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ABSTRACT

Objective: Ceramide is a signaling molecule that contributes to insulin resistance and 
hepatosteatosis. In the present study, we activated de novo ceramide synthesis by inducing the 
hepatic expression of Sptlc2 to investigate the role of ceramide in glucose and lipid metabolism.
Methods: We first constructed an adenovirus containing Sptlc2 (AdSptlc2), which encodes 
a major catalytic subunit of serine palmitoyltransferase (SPT). We then infected hepatocytes 
and mice fed a regular diet with AdSptlc2 to activate de novo ceramide biosynthesis. The liver-
specific effects of ceramide biosynthesis on glucose and lipid metabolism were investigated 
by measuring changes in insulin signaling, lipid droplet formation, and very low-density 
lipoprotein (VLDL) secretion.
Results: In HepG2 hepatocytes, adenoviral Sptlc2 expression inhibited insulin signaling 
and increased ceramide levels via activation of c-Jun N-terminal kinase and serine 
phosphorylation of insulin receptor substrate 1. In contrast, in mice, AdSptlc2 infection 
decreased plasma glucose levels by downregulating gluconeogenic genes and increased 
plasma triglyceride levels by increasing VLDL secretion. In mice infected with AdSptlc2, 
glucose intolerance and insulin sensitivity improved, while pyruvate utilization via 
gluconeogenesis decreased.
Conclusion: Hepatic ceramide was found to modulate hepatosteatosis and the insulin 
response via increased VLDL secretion and inhibition of gluconeogenesis in vivo. Although 
inhibition of the insulin response was observed in vitro, the compensatory mechanism of 
relieving ceramide-induced stress and reducing ceramide levels resulted in improvements 
of glucose and lipid metabolic profiles in vivo. This discrepancy between in vitro and in vivo 
regulation mechanisms suggests that ceramide plays a role in non-alcoholic fatty liver disease 
and insulin resistance.
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INTRODUCTION

Obesity is an important risk factor and major cause of metabolic diseases, including diabetes, 
hyperlipidemia, hypertension, and coronary heart disease.1-3 Elevated plasma levels of free fatty 
acids (FFAs) induces their increased uptake by the liver and the development of non-alcoholic 
fatty liver.4 Elevated levels of FFAs are associated with the occurrence of insulin resistance and 
diabetes through the disruption of glucose and lipid metabolism in skeletal muscle, liver, and 
adipose tissue.5 In hyperlipidemic conditions caused by excess plasma FFAs, saturated fatty 
acids (FAs) are utilized to form specific lipid metabolites that can regulate cellular signaling and 
contribute to lipotoxicity, including lipid-induced organ dysfunction.6 These lipid metabolites 
include diacylglycerol (DAG), ceramide, or their metabolites, which activate serine/threonine 
kinases or phosphatases that inhibit insulin receptor substrate/protein kinase B (AKT)-
dependent insulin-signaling cascades in insulin-sensitive tissues.7

Ceramide, a sphingolipid metabolite, is a major component of the plasma membrane and 
lipoproteins. The de novo synthesis of ceramide is initiated by the condensation of serine 
and palmitoyl CoA. FAs are converted to ceramide via a series of reactions mediated by 
serine palmitoyltransferase (SPT), 3-ketosphinganine reductase, ceramide synthase, and 
dihydroceramide desaturase. This de novo sphingolipid biosynthesis is activated by excess 
cellular palmitate under hyperlipidemic conditions in ApoE-deficient liver tissue.8,9 Although 
this pathway is likely to be activated in the settings of obesity and diabetes, the mechanisms 
underlying its regulation remain unclear.

SPT, which catalyzes the rate-limiting step in the de novo ceramide biosynthesis pathway, 
is composed of 2 main subunits, Sptlc1 and Sptlc2, which encode 53- and 63-kDa proteins, 
respectively.10 Deficiency of Sptlc1 or Sptlc2 is lethal in mice, and only heterozygous mice 
or tissue-specific null mice are viable.11,12 Although a third SPT subunit, Sptlc3, has been 
reported, its function needs to be characterized further.13 Each SPT subunit is stabilized 
through the formation of a dimer or multimer in the endoplasmic reticulum, leading to 
activation of the enzyme and the production of ceramide.14

