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Abstract
Background: The role of hypothermia in post-arrest neuroprotection is controversial. Animal studies suggest potential benefits with lower temper-

atures, but high-fidelity ECPR models evaluating temperatures below 30 �C are lacking.

Objectives: To determine whether rapid cooling to 24 �C initiated upon reperfusion reduces brain injury compared to 34 �C in a swine model of

ECPR.

Methods: Twenty-four female pigs had electrically induced VF and mechanical CPR for 30 min. Animals were cannulated for VA-ECMO and cooled

to either 34 �C for 4 h (n = 8), 24 �C for 1 h with rewarming to 34 �C over 3 h (n = 7), or 24 �C for 4 h without rewarming (n = 9). Cooling was initiated

upon VA-ECMO reperfusion by circulating ice water through the oxygenator. Brain temperature and cerebral and systemic hemodynamics were con-

tinuously monitored. After four hours on VA-ECMO, brain tissue was obtained for examination.

Results: Target brain temperature was achieved within 30 min of reperfusion (p = 0.74). Carotid blood flow was higher in the 24 �C without rewarm-

ing group throughout the VA-ECMO period compared to 34 �C and 24 �C with rewarming (p < 0.001). Vasopressin requirement was higher in animals

treated with 24 �C without rewarming (p = 0.07). Compared to 34 �C, animals treated with 24 �C with rewarming were less coagulopathic and had

less immunohistochemistry-detected neurologic injury. There were no differences in global brain injury score.

Conclusions: Despite improvement in carotid blood flow and immunohistochemistry detected neurologic injury, reperfusion at 24 �C with or without

rewarming did not reduce early global brain injury compared to 34 �C in a swine model of ECPR.
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Introduction

Cardiac arrest (CA) is a leading cause of death.1–5 Extracorporeal

cardiopulmonary resuscitation (ECPR) using veno-arterial extracor-

poreal membrane oxygenation (VA-ECMO) can improve outcomes
in select patients refractory to conventional CPR alone.6–8 Still, neu-

rologically favorable survival is low, mainly driven by global anoxic

brain injury.7,9,10

Temperature control in ECPR has not been evaluated in human

and high-fidelity translational models. Clinical trials in conventional

CA populations have not included ECPR patients.11–16 ECPR is
rg/
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characterized by long resuscitation durations, extreme metabolic

derangements, and higher risk for severe post-cardiac arrest injury.9

Hypothermia applied following ECPR may be uniquely advantageous

because VA-ECMO facilitates rapid cooling and hemodynamic stabi-

lization, mitigating side effects of lower target temperatures. Data

from scant experimental, human observational, and registry studies

suggest a potential benefit from hypothermia between 32 and

36 �C.17–22 Whether there is additional benefit to colder temperature

targets, particularly < 30 �C, remains unknown.

We conducted a randomized trial of mild (34 �C) versus moderate

(24 �C) hypothermia with or without rewarming in a swine model of

ECPR. We hypothesized that short-term histologic brain injury would

be reduced in animals treated with moderate compared to mild

hypothermia and in animals who were not rewarmed during the 4-

hour post-arrest period.

Methods

Animal preparation

The University of Minnesota Institutional Animal Care and Use Com-

mittee approved all procedures and protocols in accordance with the

National Institutes of Health Guide for the Care and Use of Labora-

tory Animals.23 Twenty-four female Yorkshire swine (Sus scrofus

domesticus) underwent VF CA with mechanical CPR for 30 min fol-

lowed by cannulation to VA-ECMO with therapeutic hypothermia to

either 34 �C (n = 8), 24 �C with rewarming (n = 7), or 24 �C without

rewarming (n = 9). The surgical preparation, anesthesia, and moni-

toring are described in the Supplemental Appendix. Briefly, swine

(50–60 kg) were anesthetized and mechanically ventilated. Aortic

and right atrial pressures were monitored by micromanometer tipped

catheters (Millar Instruments, Houston, TX). Continuous brain and

core temperature monitoring was established via a K-type thermo-

couple (ATB1, Fieldpiece, Orange, CA) inserted 2–3 cm into the

brain parenchyma and an esophageal temperature probe (ESO-1,

Physitemp, Clifton, NJ). A bidirectional Doppler flow probe was

secured around the common carotid artery (TS420 Perivascular

Flow Module, Transonic, Ithaca, NY). A second cut down to access

the right carotid was used for the formalin flush at the end of the pro-

tocol. Sheaths were placed in the right femoral artery and right or left

femoral vein to prepare for VA-ECMO.

