free energy!. Doing so could facilitate stronger
synergy between neural computational modeling and the design
of agents that solve complex tasks examined in statistical learning.

Given the difficulty in imagining how backprop, in the form it
is implemented when training deep ANNSs today, might occur in
the brain®!3, there is value in not only developing approxima-
tions of it that might be more brain-like (moving machine
learning a bit closer to computational neuroscience) but also in
exploring alternatives that start from neuro-cognitive principles,
theories, and mechanisms, creating new algorithms that embody
particular ideas in cognitive neuroscience at the outset. Taking
the second of the last two directions, which is in the spirit of this
work and several others®2°3, might allow us to more easily shed
the constraints imposed by backprop in the effort to construct
general-purpose learning agents capable of emulating more
complex human cognitive function. Doing so might also allow the
machine learning community to make further progress on pro-
blems even harder than generative modeling, such as the problem
of learning from sparse reward signals (active inference®*°>) and
continual temporal prediction?.

Methods

Datasets. All of the datasets used in this paper, except for CalTech 101, which
already contained binary images, contained gray-scale pixel feature values in the
range of [0,255]. The images in these databases were first pre-processed by nor-
malizing the pixels to the range of [0, 1] by dividing them by 255 and finally
converted to binary values by thresholding at 0.5 as in ref. 42.

The MNIST dataset® contains 28 x 28 images containing handwritten digits
across 10 categories. Fashion MNIST (FMNIST)>, which was proposed as a
challenging drop-in replacement for MNIST, contains 28 x 28 gray-scale images
depicting clothing items (out of 10 item classes). Kuzushiji-MNIST (KMNIST) is
another 28 x 28 image dataset containing hand-drawn Japanese Kanji charactersS.
The Caltech 101 Silhouettes database® contains 16 x 16 binary pixel images across
100 different categories. Each training subset had 60,000 samples and the testing
subset had 10,000 (the standard test split of each dataset was used in this paper),
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Fig. 6 Examination of model latent activities. a t-SNE plot of latent codes of the GAN-AE and GNCN-PDH on the MNIST database. b lllustration of an
NGC network composing the digit zero that was randomly sampled from the MNIST database (all the feature maps shown in this image have been
extracted from one of the GNCN-t2-LZ models trained on MNIST). Note that layers 2 and 3 (22 and z3) control a hierarchical neuron selection pathway
which leads to excitation (turning on) or suppression (turning off) of certain low-level neurons in layer 1 (2') that contain visual features that are super-
imposed to generate a final output image. The image maps shown corresponding to z2 and 23 are visualized synaptic weight vectors that appear to serve as
blueprints for choosing units (white indicates neurons to excite and black indicates neurons to suppress, after normalization was applied to the original
maps and values lower than a threshold of 0.5 were set to black). Red squares have been added to indicate the neurons with some of the highest activity
values that select the most important visual features that will be used to compose a final output predicted image.

Table 3 Latent sparsity measurements.

GNCN-t1-X/Friston GNCN-t2-LX GNCN-PDH
P Pz o3 P Pz 0 Pa Pz o
MNIST 0.74 0.60 0.63 0.21 018 0.16 0.22 0.21 0.19
KMNIST 035 0.50 0.67 0.24 0.21 018 0.26 0.24 0.21
FMNIST 0.41 0.44 0.68 0.21 0.20 0.18 0.24 0.22 0.20
CalTech 0.50 0.68 0.69 0.21 0.19 0.17 0.25 0.23 0.20

Sparsity levels in the GNCN-t1-X/Friston® versus the GNCN-t2-LE and GNCN-PDH. pl indicates sparsity for layer # in each model on each of the four databases—p]7 is the measured sparsity level for the
first layer of latent neural activities, pg is the sparsity level of the second layer, and pﬁ is the sparsity level for the third layer (sparsity analysis was performed using all data samples in the training set.).

with the exception of Caltech 101, which had 8596 training samples and 2302 test
samples. A validation subset of 2000 samples was drawn from each training set to
be used for tuning model meta-parameters (the Caltech validation subset had
2257 samples).

Baseline model descriptions. The baseline backprop-based models implemented
for this article included a regularized auto-associative (autoencoding) network
(RAE), a Gaussian variational autoencoder with fixed (spherical) variance (GVAE-
CV)%, a Gaussian variational autoencoder (GVAE)?, and an adversarial auto-
encoder (GAN-AE)®L. All models were constrained to have four layers like the
NGC models. For all backprop-based models, the sizes of the layers in between the
latent variable and the input layer z° were chosen such that the total synaptic
weight count of the model was (at most) approximately equal to the GNCNs
(autoencoder layer size was tuned on validation data), the linear rectifier was used
for the internal activation function, i.e., ¢¢(v) = max(0, v), and weight values (for
the encoder and decoder) were initialized from a centered Gaussian distribution
with a standard deviation o that was tuned on held-out validation data. To further
improve generalization ability, the decoder weights of all autoencoders were reg-
ularized and some autoencoder models had specific meta-parameters that were
tuned using validation data. Notably, the GAN-AE was the only model that
required a specialized gradient descent rule, i.e, Adam®2, in order to obtain good
log-likelihood and to stabilize training (stability is a known issue related to
GANs?). Finally, we implemented an optimized Gaussian mixture model (GMM)
baseline model that was fit to the training data via expectation-maximization with
the number of mixture components chosen based on preliminary experiments that
yielded best performance. The only GMM implementation detail worthy of note

was that we clipped the images sampled from the mixture model to lie in the range
[0, 1] (which improved likelihood slightly).