Increases in cellular ceramide levels via excessive production of FFAs activate protein 
phosphatase 2A and dephosphorylate AKT, inhibiting the insulin response.15 
Dephosphorylation of the pleckstrin domain of AKT prevents it from binding to 
3-phosphoinositides, which activate AKT.16 In summary, cellular glucose uptake is reduced by 
the ceramide-mediated inhibition of insulin signaling. Thus, ceramide synthesis is associated 
with the development of metabolic dysfunctions, such as insulin resistance, atherosclerosis, 
cardiomyopathy, and diabetes, and pharmacological or genetic interventions that inhibit 
ceramide biosynthesis alleviate these metabolic abnormalities.17-19

In this study, we investigated whether hepatic overproduction of ceramide could induce 
an insulin response. Adenovirus-mediated expression of Sptlc2 greatly increased 
hepatic ceramide levels, activating c-Jun N-terminal kinase (JNK) and resulting in the 
phosphorylation of insulin receptor substrate 1 (IRS1) at Ser312 in hepatocytes. Independently, 
increased ceramide levels induced the dephosphorylation of AKT. However, increased 
hepatic ceramide levels activated hepatic very low-density lipoprotein (VLDL) secretion in 
the liver of mice overexpressing Sptlc2 and alleviated insulin resistance and impairments in 
insulin signaling. In summary, our findings indicate that ceramide regulates insulin signaling 
and VLDL secretion in the liver, depending on its levels.
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MATERIALS AND METHODS

1. Materials
Ceramides (C14:0, C16:0, C18:0, C18:1, C20:0, C24:0, C24:1 ceramides), dihydroceramides 
(C16:0, C18:0, C24:0, C24:1), sphinganine, sphingosine, sphingomyelins (SM; 16:0, C18:0, 
C18:1), and DAG (C16:0–C16:0, C18:1–C18:1, C16:0–C18:1, C18:0–C18:2, C18:0–C20:4) were 
obtained from Avanti Polar Lipids (Alabaster, AL, USA). Insulin was obtained from Eli Lilly 
and Company (Indianapolis, IN, USA).

2. Plasmids and recombinant adenovirus
Construction of recombinant adenoviral vectors (human SPT subunit, adenovirus containing 
Sptlc1 [AdSptlc 1] and adenovirus containing Sptlc2 [AdSptlc2]) was performed using 
the pAdTrack-cytomegalovirus (CMV) vector and the Ad-Easy Adenoviral Vector system 
(Stratagene, La Jolla, CA, USA). Briefly, cDNAs for full-length Sptlc1 and Sptlc2 were generated 
by polymerase chain reaction (PCR) using specific primers (Sptlc1 primer, 5′-AAA AGT CGA 
CTA ACT ATG GCG ACC GCC ACG-3′ and 5′-AAA ATC TAG AGG GAA GAG ACA CTG A-3′; 
Sptlc2 primer, 5′-AAA ACT CGA GTG CTG CCA GGA AGA TGC-3′ and 5′-AAA ATC TAG A CC 
TCT GAG GGA GCA CCA AAA-3′). The cDNAs were cloned into the pAdTrack-CMV-shuttle 
vector, which contains a CMV promoter driving the expression of green fluorescent protein 
(GFP). After selection using kanamycin and confirmation through sequencing, the clones 
were linearized with PmeI and co-transformed with the adenoviral plasmid pAdEasy-1 in 
electrocompetent BJ5183 cells.20 Positive clones were selected using ampicillin and confirmed 
using DNA minipreps and PacI digestion. Recombinant plasmids were linearized using 
PacI and transfected into HEK 293 cells.21 Adenoviruses were purified by the double cesium 
chloride gradient method.22

3. Cell culture
HepG2 cells (human hepatocellular carcinoma cells) were obtained from ATCC (Manassas, 
VA, USA) and cultured in Dulbecco's modified Eagle's medium (DMEM; WelGENE, 
Gyeongsan, Korea) supplemented with 10% heat-inactivated fetal bovine serum (FBS), 1 
U/mL penicillin, and 1 μg/mL streptomycin. The cells were incubated at 37°C under a 5% 
CO2 atmosphere. HEK 293 cells (human embryonic kidney cells) were used to generate a 
recombinant adenovirus and to determine virus titers. The HEK 293 cells were cultured in 
DMEM supplemented with 10% FBS, 1 U/mL penicillin, and 1 μg/mL streptomycin.

