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ABSTRACT

A decline in soil biodiversity is generally considered to be the reduction of forms of life
living in soils, both in terms of quantity and variety. Where soil biodiversity decline
occurs, it can significantly affect the soils’ ability to function, respond to perturbations
and recover from a disturbance. Several soil threats have been identified as having
negative effects on soil biodiversity, including human intensive exploitation, land-use
change and soil organic matter decline. In this review we consider what we mean by
soil biodiversity, and why it is important to monitor. After a thorough review of the
literature identified on a Web of Science search concerning threats to soil biodiversity
(topic search: threat* “soil biodiversity”), we compiled a table of biodiversity threats
considered in each paper including climate change, land use change, intensive human
exploitation, decline in soil health or plastic; followed by detailed listings of threats
studied. This we compared to a previously published expert assessment of threats to
soil biodiversity. In addition, we identified emerging threats, particularly microplastics,
in the 10 years following these knowledge based rankings. We found that many soil
biodiversity studies do not focus on biodiversity sensu stricto, rather these studies
examined either changes in abundance and/or diversity of individual groups of soil
biota, instead of soil biodiversity as a whole, encompassing all levels of the soil food web.
This highlights the complexity of soil biodiversity which is often impractical to assess in
all but the largest studies. Published global scientific activity was only partially related
to the threats identified by the expert panel assessment. The number of threats and the
priority given to the threats (by number of publications) were quite different, indicating
Submitted 16 October 2019 a disparity between research actions versus perceived threats. The lack of research effort
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Published 12 June 2020 in key areas of high priority in the threats to soil biodiversity are a concerning finding
and requires some consideration and debate in the research community.
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Figure 1 Simple model showing the effect of a perturbation on the resistance and resilience of a soil
biological function or property. Higher biodiversity is thought to correspond to high resistance and re-
silience. A loss of biodiversity is thought lead to a soil with lower resistance to a perturbation and lower ca-
pacity to recover.

Full-size &l DOI: 10.7717/peer;j.9271/fig-1

services is highly dependent on their biodiversity (Bardgett ¢ Van Der Putten, 2014;
Pulleman et al., 2012), to such an extent that soil biodiversity is often recognised as a
cornerstone for soil security (McBratney, Field ¢ Koch, 2014). The soil biota has its own
unique capacity to resist events that cause disturbance or change and a certain capacity
to recover from these perturbations. The capacity to recover from change is considered a
key attribute of biodiversity. Soils with higher biodiversity are thought to have an innate
resistance and resilience to change (Fig. 1). A loss of biodiversity can lead to a soil with
lower resistance to a perturbation and reduced capacity to recover (Allison ¢» Martiny,
2008; Downing et al., 2012).

The decline in soil biodiversity is generally considered to be the reduction of forms
of life living in soils, both in terms of quantity and variety (Jones et al., 2005). Wherever
soil biodiversity decline occurs it can significantly affect the soils’ ability to function
normally, respond to perturbations and the capacity to recover. Several soil threats have
been identified as having negative effects on soil biodiversity, including human intensive
exploitation, land-use change and soil organic matter decline (Gardi, Jeffery ¢ Saltelli,
2013).

Predictive maps describing the state of soil biodiversity, both in general and geographical
terms, exist in atlases of soil biodiversity (Jeffery et al., 2010; Orgiazzi, Bardgett ¢ Barrios,
2016) and at some local levels it is clear that soil biodiversity is in decline, at least for
some taxa. In addition, maps for particular organisms such as bacteria (Delgado-Baquerizo
et al., 2018), fungi (Tedersoo et al., 2014), nematodes (van den Hoogen et al., 2019) and
earthworms (Phillips et al., 2019) have also been constructed to aid in our understanding
of their global distributions.
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With the use of expert assessment, the authors of these atlases have highlighted 12
potential threats to soil biodiversity, which have subsequently been used to estimate the
magnitude and map potential threats to soil biodiversity (Jeffery ¢ Gardi, 2010; Orgiazzi,
Bardgett & Barrios, 2016). These were, in order of weighting by experts in Jeffery & Gardi
(2010): (1) Human intensive exploitation; (2) Soil organic matter decline; (3) Habitat
disruption; (4) Soil sealing; (5) Soil pollution; (6) Land use change; (7) Soil compaction;
(8) Soil erosion; (9) Habitat fragmentation; (10) Climate change; (11) Invasive species;
and (12) GMO pollution. Orgiazzi, Bardgett ¢ Barrios (2016) combined information from
ranked soil threats with ad-hoc proxies, to determine the spatial distribution of threats on
soil microorganisms, soil fauna, and functions for 27 countries across Europe (although
habitat disruption was replaced with soil salinization). A large proportion of these soils
(more than 40% in 14 of the countries) were categorized as having moderately high to high
potential threats to biodiversity and function, with arable soil most at risk.