Experimental setup and task design

Training setup. The parameters of all models, whether they were updated via
backprop or by the NGC learning process, were all optimized using stochastic
gradient descent using mini-batches (or subsets of data, randomly sampled without
replacement) of 200 samples for 50 passes through the data (epochs). For the
backprop-based models, we re-scaled the gradients!® by re-projecting them to a
Gaussian ball with radius of 5.0, which we found ensured stable performance across
trials. For each model, upon completion of training, we fit a Gaussian mixture
model (GMM) to the topmost neural activity layer (to serve as the model prior).
This density estimator was trained with expectation-maximization and contained
K =75 components, where each component k € K defines a multivariate Gaussian
with mean gy and covariance % parameters as well as a mixing coefficient 7.

The density modeling task. Given a dataset X € {0, 1}P%S, where S is the number of
vector pattern samples and D is the dimensionality of any given pattern, the goal is
to learn a density model of p(X), or the probability of sensory input data, where a
subset of B vectors is denoted as x € {0, 1}P*B. We parameterize the probability
distribution p(X) via pe(X) by introducing learnable parameters ©. Since com-
puting the marginal log-likelihood log p¢,(X) directly is intractable for all the
models in this paper, we estimate it by calculating a Monte Carlo estimate using
5000 samples according to the recipe: (1) sample the GMM prior, (2) ancestrally
sample the directed neural generative model (whether it is a baseline or a GNCN)
given the samples of the prior.
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Table 4 Feature composition analysis of the generative neural coding network.

Class Data Output Top Selected Features
gl o
o

-0

@ B

- 8 o

were set to black in order to improve the clearness of extracted features.

The Class column shows the class label (string/identifier) of a sample (randomly selected) from MNIST, the Data column depicts the original pattern image, and the Output column presents the weighted
super-position of the 30 layer 1 synaptic weight vectors (we only visually present the top 11 in the Top Selected Features column) associated with the 30 state neurons with highest activity when
reconstructing the original data point. Note that the feature maps here were extracted from a GNCN-t2-LX trained on MNIST and were first normalized and then values lower than a threshold of 0.5

The reconstruction metric, binary cross-entropy (BCE), also known as the
negative Bernoulli log-likelihood, was computed as follows: BCE(X, X) =
=18 3P (X log(Xy) + (1 — X, log(1 — X)) (measured in nats). X €
{0, 1}P*S is the predicted sensory input (matrix) produced by a model under
evaluation.

The pattern completion task. For this task, we test each model’s ability to complete
patterns where the images of each dataset were partially masked and each model was
tasked with completing the masked images. Specifically, half of each image x (con-
taining /D columns of /D pixels) was masked according to a binary mask m where
+/D/2 columns were set to 1 and the rest to 0, i.e., X,, = x @ m. We report the masked
mean squared error (M-MSE) of each model on each dataset’s test set, which is
computed per image as follows: M-MSE (X, XM =(X-X)0o(1- M))T (X -
X) ® (1 — M)) (measured in nats), where M € {0, 1}P*S is a masking matrix where
each column contains one mask vector m per image vector x.

The classification task. In this task, each model’s prediction error is measured on
the test sample’s label set. This is possible given that each dataset X also comes with
a set of target annotations that we encode into a C-dimesnional space, yielding the
binary label matrix Y € {0, 1}°*P (one label vector per sample), where C is the

number of unique categories labeled a priori. We measure the classification error

(Err) (as a percentage %) on the test set, as follows:

. 1 D 1 y,=
Err(Y,Y):(l—fz{ Y yd>*100
D=0 J#y,

where, for the dth data sample, y; = arg max(Y:‘d) is the class index chosen by the
c
model and y; = argmax(Y. ;) is the index of the actual class label. The subscript

symbol :,d indicates that we extract the dth row from a matrix, e.g., Y. Note that
Y € RY*P is the collected set of predictions from the linear classifier fit to a
model’s latent space. The final score is multiplied by 100 to obtain a

percentage value.

Neural generative coding model procedures. In this section, we detail the
sampling and image completion procedures for the GNCN models.

Sampling from the model. Since the optimization procedure, whether via gradient
descent or another method, is not guaranteed to find globally optimal parameter
settings (since the objective function is not convex), the distribution of the latent
state zL of the final layer will not be Gaussian. To estimate it, after training on the
data, we obtain the corresponding z¢ value for each data point x;. We fit a Gaussian
mixture model to this collection of values z, ... ,z}, (where D is the number of
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training points). Then, in order to reduce variance during sampling, we take the
following approach. First, we sample z" from the Gaussian mixture model,
recursively set z'~! < g~ (W' - ¢/(z") + @, (M1 . ¢F1(z*1))) and output 0.
This is similar to how variational auto-encoders are sampled in practice, where the
input is a Gaussian and the output is the mean vector.

Image completion. In the event that an incomplete sensory input x is provided to an
NGC model, i.e., portions of x are masked out by the variable m € {0, 1}°* !, we
may infer the remaining portions of x by utilizing the output error neurons of any
GNCN and treating its bottom sensory layer z0 as a partial latent state. Specifically,
we update the missing portions, i.e, 1—m, of z¥ as follows:

=xOm+ (zo—i-ﬁ(—%)) O(1l-m=xOm+ (zo—ﬂeO)Q(l—m).
19

Programming. The experiments, the baseline models, and the proposed compu-
tational framework were written in Python, using the Numpy and TensorFlow 2
libraries. Experiments were sped up using a GPU card.

Data availability
The datasets, i.e., MNIST?®, Fashion MNIST>’, NotMNIST®3, and Caltech 101
Silhouettes®, used by this study are publicly available.

Code availability
All code used for the training and analysis of the NGC models is available at the link:
https://github.com/ago109/ngc-learn.
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