Model justification

We chose a VF out-of-hospital CA model with 30 min of CPR fol-

lowed by VA-ECMO cannulation to model a clinically relevant sce-

nario with a high likelihood of brain injury that has been shown to

be mitigated by ECPR in the clinical setting.6 Further, VA-ECMO

enables rapid cooling upon reperfusion and facilitates hemodynamic

stability. Swine models have been used extensively by the study

team and others in the field due to similarities in CPR mechanics,

central nervous system anatomy, and the relative ease of VA-

ECMO cannulation compared to other species. Additional descrip-

tions of our cardiac arrest and VA-ECMO models are available in

prior publications.24–27

Experimental protocol

CA and CPR

The experimental protocol is described in Fig. 1. Additional descrip-

tion of the CA and mechanical CPR protocol can be found in our prior

publications.28,29 Prior to CA, all animals received heparin (5000 U)
to attain activated clotting time > 2x baseline. After 5 min of untreated

VF, life support was initiated using a custom automated mechanical

piston. Epinephrine (0.5 mg, IV bolus) was given every 5 min starting

at minute 10 of the arrest for the duration of CPR. All animals

received amiodarone (50 mg, IV bolus) and bicarbonate (50 mEq,

IV bolus) at the end of CPR to mimic common clinical management

in a prolonged arrest.

VA-ECMO and hypothermia initiation

During the last 5 min of CPR, animals were cannulated for VA-

ECMO. An additional bolus of heparin (2500 U) was given as needed

to achieve an ACT goal of > 2x baseline. Stiff guidewires were

advanced through femoral sheaths to the inferior vena cava and

descending aorta and confirmed with fluoroscopy. Animals were can-

nulated with a 19-23F catheter in the femoral vein and a 13-15F

catheter in the femoral artery (HLS cannulae, Maquet). After

30 min of CPR, cannulae were connected to a saline-primed VA-

ECMO circuit (Getinge Cardiohelp, Sweden) circulating at 2–3 L/

min of flow.

Immediately after reperfusion with VA-ECMO, animals were ran-

domized in a 1:1 allocation to receive rapid cooling to 34 �C (mild

hypothermia) or 24 �C (moderate hypothermia). Animals in the

34 �C group achieved target temperature by ambient room air with

external cold packs if necessary, and 34 �C was maintained for the

4-hour post-CPR monitoring period. For animals cooled to 24 �C,
ice water was circulated through the oxygenator. 24 �C was main-

tained for 1 h followed by rewarming by approximately 3.3 �C/hour
over 3 h to 34 �C. Rewarming was achieved by titrating the temper-

ature of the ice water bath, warm blankets, and forced-air warming

(Bair Hugger, 3 M, Maplewood, MN). A third group was later added

in a non-randomized fashion to receive 24 �C without rewarming.

Treatment allocation was not blinded.
Post-arrest/VA-ECMO management

After VA-ECMO flow initiation, animals that did not spontaneously

achieve return of spontaneous circulation (ROSC) received up to 3

defibrillation attempts with 200–300 J. Defibrillation could also be

attempted up to 3 times at each hour time point. Crystalloid (0.9%

NS or albumin 5%), vasopressors (vasopressin 200 U/ml as infu-

sion), and circuit RPMs were titrated to achieve mean arterial blood

pressure (MAP) > 60 mmHg and VA-ECMO flow of 2–3 L/min. Arte-

rial blood gases were obtained at 15 min, 30 min, and hourly for 4 h.

Blood gases were managed using the alpha-stat method. Circuit

delivery of oxygen and sweep gas were titrated to achieve animal

PaO2 80–150 mmHg and PaCO2 35–45 mmHg. Sodium bicarbonate

was not given to correct pH. Blood products were not administered.

Propofol was titrated to achieve an appropriate level of sedation.