4. Animal experiments
All animal experiments were approved by the Gachon University (Seongnam, Korea) 
Institutional Animal Care and Use Committee (approval No. LCDI-2015-0013). Eight-week-
old male C57Bl/6J mice were purchased from Charles River Laboratories (Wilmington, MA, 
USA) and fed water and chow ad libitum (normal chow diet: Picolab Rodent Diet 20 of LabDiet 
Inc., St. Louis, MO, USA) in a specific pathogen-free facility at the Gachon Center for Animal 
Care and Use (12:12 hour light-dark cycle).

For glucose tolerance testing, the mice were subjected to fasting for 16 hours before being 
given an intraperitoneal injection of glucose (2 g/kg body weight). For insulin tolerance 
testing, the mice were subjected to fasting for 4 hours and then injected intraperitoneally 
with insulin (1 U/kg body weight). For pyruvate tolerance testing, the mice were subjected 
to fasting for 8 hours and then received an intraperitoneal injection of pyruvate (1 g/kg body 
weight). Blood glucose was measured using blood collected from the tail vein at designated 
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times. To determine insulin response, insulin (0.5 U/kg body weight) was injected into the 
mice intraperitoneally for 10 minutes before isolation of the liver. For gene expression and 
lipid metabolite analyses, the mice were subjected to fasting for 6 hours and their blood 
and tissues were collected after sacrifice. To measure VLDL secretion, poloxamer-407 was 
injected intraperitoneally (1 g/kg body weight). Blood was collected from the intraorbital vein 
at various time points, and triglyceride (TG) levels were measured.

5. Quantitative real-time PCR
Total RNA from mouse primary hepatocytes and HepG2 cells was extracted using the easy-
spin (DNA-free) Total RNA Extraction Kit (iNtRON Biotechnology, Inc., Seongnam, Korea), 
and the mouse livers were homogenized in TRIzol reagent (Invitrogen, Carlsbad, CA, USA). 
cDNA was synthesized using the iScript cDNA synthesis kit (Bio-RAD, Hercules, CA, USA). 
Real-time PCR analysis was performed using an ABI7300 instrument (Applied Biosystems 
Inc, Carlsbad, CA, USA) and SYBR Green Master Mix (Toyobo, Osaka, Japan). The mRNA 
expression levels of the analyzed genes were normalized to the mRNA levels of β-actin.23

6. Immunoprecipitation
The cells were lysed in cold lysis buffer (10 mM Tris [pH 7.4], 0.5 mM EDTA, 100 μM Na2P2O7, 
0.5 mM NaF, 1 mM Na3VO4, 2% Triton X-100, protease inhibitors, phosphatase inhibitors, 
and 10% glycerol). To detect phosphotyrosine IRS1, the supernatants (500 μg of protein) 
were immunoprecipitated by incubation with an anti-IRS1 antibody (1 μg) overnight at 
4°C and with protein A/G beads for 1 hour at 4°C. The beads were washed twice with 
PBS and boiled for 10 minutes at 95°C before sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) was performed.

7. Western blot analysis
HepG2 cells were grown to 70% confluence in 6-well plates in DMEM. After adenovirus 
infection, the cells were stimulated with insulin (100 nM/mL) for 10 minutes. Next, the cells 
were lysed in cold lysis buffer (10 mM Tris [pH 7.4], 0.5 mM EDTA, 100 μM Na2P2O7, 0.5 mM 
NaF, 1 mM Na3VO4, 2% Triton X-100, protease inhibitor, and phosphatase inhibitors). The 
immunoprecipitate or 30 μg of total protein was analyzed using SDS-PAGE and transferred 
onto a polyvinylidene fluoride membrane. Primary antibodies against phospho-AKT1/
PKB (ser473), phospho-protein kinase C (PKC) ε (ser729), PKCε, phospho-IRS1 (Tyr612), 
AKT/PKB, phospho-GSK3β (ser9), GSK3β, phospho-JNK, and JNK were purchased from 
Cell Signaling Technology (Danvers, MA, USA). Antibodies against phospho-insulin Rβ 
(Tyr1162/1163), XBP1, and ATF4 (CREB-2) were obtained from Santa Cruz Biotechnology 
(Dallas, TX, USA). Insulin Rβ, phospho-IRS1 (Ser307), and IRS1 were purchased from Upstate 
Biotechnology (Burlington, MA, USA); Sptlc1 from BD Biosciences (Hampton, MA, USA); 
and Sptlc2 from Abcam (Cambridge, UK). After incubation with horseradish peroxidase–
conjugated goat anti-rabbit IgG or goat anti-mouse IgG and IgM (Millipore, Billerica, MA, 
USA), the blots were developed using an enhanced chemiluminescent substrate (Millipore) 
and detected using a LAS4000 luminescent image analyzer (Fujifilm, Japan). An antibody 
against actin (Millipore) was used to normalize the sample loading.