After discussing what we mean by soil biodiversity, and why it is important to monitor,
this review will discuss whether emphasis in the literature surrounding threats to soil
biodiversity reflects the results of this expert assessment. In addition, we will identify
whether there have been any emerging threats in the 10 years following these knowledge
based rankings.

METHODS

Using Web of Science a basic literature search was conducted with the ‘topic’ field. A topic
field search will examine the title, abstract and keywords of every record. This review used
the search term: threat* “soil biodiversity” on 27th November 2019, which returned 72
results. Note the key and specific term soil biodiversity was used rather than the generic
term soil biology, nonetheless, some of the references returned (particularly experimental
papers) often addresses the effects of certain threats on a single group of organisms or
species. Despite this, these studies were still included. The use of threat* will return records
that use the term threat, threats or threatened with soil biodiversity in the title, abstract
or keywords. We recognise that papers discussing negative effects may not all be returned
using the term “threat”. However, when the work considers sufficient damage or harm
is likely to be caused to soil biodiversity then the term “threat” will almost inevitably be
used. After datasets, duplicates, and references that were not relevant were omitted (e.g.,
studies on the human gut microbiome), 46 papers were left for review. Each reference was
studied in detail, and the potential threats to soil biodiversity that each paper identified
was compiled into a compressive table describing the type of study (experimental, review
or meta-analysis) and the threat(s) to biodiversity considered in the work.

DESCRIPTION OF SOIL BIODIVERSITY

Biodiversity itself is a relatively recent concept first used in 1988 (Wilson ¢ Peter, 1998) and
has been defined in different ways, but most simply put is the variety of life. Soil biodiversity
is generally defined as the variability of living organisms in soil and the ecological complexes
of which they are part; this includes diversity within species, between species and of
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Figure 2 Size classification of soil organisms. As body size increases, abundance decreases. Photos from
Global Soil Biodiversity Atlas (Orgiazzi et al. 2016); Credit: B Jakabek, Y Eglit, M Shaw, H Segers, L Galli,
A Murray, RR Castro Solar, T Tsunoda, S Franzenburg, D Hope, C Abbe.

Full-size & DOI: 10.7717/peerj.9271/fig-2

ecosystems (UNEP, 1992). For the purposes of soils, and its complexity of habitats a more
detailed definition should incorporate the variety and variability of living organisms along
with the ecological complexes in which they occur. This may encompass the following
definitions (after Jensen, Torn ¢ Harte, 1990) as: (1) ecosystem diversity considering the
variety of habitats that are in the soil, (2) species diversity where the variety and abundance
of different types of organisms inhabiting a soil (akin to taxonomic diversity), (3) genetic
diversity as the combination of different genes found within a population of a single
species, and the pattern of variation found within different populations of the same species
(can also be assessed across the whole community of organisms), (4) phenotypic diversity
based on any and/or all of the morphological, biochemical or physiological aspects of the
organism in the soil and is a result of genes and environmental factors, and (5) functional
diversity as the variety of functions performed by the soil biota (e.g., such as nitrification,
litter comminution and carbon turnover). On review of the 46 papers returned in our Web
of Science search, only species, functional and ecosystem diversity were discussed. With the
vast majority of the literature focussed on species diversity, although functional diversity
in the context of ecosystems was also addressed in c. 20% of the papers.

SPECIES DIVERSITY

At its simplest, the vast biodiversity of the soil can be divided into five major groups
(Fig. 2). These are: (i) microbes and (ii) microfauna with body widths of less than 100 pwm;
(iii) mesofauna with body widths between 100 wm and 2 mm; (iv) macrofauna and (v)
megafauna that are larger than 2 mm (Swift, Heal &~ Anderson, 1979; Wurst et al., 2012).
While the size boundaries for classification into micro, meso, and macro are universally
agreed, published groupings and classification can vary as some taxa cross size boundaries,
and may be interpreted in terms of body width or length (Colenian, Callaham & Crossley,
2018; Swift, Heal & Anderson, 1979).