ACTs were obtained at baseline, at the end of CPR, and hourly fol-

lowing VA-ECMO flow initiation. CBC, coagulation parameters, and

thromboelastography were obtained at baseline, 1-hour, and 4-

hours post-VA-ECMO flow. Clinical bleeding and thrombotic events

were documented.
Euthanasia and pathology assessment

Following 4 h of monitoring after VA-ECMO flow initiation, animals

were euthanized with beuthanasia (100 mg/kg IV). Formalin (in a

10:1 tissue volume-to-formalin ratio) was injected into the brain via

the accessed carotid artery. The whole brain was extracted via a ver-

tex craniectomy.
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A board-certified veterinary pathologist blinded to the treatment

allocation performed pathology processing and analysis (compre-

hensive methods found in Supplemental Appendix). Briefly, brains

were sectioned to capture distinct regions susceptible to acute ische-

mia–reperfusion injury: caudate nucleus, putamen, internal capsule,

frontal cortex, hippocampus, and cerebellum.30 Tissue sections were

stained with hematoxylin and eosin (H&E) and scored on a scale of

1–5 (higher values indicating severity) according to previously pub-

lished methods to provide a semi-quantitative assessment of edema,

neuronal necrosis, neuronal and axonal degeneration, gliosis, inflam-

mation, and infarction.30,31

The same regions were evaluated with immunohistochemistry

(IHC) quantifying proteins identified in swine models of ischemia–

reperfusion injury: glial fibrillary acidic protein, amyloid precursor pro-

tein, caspase-3, ionized calcium-binding adaptor molecule 1, and

myelin basic protein.32–35 Each IHC marker was analyzed separately
Fig. 1 – Experimental protocol. Animals received CPR with m

cardiac life support. VF indicates ventricular defibrillation

arterial extracorporeal membrane oxygenation.

Table 1 – Pre-ECMO characteristics.

Variable 34 �C
(n = 8)

24 �C witho

Baseline

Weight, kg

Systolic BP, mmHg 108.77 ± 8.41 100.35 ± 7.8

Diastolic BP, mmHg 73.51 ± 6.41 71.59 ± 6.48

Mean arterial BP, mmHg 85.73 ± 6.76 81.14 ± 8.09

Body temperature, �C 37.09 ± 0.46 37.41 ± 0.23

Brain temperature, �C 37.03 ± 0.40 37.29 ± 0.19

Arterial pH 7.51 ± 0.01# 7.57 ± 0.01*

Lactate 1.22 ± 0.14 1.11 ± 0.21

CPR end (30 min)

Systolic BP, mmHg 71.59 ± 5.41 65.83 ± 5.71

Diastolic BP, mmHg 18.03 ± 2.68 15.15 ± 1.95

Mean arterial BP, mmHg 36.00 ± 3.28 35.49 ± 2.87

Coronary perfusion pressure, mmHg 12.04 ± 2.94 6.40 ± 2.33^

Carotid blood flow (% baseline) 22.42 ± 2.99 29.52 ± 8.61

Body temperature, �C 37.13 ± 0.22^ 37.22 ± 0.18

Brain temperature, �C 37.65 ± 0.29 38.20 ± 0.11

Arterial pH 7.37 ± 0.04# 7.48 ± 0.07*

Lactate 9.02 ± 0.61^ 8.91 ± 0.54^

Comparison between the three groups at baseline and end of CPR. BP indicates
# p < 0.05 compared to 24 �C without rewarming.
* p < 0.05 compared to 34 �C.
^ p < 0.05 compared to 24 �C with rewarming. Values are mean ± SEM.
by region and scored on a scale of 0–4 (higher values indicating

marked immunoreactivity). Cumulative scores for histologic brain

injury (global brain injury score) and IHC-detected injury were calcu-

lated by summing the equally weighted scores for each lesion type

and IHC antibody.
Outcomes and statistical analysis

The primary outcome was short-term global brain injury score

(histopathology) obtained 4 h post-arrest. Secondary outcomes

included: short-term survival, CBF, systemic hemodynamics, coagu-

lopathy, and brain IHC. Sample size was calculated for two groups. A

sample size of 8 animals in each group provided > 80% power to

detect a 30% reduction in the mean total brain injury score between

groups, using an effect size of 1.3 and SD of 4 (unpublished data

from pilot animals).
echanical chest compressions and standard advanced

; CPR, cardiopulmonary resuscitation; VA-ECMO, veno-

ut rewarming (n = 9) 24 �C with rewarming (n = 7) P value

2^ 122.7 ± 3.65# 0.046

81.61 ± 1.82 0.243

95.47 ± 1.91 0.170

37.44 ± 0.46 0.829

37.43 ± 0.32 0.752
^ 7.50 ± 0.01# <0.001

1.25 ± 0.10 0.441

75.04 ± 3.14 0.382
^ 24.02 ± 1.79# <0.001

41.03 ± 1.89 0.205

15.56 ± 2.09# 0.026

35.80 ± 6.26 0.169
^ 37.96 ± 0.20* # 0.026

38.14 ± 0.22 0.230
^ 7.31 ± 0.07# 0.018

10.90 ± 0.72* # 0.007

blood pressure.
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Continuous waveform and temperature data were captured every