8.  Sphingolipid analysis by liquid chromatography with tandem mass 
spectrometry (LC/MS/MS)

For hepatic lipid analysis, HepG2 cells were seeded at a density of 1×106 and incubated at 
37°C for 24 hours. After adenovirus infection, the cells were harvested and lysed in lysis 
buffer. The mouse livers were isolated and homogenized in PBS using TissueLyser II (Qiagen, 
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Germantown, MD, USA). An internal standard (C17:0-ceramide) was added to the cell 
extracts containing 1 mg of protein, and sphingolipids were extracted using chloroform/
methanol (2:1, v/v) containing 0.01% butylated hydroxytoluene. Ceramides (C14:0, C16:0, 
C18:0, C18:1, C20:0, C24:0, and C24:1), dihydroceramides (C16:0, C18:0, C24:0, and C24:1), 
and DAG were separated by high-performance liquid chromatography using a C18 column 
(XTerra C18, 3.5 μm, 2.1×50 mm) and ionized in positive electrospray ionization mode, as 
described by Yoo et al.24 [M+]/product ions from the corresponding sphingolipid metabolites 
were monitored for multiple reaction monitoring quantification, using a bench-top 
tandem mass spectrometer, API 4000 Q-trap (Applied Biosystems Inc.), interfaced with an 
electrospray ionization source.

9. Measurement of metabolites
Blood glucose levels under basal conditions and during glucose tolerance tests were 
measured using an automatic glucose monitor (One Touch; LifeScan, Milpitas, CA, USA). 
Plasma and hepatic TG, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein 
(LDL), and non-esterified fatty acid (NEFA) levels were measured using colorimetric assay 
kits from Wako (Wako Pure Chemical Industries, Ltd., Osaka, Japan).

10. Statistical analysis
Data were generally expressed as mean ± standard error of the mean. Differences between 2 
groups were analyzed using the Student t-test. A p-value of less than 0.05 was considered to 
indicate statistical significance.

RESULTS

1. Overexpression of Sptlc2 increased ceramide levels in HepG2 cells
SPT is a rate-limiting enzyme in the de novo sphingolipid biosynthetic pathway. To examine 
the effects of activating de novo sphingolipid biosynthesis in hepatocytes, we constructed 
AdSptlc1 and AdSptlc2. The yield of AdSptlc2 was lower than that of AdSptlc1, most likely 
due to the cytotoxic effect of ceramide production (data not shown). HepG2 cells were 
infected with AdSptlc1 or AdSptlc2, and overexpression of each SPT subunit was verified 
by immunoblot analysis. The expression of the Sptlc1 and Sptlc2 proteins was elevated by 
AdSptlc1 and AdSptlc2, respectively (Fig. 1A and B). Next, to explore whether the increased 
level of Sptlc2 regulated cellular ceramide levels, we infected HepG2 cells with AdSptlc1 or 
AdSptlc2 and measured ceramide levels by LC/MS/MS. While ceramide and dihydroceramide 
levels were elevated as a result of AdSptlc2 infection, AdSptlc1 infection did not alter cellular 
ceramide levels (Fig. 1C and D). These data indicate that although the adenoviral expression 
of Sptlc1 or Sptlc2 increased the protein level of each SPT subunit, only an increase in Sptlc2 
expression increased the production of ceramide in HepG2 cells.

2.  Overexpression of Sptlc2 inhibited insulin signaling by increasing 
phosphorylated JNK (pJNK) levels via the ceramide pathway, but not the 
DAG pathway

To determine whether adenoviral expression of Sptlc2 inhibited the insulin signaling 
pathway, we infected HepG2 cells with adenoviruses containing Sptlc1 or Sptlc2 and measured 
the phosphorylation of mitogen activated protein (MAP) kinases and insulin-signaling 
intermediates. We found that the levels of pJNK were increased by the adenoviral expression 
of Sptlc2, while no change was caused by infection with AdSptlc1 (Fig. 2A). Further, we 
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measured the level of phosphorylated PKCε (pPKCε) on the basis of a previous report 
indicating that activation of PKCε by DAG inhibited the tyrosine phosphorylation of insulin 
receptor (IR), leading to inhibition of the insulin-signaling pathway.25 However, in the 
present study, the AdSptlc2-mediated increase in ceramide levels led to a relative decrease 
in the level of pPKCε. In contrast, AdSptlc1 did not affect the pPKCε level (Fig. 2A). Cellular 
DAG levels were not altered by AdSptlc1 or AdSptlc2 (Fig. 2B).