The microbes are the smallest group in physical dimension yet the most abundant
and, despite their size, may comprise the largest biomass. The microbial community is
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the most diverse group of organisms, not only in the soil but arguably on the planet. The
major taxa comprise bacteria, archaea, fungi, protists and viruses (Fierer et al., 2007). The
biodiversity of soil bacterial communities alone is enormous where one gram of soil may
contain anything from ten thousand to ten million taxa (Gans, Wolinsky ¢ Dunbar, 20053
Torsvik, Ovres ¢ Thingstad, 2002; Tringe et al., 2005). The diversity and roles of microbial
symbionts (e.g., N-fixers and mycorrhiza) should not be underestimated as these are
key components of many terrestrial ecosystems (Chaia, Wall ¢& Huss-Danell, 2010; Hayat,
Ali & Amara, 20105 Kariman, Barker ¢ Tibbett, 2018). The protists are the most diverse
group and are single celled eukaryotes. They are primary and secondary consumers,
predominantly feeding on bacteria and fungi with some saprophytic taxa also present in
soil, and therefore have an important role in nutrient cycles through mineralization of
carbon, nitrogen, phosphorus and silica (Wurst ef al., 2012; Nielsen, 2019; Oliverio et al.,
2020). In addition, protists influence soil food webs and processes through their actions as
primary producers, predators of other eukaryotes, decomposers and parasites or pathogens
to larger flora and fauna (Oliverio et al., 2020) The microfauna consist of tiny soil animals
(<0.1 mm) that are dominated by three main groups Tardigrada, Nematoda and Rotifera.
They usually require water films or water filled pores to move around the soil and feed and
are therefore referred to as aquatic organisms (Nielsen, 2019; Wurst et al., 2012; Coleman,
Callaham & Crossley, 2018). The multicellular nematodes, which are small round worms,
are the most abundant animals on earth, accounting for around 80% of all animals on
land (Van den Hoogen et al., 2019). Nematodes have a wide range of feeding strategies and
may be microphagous as well as plant parasites (Nielsen, 2019). The Rotifera, which are
also multicelled, primarily feed on bacteria and algae (Wurst et al., 2012). The mesofauna
include arthropods, such as mites, collembola (springtails) and enchytraeids and many
other groups (Jeffery et al., 2010). They tend to occupy air-filled pores in soil and litter and
feed on the microbes and microfauna as well as plants and algae. The macrofauna includes
snails, slugs, earthworms, ants, termites, millipedes, woodlice and larger megafauna such
as moles, potoroos, wombats badgers and rabbits. Burrowing animals such as earthworms,
ants and millipedes create their own living space by burrowing into the soil and as such
can alter the soil. These groups are sometimes referred to as “ecosystem engineers” (Jones,
Lawton & Shachak, 1996; Lavelle & Spain, 2001).

There are several commonly used ways of assessing species diversity that are based on
calculated metrics or indices (Magurran, 2004). The most simplistic measure is species
richness which is simply the number of species present in the soil, or more accurately
in the sample(s) of soil taken. The problem with this metric is that common species are
found with little sampling effort and more with greater sampling effort. Therefore, this
is no longer recognised as a comprehensive measure of biodiversity. In order to avoid
this potential misinterpretation of diversity, numerous indices have been developed that
suit a variety of environmental and community circumstances (see Magurran (2004) for
a comprehensive discussion). Two biodiversity metrics are used commonly to calculate
relative abundance from proportions (p;) of each species (i) within the total number of
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individuals. Simpson’s Index:

D=1/Y p} (1)

where D equals diversity. For any number of species in a sample (S), the value of D can
range from 1 to S. As D increases diversity decreases so this index is usually expressed
as 1-D or 1/D. In contrast, the Shannon-Weaver Index (H) is a logarithmic measure of
diversity:

H =) plog.p; 2)

The higher H, the greater the diversity. Because H is roughly proportional to the
logarithm of the number of species, it is sometimes preferable to present data as e/, which
is proportional to the actual number of species.

The scale at which biodiversity is considered is also important, and the type of biodiversity
measured is dependent on whether comparisons are made with or between soils (habitats).
Alpha-diversity, or within-habitat diversity, refers to a group of organisms interacting
and competing for the same resources or sharing the same environment or soil. This is
measured as the number of species within a given area. Beta-diversity, or between-habitat
diversity, refers to the response of organisms to spatial heterogeneity. High beta-diversity
implies low similarity between species composition of different soils or habitats. It is usually
expressed in terms of similarity index between communities between different habitats
in same geographical area. Gamma diversity, or landscape diversity, refers to the total
biodiversity over a large area or region. It is the total of a and 3 diversity.

Loss of species diversity can often be hard to quantify especially at smaller scales as it is
likely that some species could be extinct before they are recorded or described (Jeffery ¢
Gardi, 2010). It is also difficult to establish whether unobserved microbes are extinct due to
the vast array of microhabitats they may occupy (discussed later). Moreover, in the context
of ecosystem services, it is important to determine whether all species are equally important
in carrying out certain functions, or whether some contribute more than others (Blouin et
al., 2013). Rare species can drive key processes, such as nutrient cycling, greenhouse gas
emissions and pollutant degradation (Jousset et al., 2017)

ECOSYSTEM DIVERSITY

Soils are remarkably complex and dynamic environments and hence typically comprise a
wide range of habitat types for organisms over a range of dimensions from micrometre
to the landscape scale (Berg, 2012; Foster, 1988; Oades ¢~ Waters, 1991). It is this highly
heterogeneous nature of soil, particularly at the microhabitat level, that is responsible for
its considerable biodiversity (Jeffery et al., 2010). Biological activity can take place in the
soil pores, aggregates, detritus, rhizosphere and the drilosphere (Nielsen, 2019).