250 ms, recorded in LabView, and then averaged into 5-minute data

epochs. Normally distributed data were compared using analysis of

variance (ANOVA) with Tukey post-hoc analysis for subgroup com-

parisons and reported as mean ± SEM. Non-normal data were com-

pared using Kruskal-Wallis with Dunn’s test for subgroup

comparisons and reported as median with interquartile range. Cate-

gorical data are reported as relative frequencies (%). Dichotomous

variables were evaluated using Fisher’s exact test. Carotid blood

flow was expressed as a percentage of baseline. Variables were

compared at predetermined time points (e.g., end of CPR, hourly
Fig. 2 – Brain and esophageal temperatures during VA-E

displayed throughout the VA-ECMO period for 34 �C (pin

rewarming (blue) experimental groups. Error bars represen

rewarmed at a rate of three degrees per hour to reach the m

monitoring period. VA-ECMO indicates veno-arterial extrac

the references to colour in this figure legend, the reader is
on VA-ECMO). Missing values were not imputed. Statistical analysis

was completed using RStudio (RStudio: Integrated Development

Environment for R. Posit Software, PBC, Boston, MA. https://

www.posit.co/).

Results

Of 42 initial animal experiments, nine pre-randomization attritions

and nine exclusions (Supplemental Fig. 1) resulted in 24 analyzed

animals. Attrition occurred due to traumatic pulmonary hemorrhage
CMO. (A) Brain and (B) esophageal temperatures are

k), 24 �C without rewarming (green), and 24 �C with

t SEM. In the 24 �C with rewarming group, animals were

ild hypothermia range (32-34�) by the end of the 4-hour

orporeal membrane oxygenation. (For interpretation of

referred to the web version of this article.)

https://www.posit.co/
https://www.posit.co/
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(n = 5) and failed cannulation (n = 4). Animals were excluded post-

randomization for VA-ECMO circuit failure (n = 1) and refractory

hypotension with inability to extract the brain (n = 1). To isolate the

confounding generated by poor quality CPR from the effects of

hypothermia, Grubb’s test for outliers was performed on the end of

CPR coronary perfusion pressure (CPP), resulting in the additional

exclusion of seven animals. Post-randomization exclusions due to

poor CPR hemodynamics occurred prior to unblinding the hemody-

namic analysis.

Baseline and CPR

Baseline and CPR characteristics are described in Table 1. Baseline

hemodynamics were similar. During CPR, 24 �C with rewarming ani-

mals had higher CPP (15.67 ± 2.09 vs 12.04 ± 2.94 in 34 �C vs

6.4 ± 2.3 in 24 �C without rewarming, p = 0.026) and higher lactic

acid at the end of CPR (10.90 ± 0.72 vs 9.02 ± 0.61 in 34 �C vs

8.91 ± 0.54 in 24 �C without rewarming, p = 0.007).

VA-ECMO reperfusion period

Brain and esophageal temperatures are displayed in Fig. 2. The

mean time to target brain temperature was 27.9 min in the 34 �C
group, 21.9 min in the 24 �C without rewarming group, and

28.3 min in the 24 �C with rewarming group (p = 0.74).

Post-arrest systemic and cerebral hemodynamics are repre-

sented in Fig. 3. MAP was significantly higher in the 24 �C without

rewarming group throughout the VA-ECMO period compared to the
34 �C and 24 �C with rewarming groups. The 24 �C with rewarming

group exhibited higher MAP than the 34 �C group through the third

hour of reperfusion. Animals treated with 24 �C without rewarming

required higher cumulative doses of vasopressin to achieve ade-

quate perfusion with a mean of 78 ± 29.0 total units compared to

51.4 ± 22.7 in 34 �C and 56.7 ± 8.2 in 24 �C with rewarming animals

(p = 0.07).

At the end of reperfusion, all animals in the 34 �C group achieved

ROSC compared to 75% of the animals in the 24 �C with rewarming

group and none in the 24 �C without rewarming group (p < 0.001).

CBF was significantly higher for both the 24 �C with and without

rewarming groups when compared to the 34 �C group in the first and

second hour of VA-ECMO reperfusion. In the third and fourth hours

of reperfusion, the 24 �C without rewarming group maintained signif-

icantly higher CBF than the 34 �C group.

Lactate was similar between the three groups for the whole study

(Supplemental Fig. 2). There were no differences in arterial pH

between groups throughout the VA-ECMO period.