Subsequently, to determine whether the overexpression of Sptlc2 inhibited the insulin-
signaling pathway via the phosphorylation of JNK and serine phosphorylation of IRS1, we 
infected HepG2 cells with an adenovirus containing GFP (AdGFP) or AdSptlc1 or AdSptlc2 
and examined the phosphorylation of insulin-signaling mediators. AdSptlc2 reduced 
serine phosphorylation of AKT and GSK3β and tyrosine phosphorylation of IRS1 and 
induced serine phosphorylation of IRS1. In addition, the serine phosphorylation of IR was 
significantly increased only by AdSptlc2 (Fig. 2C). Unlike AdSptlc2, AdSptlc1 did not affect 
the phosphorylation of any insulin-signaling mediator when compared with AdGFP (Fig. 2C). 
These data indicate that the overexpression of Sptlc2 regulated the insulin-signaling pathway 
by increasing the serine phosphorylation of IR and IRS1. These results suggest that the 
overexpression of Sptlc2 increased cellular ceramide levels and inhibited the insulin-signaling 
pathway by the pJNK-mediated serine phosphorylation of IR and IRS1 in HepG2 cells.

3.  Adenoviral expression of Sptlc2 reduced lipid accumulation in the liver by 
increasing VLDL secretion

To examine the effects of activated de novo sphingolipid biosynthesis on liver function, mice 
fed normal chow were injected with AdSptlc2 (5×108 PFU) via the tail vein. For the in vivo 
study, we only examined the effects of AdSptlc2, since no effect was observed using AdSptlc1. 
Fourteen days after the adenovirus injection, we measured the plasma parameters. While we 
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Fig. 1. Adenoviral overexpression of SPT subunits (Sptlc1 and Sptlc2) in HepG2 hepatocytes. Immunoblot analysis 
of Sptlc1 (A) and Sptlc2 (B) in HepG2 cells infected with AdSptlc1 and AdSptlc2 (multiplicity of infection). Analyses 
of ceramide (C) and dhCer (D) were performed by LC/MS/MS. Mean±standard error of the mean. 
SPT, serine palmitoyltransferase; AdSptlc1, adenovirus containing Sptlc1; AdSptlc2, adenovirus containing 
Sptlc2; dhCer, dihydroceramide; LC/MS/MS, liquid chromatography with tandem mass spectrometry; GFP, green 
fluorescent protein. 
*p<0.01 vs. green fluorescent protein control (n=3).



did not find any changes in body weight, cholesterol, and HDL, fasting glucose levels were 
found to be reduced and the TG, LDL, and NEFA levels were found to be elevated (Table 1). 
An analysis of hepatic sphingolipids showed that ceramide, dihydroceramide, and SM levels 
were all elevated (Fig. 3A-C). These results suggest that adenoviral Sptlc2 expression activates 
de novo sphingolipid synthesis in the liver.

Although hepatic cholesterol levels were not altered, hepatic TG levels were reduced (Fig. 3D). 
To examine whether there was a change in lipid droplet levels in the liver, we stained the liver 
tissue with Oil Red O. We found fewer hepatic lipid droplets in the AdSptlc2-injected mice 
than in the AdGFP-injected controls (Fig. 3E). Since the plasma TG levels had increased and 
the amount of hepatic lipid droplets was reduced in these mice, we questioned whether VLDL 
secretion was altered by AdSptlc2 infection. Indeed, we found higher TG accumulation in the 
plasma due to the poloxamer 407 (1 g/kg body weight) injection in the AdSptlc2-injected mice 
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JNK, c-Jun N-terminal kinase; IRS1, insulin receptor substrate 1; PKC, protein kinase C; DAG, diacylglycerol; LC/MS/MS, liquid chromatography with tandem mass 
spectrometry; GFP, green fluorescent protein; AdGFP, adenovirus containing green fluorescent protein; AKT, protein kinase B; p-, phosphorylated. 
*p<0.01 vs. green fluorescent protein control (n=3).