As described by Six et al. (2004), there are four different soil pore classifications, which
are home to different microorganisms: (i) macropores (home to microarthropods);
(ii) pores between macroaggregates (nematodes); (iii) pores between microaggregates,
within macroaggregates (protists, small nematodes and fungi); and (iv) pores within
microaggregates (bacteria).
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Figure 3 Jenga™ analogy for functional diversity. (A) A stable tower represents the function of the sys-
tem and each of the blocks represent a species, a number of species in the system contribute to the func-
tion; (B) some species can be removed during a disturbance but the overall function of the system can still
be maintained (i.e. some bricks can be removed without the tower falling) however (C) some species may
have more importance in maintaining the function compared to others, or there may be a critical limit
where too many species are removed which will lead to (D) collapse of the systems function.

Full-size Gal DOI: 10.7717/peerj.9271/fig-3

FUNCTIONAL DIVERSITY AND ECOSYSTEM SERVICES

Functional diversity considers the variety and number of taxa that undertake contrasting
functional roles in the soil. Measuring diversity in this way allows an emphasis on the
function of biodiversity within an ecosystem, rather than the specific species that comprise
the diversity. Species diversity is thought to be important because it is synonymous with
ecosystem health, leading to ecosystem supporting functions, and ultimately ecosystem
services. However, there is often considerable functional redundancy in soil (Walker,
1992; Wellnitz ¢ Poff, 2001), primarily due to its tremendous heterogeneity. Functional
redundancy within a soil is where certain species contribute in equivalent ways to precise
functions, such that one species may substitute for another (Fetzer et al., 2015; Louca et
al., 2018). In effect this means the loss of taxonomic diversity may not necessarily lead to
the loss of soil functions as more than one species may be performing the same task (e.g.,
decomposition of an organic compound), or have the same functional niche (Rosenfeld,
2016). The analogy of the game Jenga™ is often used in this instance (Fig. 3), where pieces
can be removed and replaced, with the stability of the tower depending on the importance
of the pieces that are being removed (De Ruiter et al., 2005).

A review of soil biodiversity relationships with C cycling by Nielsen et al. (2011) compiled
studies where species richness was manipulated to observe changes in C dynamics. They
reported that in low diversity systems, there was a positive relationship between C cycling
and richness, with indications that community composition and loss of species with
specialized functions in soil may have a greater effect on C dynamics (Nielsen et al., 2011).
In addition, organisms may not necessarily occupy the same ecological niche. A loss of
one of two species of equivalent function may be a form of functional debt where one
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species niche that is lost from a soil may be more competitive or have a wider niche, able to
function when the second species may be uncompetitive or excluded from certain habitats
within the soil. (e.g., one species may not survive flooding). In this way taxonomic diversity
of species may remain significant. Functional debts can result from biodiversity loss for
example a reduction in decomposition caused by simplification of food webs (Haddad et
al., 2015). It is important to note that decomposition and C dynamics are only one of many
functions and services performed by soil biota. The concept of functional redundancy may
only consider the measure of a limited number of functions, thus overlooking specialized
functions that are performed by select groups of organisms. Metagenomic analysis and
further exploration into functional genes have the potential for providing insight into the
relationship between taxonomic diversity and functional diversity.

Several reviews have outlined the importance of soil biodiversity and their contribution
to ecosystem services in recent years for soil management (Barrios, 2007; Bender, Wagg
¢ Van der Heijden, 2016; Briones, 2014; Nielsen, Wall ¢ Six, 2015), the dynamics of soil
food webs (Morrién, 2016), and the risk of extinction (Veresoglou, Halley ¢ Rillig, 2015).
They all demonstrate that the activities of the soil biota are essential to provide many of
the ecosystem services that are considered typical of the wider landscape. These stretch
much beyond supporting the production of food and fibre and extend into issues such
as erosion control and pollution attenuation (Jonsson ¢ Davidsdéttir, 2016). The primary
functions of soil biota include (i) nutrient cycling; (ii) regulation of water flow and storage
(iii) regulation of soil and sediment movement; (iv) biological regulation of other biota
(including pests and diseases); (v) soil structural development and maintenance; (vi) the
detoxification of xenobiotics and pollutants; and (vii) the regulation of atmospheric gases.
These functions contribute to a range of ecosystem services such as: (1) provisioning
of food, fibre and biotechnology, (2) regulating climate, atmospheric composition, and
hydrological services, (3) supporting soil formation, habitat and biodiversity conservation
and (4) maintaining cultural services as natural capital (Brussard, 2012). The ecosystem
services concept provides an understandable and translatable outcome of the role of soil
biodiversity in a manner that allows people to recognise its impacts on their lives.