Table 1. Hepatic overexpression of Sptlc2 lowered plasma glucose and elevates plasma TG
AdGFP (n=8) AdSptlc2 (n=8)

Body weight (g) 22±0.5 22.8±0.4
Glucose (mg/dL) 138.3±7.3 70.6±7.3*
TG (mg/dL) 65.7±2.6 115.3±8.7*
Cholesterol (mg/dL) 83.5±1.6 90.5±3.8
HDL-C (mg/dL) 58.3±1.4 54.3±2.7
LDL-C (mg/dL) 5.7±0.3 14.8±0.6*
NEFA (mEq/L) 0.77±0.05 1.05±0.07*

Mean±standard error of the mean.
AdGFP, adenovirus containing green fluorescent protein; AdSptlc2, adenovirus containing Sptlc2; TG, triglyceride; 
HDL-C, high-density lipoprotein cholesterol, LDL-C, low-density lipoprotein cholesterol; NEFA, elevated 
nonesterified fatty acids.
*p<0.05 vs. AdGFP (n=8).



(Fig. 3F). In addition, we measured the expression of genes involved in VLDL secretion, such 
as the genes encoding microsomal triglyceride transfer protein (MTP) and apolipoprotein 
B (ApoB). However, the mRNA levels of MTP and ApoB were noticeably reduced in the liver 
of the AdSptlc2-injected mice (Fig. 3G). These results suggest that hepatic overexpression of 
Sptlc2 and activation of de novo sphingolipid biosynthesis activated hepatic VLDL secretion 
and reduced the amount of hepatic lipid droplets.

4. Adenoviral expression of Sptlc2 improved glucose and insulin sensitivity
Next, we explored whether glucose metabolism was affected by the activation of de 
novo sphingolipid biosynthesis in the liver. Fasting glucose levels were lower and the 
glucose response was more sensitive in AdSptlc2 mice (Fig. 4A and Table 1). To examine 
gluconeogenesis in the liver, we performed pyruvate tolerance testing and found that 
gluconeogenesis was suppressed in AdSptlc2-injected mice (Fig. 4B). In addition, the insulin 
response was more sensitive in AdSptlc2-injected mice (Fig. 4C).

To further explore these results, we analyzed the degree of phosphorylation of insulin-
signaling intermediates. We found increased levels of phosphorylated AKT (pAKT) and 
pGSK3β in response to insulin (Fig. 5A). In addition, the expression of gluconeogenic 
genes, including glucose 6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase 
(PEPCK), were downregulated in the liver of AdSptlc2-injected mice (Fig. 5B). These results 
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suggest that the activation of de novo sphingolipid biosynthesis by AdSptlc2 improved 
sensitivity to glucose and insulin and inhibited gluconeogenesis.

DISCUSSION

Sphingolipids are essential components of the plasma membrane and lipoproteins. 
Ceramide is a sphingolipid metabolite involved in the development of insulin resistance 
and metabolic dysfunction.26, 27 When ceramide accumulates in tissues, including the liver, 
skeletal muscle, and heart, metabolic dysfunction occurs and contributes to the development 
of hepatosteatosis, diabetes, and dilated cardiomyopathy.18,19,27 In this study, we investigated 
the effects of activated de novo sphingolipid biosynthesis on hepatic lipid and glucose 
metabolism. We observed the following results: 1) adenoviral expression of Sptlc2 increased 
ceramide levels, which inhibited the insulin-signaling response through JNK activation, 2) 
increased ceramide levels in the liver activated VLDL secretion, 3) the insulin response was 
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improved by Sptlc2 expression, and 4) reduced gluconeogenesis contributed to reduced 
blood glucose levels.

Sphingolipids are basic cellular structural and signaling molecules. Among them, ceramide 
has been studied extensively in cancer and metabolic research.16, 28-30 De novo ceramide 
biosynthesis has been established as a cause of insulin resistance. Inhibition of de novo 
ceramide synthesis ameliorates glucose intolerance in heterozygous Sptlc2-deficient mice 
and diet-induced obese mice.31,32 Although those findings suggest that de novo ceramide 
production mediated by SPT contributes to hepatic dysfunction, the effects of ceramide on 
liver function have not been studied well.

Surprisingly, the adenoviral overexpression of Sptlc2 demonstrated contrasting results in vitro 
and in vivo. A previous study showed that JNK and JNK-mediated serine phosphorylation of 
IRS1 led to insulin resistance.33 Consistent with these findings, we found that an increase in 
the ceramide level in HepG2 hepatocytes via AdSptlc2 overexpression activated JNK, which 
phosphorylated IRS1 at Ser307. Previous reports have demonstrated that exogenous and 
endogenous ceramides cause JNK activation.34 These findings indicate that insulin signaling 
is inhibited by ceramide production via JNK activation (Fig. 2). Increments in ceramide levels 
decreased pAKT, possibly via protein phosphatase 2A.28 In contrast with the results observed 
in cells in the present study and those reported previously, the mice injected with AdSptlc2 
exhibited increased insulin sensitivity despite having elevated ceramide levels. Additionally, 
hepatic fat accumulation was reduced in these mice, which might have been mainly due to 
increased hepatic VLDL secretion. Consistent with this result, the hepatic expression of 
Sptlc2 elevated plasma TG and LDL cholesterol (Table 1). These results suggest that hepatic 
ceramide levels might have exceeded the threshold of acceptable levels due to the extreme 
increment. The liver secretes more VLDL into the bloodstream to remove excess “lipotoxic” 
sphingolipids, including ceramide; thus, VLDL secretion relieves ceramide-induced stress, 
acting as a defense mechanism. Therefore, ceramide regulates insulin sensitivity and VLDL 
secretion differently, depending on the ceramide level in the liver. Within a physiologically 
relevant range of ceramide levels, ceramide mainly regulates the sensitivity of the insulin 
response, rather than VLDL secretion. Since the mechanism by which ceramide switches 
between the regulation of insulin signaling and the regulation of VLDL secretion is not yet 
known, further studies should be conducted of this issue using genetic animal models.

Fasting blood glucose levels in the mice injected with AdSptlc2 were lower than those in the 
control mice (Table 1). This is an unexpected result, since previous reports suggested that 
increased ceramide levels inhibit insulin signaling and contribute to the occurrence of insulin 
resistance.18 This could have mainly been due to the relief of ceramide-induced stress by 
activation of VLDL secretion resulting from the increase in ceramide. The observation that 
hepatic gluconeogenic genes, including G6Pase and PEPCK, were downregulated suggests that 
increased VLDL secretion in response to the drastic accumulation of ceramide contributed to 
decreased plasma glucose levels via the inhibition of hepatic gluconeogenesis (Fig. 5).

In this study, we utilized mice fed normal chow to characterize only the effect of ceramide 
on liver function. The commonly used high-fat diet also increases levels of other lipid 
metabolites, including DAG and saturated fatty acids. Indeed, cellular DAG levels were not 
altered and PKCε-mediated inhibition of insulin signaling was excluded. However, we found 
a reduction in pPKCε. In contrast, pJNK was present at increased levels and found to be 
involved in the inhibition of the insulin response. A previous study reported that myriocin, 
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an SPT inhibitor, inhibited JNK signaling in rats fed a high-fat diet.35 Therefore, ceramide is 
a major modulator of JNK, rather than PKCε, for IRS1 regulation. Additionally, the amount 
of lipid droplets in the liver of the mice was reduced. Although our experimental conditions 
were not hyperlipidemic, the increased release of VLDL from the liver suggests that the 
reduction in the amount of lipid droplets was mainly due to increased hepatic ceramide 
levels. Indeed, a recent report suggested that decreased hepatic ceramide levels caused by the 
inhibition of dihydroceramide desaturase 1 alleviate hepatosteatosis and insulin resistance.27 
A detailed study should be performed to elucidate the role of ceramide or other sphingolipid 
metabolites in the link between hepatosteatosis and VLDL metabolism.

In conclusion, we found that hepatic ceramide regulated hepatosteatosis and the insulin 
response via inhibition of gluconeogenesis and VLDL secretion. This regulation through 
sphingolipids might primarily occur through the reduction of stress on the liver via VLDL 
secretion. Since lipids such as triacylglycerols and ceramides inflict major insults on the 
liver, the liver could compensate for these insults by reducing its lipid levels. The altered 
signaling revealed in this study could play an important role in hepatic lipid metabolism 
in the AdSptlc2-infected mice. Activation of the fatty-acid oxidation pathway and VLDL 
secretion ameliorated the pathophysiological conditions caused by the activation of de novo 
sphingolipid biosynthesis in the liver. This regulatory mechanism provides support for the 
role of ceramide in non-alcoholic fatty liver disease and will contribute to the development of 
therapeutic interventions.
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