Developing a generic framework to assess the functions and services provided by
soils has been challenging, especially given the heterogeneity of soil and gaps in data
(Tzilivakis, Lewis ¢ Williamson, 2005). The complexity of the soil system means that we
still understand relatively little about its biology. Only ca. 1.5% of soil microorganisms
have been characterized (Baveye, 2009) compared to 80% of plants (Jeffery et al., 2010).
Despite these challenges, great advances have been made in recent years concerning our
knowledge of living biomass in the soil (Bardgett ¢ Van Der Putten, 20145 Nielsen, Wall ¢
Six, 2015; Wagg et al., 2014).

REVIEW OF 2010 (EXPERT DEFINED) THREATS TO SOIL
BIODIVERSITY

In order to identify a complete register of the potential threats to soil biodiversity published
in the journal literature a comprehensive search was completed on the Web of Science. The

Tibbett et al. (2020), PeerdJ, DOI 10.7717/peerj.9271 8/29


https://peerj.com
http://dx.doi.org/10.7717/peerj.9271

Peer

46 papers returned by Web of Science can be found in Table 1, which includes details of
the search terms. We were interested to compare how global scientific activity has related
to the threats identified by the expert panel in 2010. Although the term biodiversity was
explicitly stated in the search, the majority of the papers examined changes in abundance
and diversity of individual groups of soil biota, rather than soil biodiversity as a whole,
encompassing all levels of the soil food web.

The 12 identified threats to soil biodiversity, and the weightings given in the expert
assessment in Jeffery ¢» Gardi (2010) can be found in Fig. 4. We have also provided
information on the proportion of the 46 references that state each of these potential threats
in the text. The majority of focus in the literature on intensive human exploitation, and
the lowest on GMOs which is in concordance with the expert assessment. However, this
is where the similarities, in respect to order of priority, ends. Of the 12 threats to soil
biodiversity provided in the expert assessment in Jeffery ¢~ Gardi (2010), the four that are
most commonly specified in the literature are: (i) intensive human exploitation; (ii) land
use change; (iii) soil contamination; and (iv) climate change.

However, it is important to note that there have been other potential threats to soil
biodiversity that are not included in the Jeffery & Gardi (2010) expert assessment, such
as soil salinization and the emerging threat of plastics. Many also elaborate, for example,
what aspect of intensive human exploitation poses a threat to soil biodiversity, such as
the use of chemicals in agriculture (Table 1). These emerging threats, and specifics, may
influence mapping of threats to soil biodiversity in the future. In fact, the emergence of
soil salinization as a threat to soil biodiversity may have led to its addition to the expert
assessment and mapping in Orgiazzi et al. (2016).

IDENTIFYING DRIVERS AND THREATS TO SOIL
BIODIVERSITY

The threats identified in the literature (Table 1) can be categorised into five broad themes, in
order of the number of declarations in the 46 selected papers (Table 2): (i) Intensive human
exploitation, including intensive agriculture using tillage, chemical fertilisers, pesticides,
liming and GMOs; (ii) Land use change, including deforestation, conversion to agriculture,
soil sealing and habitat fragmentation and disruption; (iii) Soil degradation resulting in a
decline in soil health/ quality, such as organic matter decline, contamination, compaction,
erosion, salinization and loss of available nutrients; (iv) Climate change, particularly the
effects of a change in soil temperature and moisture; and (v) Plastics.

With these five threat categories in mind, further searches in Web of Science were
conducted, also on 27th November 2019, that focussed on each theme individually,
regardless of whether they included the word ‘threat’ or not (Table 3). For example,
“plastic*” & “soil biodiversity”. Climate change returned the most papers, followed by (in
descending order): land use change; intensive human exploitation; soil health decline; and
plastics (Table 3). The order shown in Table 3 differs from the number of declarations of
each category in the selected papers from the threat* “soil biodiversity” listed in Table
2. In particular, a far greater number of papers were returned for “climate change”
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Table 1 Threats identified in the literature. Threats declared in the 46 papers returned by Web of Science topic search threat* “soil biodiversity” on 27th November
2019. These are categorised (in rows) by whether they were either experimental (E), literature review (L) or meta-analytical (M) papers. The studies are categorised (in
columns) into broad “threat” issues considered in each paper including Climate Change, Land Use Change, Intensive Human Exploitation, Decline in Soil Health or Plas-

tic; followed by detailed listing of threats.
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E X Peerawat et al. (2018)
E X Conti et al. (2018)
E X X X X Schirmel et al. (2018)
E X X X X X Kostecka et al. (2018)
M X Ferlian et al. (2018)
L X X X X X X Techen & Helming (2017)
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E X X X Castafieda & Barbosa (2017)
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L X X X X X X Pagano et al. (2017)
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E X X X X X Schorpp & Schrader (2016)
E X X X X X X X X X X X X Orgiazzi, Bardgett ¢& Barrios (2016)
L X Agathokleous et al. (2016)

L X X X X X X X X Montanarella & Panagos (2015)
E X X X X Martin et al. (2015)

L X X X X X X X Acosta-Martinez et al. (2015)
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Figure 4 Findings of expert assessment of threats to soil biodiversity versus published literature on
threats to soil biodiversity. Grey bars represent expert assessment assessment weight (%) in Jeffery ¢
Gardi( 2010) black bars represent actual declarations in the journal literature.

Full-size & DOI: 10.7717/peerj.9271/fig-4

Table 2 Percentage of declarations within each threat category in the 46 papers returned by Web of
Science topic search threat* “soil biodiversity” on 27th November 2019.

Threat category % Publications mentioning threat
Intensive human exploitation 78

Land use change 72

Decline in soil health/ quality 70

Climate change 43

Plastics 4

¢ “soil biodiversity”. However, with the removal of the word ‘threat’ from the search
references are being returned that not only report the impacts of climate change on soil
biodiversity, but also the ecosystem services provided by soil biodiversity in terms of climate
change mitigation (e.g., Lubbers et al., 2019). From this broader bibliographic analysis, we
concluded that threats to soil biodiversity was the appropriate focus of this review, and the
use of the search term threat* “soil biodiversity” was therefore rational in this instance.

These five categories cannot be considered in isolation as they interact and influence
one another. For example, degradation of soil quality such as organic matter decline,
compaction etc. is often a result of land use change from productive ecosystems to intensive
agriculture. This makes quantifying soil threats very complicated.

Intensive human exploitation was the most commonly investigated threat category
in the literature search threat* “soil biodiversity” (Table 2), most probably because it has
knock-on effects on soil health which will impact soil biodiversity.
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Table 3 Major soil threat terms used in Web of Science searches (27th November 2019) and the num-
ber of results that were returned by each search.

Search term Number of papers returned
“climate change” & “soil biodiversity” 106

“land use change” & ”’soil biodiversity” 41

“intensive human exploitation” OR “intensive agriculture” 15

& ”soil biodiversity”

Decline in soil health & “soil biodiversity” 12

“Plastic” & “soil biodiversity” 12

Particular consideration was given to agricultural intensification, with 86% of the papers
stating intensive human exploitation as a threat referring to agricultural intensification.
The pressures that cause agricultural intensification include population growth, food
production disparities, urbanization, and a growing shortage of land suitable for agriculture
(FAO, 2017). Agricultural intensification has been shown to have a marked effect on soil
biodiversity across Europe (Tsiafouli et al., 2015). The agricultural techniques/management
that can lead to loss of soil biodiversity are monoculture cropping, removal of residues,
soil erosion, soil compaction (both due to degradation of the soil structure) and repeated
application of chemicals (Nielsen, Wall ¢ Six, 2015; Wachira et al., 2014). Discussion of
general use of chemicals, such as fertilizers and pesticides, account for the largest proportion,
of papers examined during this review, discussing agricultural intensification as a threat
to soil biodiversity (60%). The use of chemicals, as part of agricultural intensification, are
a significant cause of soil biodiversity loss, although the reported effects are not always
consistent. Pesticides can deplete or disrupt non-target invertebrate (e.g., earthworms)
and soil microbial communities, and associated functions such as nitrogen fixation and
nutrient uptake (Chagnon et al., 2015; Jordaan, Reinecke ¢ Reinecke, 20125 Mahmood et
al., 20165 Pagano et al., 2017). However, as a result of potential functional redundancy, it
is uncertain to what degree soil communities can absorb the effects of pesticides before
ecosystem services are impacted (Chagnon et al., 2015). Artificial liming has also been found
to impact on soil biodiversity as result of modification of soil pH. For example, bacteria
abundance and diversity was found to increase with increasing pH, as a result of liming
in arable soil (Rousk et al., 2010). A pH induced change in the microbial community will
then have a knock-on effect on whether bacterial or fungal feeding nematodes dominate
in a soil (Bongers ¢ Bongers, 1998).

Intensive soil management activities that disrupt the structure of the soil with heavy
machinery causing compaction, i.e., by increasing bulk density, reducing habitable pore
space, can influence the diversity of environments in which different microorganisms can
thrive (Hattori, Hattori ¢ McLaren, 1976; Janusauskaite, KadZiene ¢ Auskalniene, 2013).
Compaction of soil can also impact on larger burrowing fauna as burrowing compacted
soils requires more energy, at the expense of other activities such as foraging, mating etc.
(Martin et al., 2015). In addition, an increase in bulk density is often associated with a
decrease in organic matter and soil moisture content, which can also influence community
assemblages (Nielsen et al., 2014).
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Mechanical tillage, combined with agricultural lands being bare for long periods after
harvest, has been shown to increase instances of soil erosion by wind and water. Tillage
can also risk injury to larger soil fauna and anecic earthworms, for example (Schorpp &
Schrader, 2016).

Incorporation of organic residues into the subsoil during tillage will also influence
soil biodiversity. This is largely a result of varying metabolisms between organisms; for
example, input of fresh decomposable organic residues has a stronger effect on bacterial
communities because they are able to metabolise labile compounds quickly, therefore
dominating over other organisms (He et al., 2016; Marschner, Umar ¢ Baumann, 2011).
Enrichment opportunist nematodes, and endogeic earthworms will also thrive in systems
with fresh organic matter incorporation into a plough layer during tillage (Bongers ¢»
Bongers, 1998; Schorpp & Schrader, 2016).

Decline in soil health

Intensive human exploitation of soil often leads to subsequent deterioration in soil health
such as decline in organic matter, soil compaction, soil contamination and soil salinization,
resulting in a decline in soil biodiversity (Aksoy et al., 2017).

Decline in soil organic matter has been a general feature of tillage agriculture (Janzen,
2006) and C losses have been found to be occurring at a national scale in the UK, for
example (Bellamy et al., 2005). As the source of energy underpinning food-webs, C losses
from organic matter leads to reduced biodiversity (Aksoy et al., 2017).

Soil contamination can come from a variety of sources including agriculture, industry,
waste management and transport, and thus contamination can occur in both rural and
urban soils. Soil contamination has been shown to be detrimental to the soil community
on several occasions whether it be heavy metals (Huang et al., 2013), organic pollutants, or
atmospheric deposition of nitrogen (Shao et al., 2018).

Soil salinization has emerged as a threat to soil biodiversity. Soil salinization, as a result
of over-abstraction of ground water to meet demands of population growth, urbanisation,
agriculture and industry, and subsequent seawater intrusion, excess use of fertilizers and
municipal wastewater can lead to structural collapse of soil aggregates, reduction in organic
matter and soil erosion, which will negatively impact soil biodiversity (Daliakopoulos et al.,
2016). Water availability is significantly lower in saline soils, which will further compound
negative effects on soil biodiversity (Martin et al., 2015)

Land use change

Globally, more than half of native forest land cover has been converted to agricultural land
(Huang et al., 2013) and an estimated 2.3 million km? of forest was lost between 2000-2012,
the majority of which occurred in the tropics (Hansen et al., 2013). Deforestation in tropical
forests has been shown to negatively impact soil microbes, mesofauna and macrofauna
(Franco et al., 2019; Peerawat et al., 2018). Land use change that results in less diverse
vegetation assemblages such as conversion of semi-natural ecosystems to monocrop
agriculture will negatively impact soil biodiversity (Figuerola et al., 2015). Well established
semi-natural woodlands with a lot of deadwood, for example, are rich in microhabitat types
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and therefore increase ecosystem diversity (Napierala, Ksi azkiewicz-Parulska ¢» Bloszyk,
2018). Destruction of habitat, therefore, will favour species that have a wide range of
habitats and the ability to adapt to new conditions, outcompeting those that can only
survive within a narrow range of conditions (Kostecka et al., 2018).

Land conversion for agricultural activities is not the only threat posed to soil biodiversity.
Population growth, and subsequent urbanization of green spaces, has led to increased soil
sealing. An estimated 275 ha of soil sealing per day has been reported in EU countries,
decreasing soil biodiversity by blocking organic matter inputs and water infiltration
(Montanarella ¢ Panagos, 2015). Soil sealing in one area of a river catchment may also
lead to increased flooding and soil erosion elsewhere in the catchment causing additional,
indirect, threats to soil biodiversity.

Climate change

Climate change can impact soil biodiversity both directly and indirectly. Climate change
can alter the temperature and moisture regime of the soil thereby impacting soil biodiversity
(Aksoy et al., 2017; Hamidov et al., 2018). Climate change can also lead to extreme weather
events including heavy rainfall and drought, along with sea level rise. Therefore, climate
change can indirectly threaten soil biodiversity through increased soil erosion and
salinization, for example (Daliakopoulos et al., 2016; Hamidov et al., 2018). Climate change
has also led to cultivation of soils where agriculture was previously not possible, with
northward shifts of agricultural lands (King et al., 2018), including melting permafrost
soils (Hamidov et al., 2018). Furthermore, proposed mitigation strategies for greenhouse
gas emissions, such as amendment of soil with biochar could have an impact on soil
biodiversity. Biochar, as a source of C has shown to benefit soil microorganisms, however,
the effects on macroorganisms has not been examined to the same degree and contaminant
compounds in biochar have proven to impact survival and reproduction of Collembola
(Conti et al., 2018; Lehmann et al., 2011).

Plastics

Global production of plastics has increased significantly in the last 60 years rising from
1.7 million t in 1950 to 299 million t in 2013 (Duis ¢ Coors, 2016). Despite only a small
volume of literature to date on the threats of plastic to soil biodiversity, we believe this is
a potential emerging threat. Plastics can influence soil biodiversity in several ways both
directly and indirectly. Plasticulture in agriculture, using a polyethene film as a mulch layer
on the soil surface has been shown to reduce diversity soil invertebrates and soil microbial
activity as a result of change in temperature and moisture regimes (Schirmel et al., 2018)
and shift the microbial community towards thermophilic, anaerobic and detritivorus
species (Steinmetz et al., 2016). Moreover, plastic mulching may lead to increased runoft
of pesticides to the wider catchment area, adversely affecting soil biodiversity in the wider
environment (Steinmetz et al., 2016). Plastics can also act as a soil contaminant in their
own right, particularly small (>5 mm) fragments of plastic, known as microplastics.
Microplastics can occur as a product of decomposition of larger plastic waste (Cao et al.,
2017), including plastic mulching and polytunnels in agricultural land (Horton et al., 2017),
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or from products such as exfoliating facial cleansers (‘microbeads’), toothpastes, cleaning
agents and textile fibres entering wastewater and incorporated in sewage sludge which can
be applied to agricultural land (Bouwrmeester, Hollman & Peters, 2015; De Souza Machado

et al., 2018). Additives of plastic products (plasticisers, retardants, antioxidants etc.) and

adsorbed chemicals could also pose a potential threat to soil biodiversity as contamination
(Bouwmeester, Hollman ¢~ Peters, 2015; Chae ¢~ An, 2018).

Plastic pollution of the terrestrial and aquatic environment is currently receiving
worldwide attention in the media and research (Chae ¢ An, 2018), with aquatic systems
receiving much of the attention to date (Cao et al., 2017). However, soils are likely to be a
substantial sink for microplastic (Hurley ¢~ Nizzetto, 2018). In fact, agricultural soils alone
might store more microplastics than oceanic basins (Nizzetto ¢ Futter, 2016), with the
effects on soil biota widely unknown. Therefore, microplastics could be considered as an
emerging threat to soil biodiversity that is receiving increased research attention, and needs
continued research in the future (Rillig ¢ Bonkowski, 2018). Particularly as earthworms
have been demonstrated to transport microplastics through the profile, potentially exposing
other organisms in the subsoil to this new potential threat (Rillig, Ziersch ¢» Hempel, 2017).
The presence of microplastics in soil can also affect soil structure negatively, reducing
the stability of soil aggregates (Lehmann, Fitschen ¢ Rillig, 2019), which may in turn lead
to negative consequences for soil biodiversity. Recently it has also been postulated that
microplastics may have evolutionary implications for the soil biota generally which, if so,
may lead to unpredictable outcomes for the biodiversity in soil (Rillig et al., 2019).

The majority of studies to date on the negative effects of microplastics on soil biology
has focussed on earthworms (Huerta Lwanga et al., 2016) and springtails (Kim ¢ An,
2019; Maafet al., 2017). For example, Huerta Lwanga et al. (2016) showed that growth
rate and mortality of Lumbricus terrestris is influenced by ingestion of microplastics at
concentrations of 5% v/v and above. This microplastic concentration may seem high,
however, concentrations of microplastic were found to be as high as 6.7% in some
industrial areas of Sydney, Australia (Fuller ¢~ Gautam, 2016). Therefore, further research
on the effects of plastic pollution on soil dwelling invertebrates, insects, and microorganisms
need to be urgently considered if plastics are to be seriously considered as a threat to soil
biodiversity (Chae ¢ An, 2018).

CONCLUSIONS

Threats to soil biodiversity are many and varied, and the published literature has only just
begun to unravel the complexity of soil biological systems. We barely know what is there,
let alone their breadth of functional roles, niche partitioning and interaction between these
organisms.

Many biodiversity studies do not focus on biodiversity in its strictest sense, rather these
studies examined either changes in abundance and/or diversity of individual groups of soil
biota, rather than soil biodiversity as a whole, encompassing all levels of the soil food web.

Published global scientific activity was only partially related to the threats identified
by the expert panel in 2010. The number of threats and the priority given to the threats
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(by number of publications) were quite different, indicating a disparity between research
actions versus perceived threats. The lack of research effort in key areas of high priority in
the threats to soil biodiversity are a concerning finding and requires some consideration

and debate in the research community.
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