Brain injury

Overall, there was no statistically significant difference in the global

brain injury score between groups; 10 (8, 13.5) at 34 �C vs 8 (6,

10) at 24 �C without rewarming vs 6 (5, 9.5) at 24 �C with rewarming

(Fig. 4, Supplemental Table 1). Animals treated with 24 �C without

rewarming had less severe total IHC score with median (IQR) of

40.5 (39.5, 41) compared to 56 (49.5, 59.8) in 34 �C animals (Table 2,
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Supplemental Table 2). This finding was driven mainly by differences

in the caudate nucleus and frontal cortex. There were no differences

between 34 �C and 24 �C with rewarming.

Coagulation

There were no major clinical bleeding or thrombotic events. Coagu-

lation data are summarized in Supplemental Table 3. Animals trea-

ted with 24 �C without rewarming had significantly higher levels of

fibrinogen at 4 h compared to those treated with 34 �C (146.2 ± 23.

7 vs 110.0 ± 37.2, p = 0.039), with no differences compared to 24 �C
with rewarming animals. Antithrombin III levels were significantly

lower in 34 �C animals compared to 24 �C without rewarming animals

(67.8 ± 9.0 vs 50.1 ± 16.7, p = 0.02) at 4 h post-arrest. There were no

differences in ACT, R and K times, activated prothrombin time, d-

dimer, or INR at any time. Hematocrit, hemoglobin, platelets, and

lactate dehydrogenase were also similar throughout the study.

Discussion

In this swine model of ECPR, moderate hypothermia to 24 �C initi-

ated rapidly upon reperfusion improved CBF but did not significantly

reduce short-term histologic brain injury compared to mild hypother-

mia to 34 �C. Animals cooled to 24 �C demonstrated modest reduc-

tion in immunohistochemical markers of axonal injury, apoptosis, and
Fig. 3 – Systemic and cerebral hemodynamics during VA-EC

compared at hours 1, 2, 3, and 4 during VA-ECMO for 34 �C
rewarming (blue) experimental groups. Data are presented

compared to 24 �C without rewarming;^p < 0.05 compare

references to colour in this figure legend, the reader is refe
neuroinflammation compared to animals treated with 34 �C and 24 �
C with rewarming. However, cooling to 24 �C led to more intensive

vasopressor support and a lower likelihood of successful defibrilla-

tion. Our findings suggest that rapid reperfusion with 24 �C is unlikely

to be markedly advantageous over mild hypothermia following

ECPR, but our study is limited by short-term endpoints.

To our knowledge, this is the first study evaluating hypothermic

temperatures < 30� in a large-animal model of ECPR. Prior ECPR

studies demonstrate neurologic benefits with therapeutic hypother-

mia between 30–34 �C, compared to normothermia.17–20,30 We did

not observe clear benefit or harm in terms of neurologic injury among

animals cooled to 24 �C, compared to mild hypothermia. Total histo-

logic injury 4 h post-arrest was decreased in both 24 �C groups com-

pared to 34 �C (p = 0.22) but did not reach significance, and was not

affected by rewarming. Total IHC score was significantly lower in 24 �
C animals compared to 34 �C and 24 �C with rewarming, although

not all markers assessed showed differences. While immunostaining

can detect early signals of axonal injury, apoptosis, neuroinflamma-

tion, and myelination, injury visualized by H&E may not be as pro-

nounced until 24–72 h following CA.36,37 Tissue evaluation at a

later time point may have revealed larger differences between

groups.38

In this study, CBF was significantly increased among animals

cooled to 24 �C, and this effect was not entirely explained by differ-

ences in systemic hemodynamics. Cooling-induced vasodilation of
MO. (A) Mean arterial pressure and (B) carotid blood flow

(pink), 24 �C without rewarming (green), and 24 �C with

as mean ± SEM. *p < 0.05 compared to 34 �C; # p < 0.05

d to 24 �C with rewarming. (For interpretation of the

rred to the web version of this article.)
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large vessels, including the carotid artery, is thought to be mediated

by a temperature-dependent reduction of calcium influx into smooth

muscle cells.39 However, the effect of hypothermia on the cerebral

microcirculation is disputed. Hypothermia may increase microcircula-

tory blood flow by enhancing endothelial health, namely reducing

apoptosis of microvascular endothelial cells and fibrin deposition in

capillary vessels, and improving balance of prostanoids.40–42 By

reducing the metabolic rate, hypothermia may also improve the mis-

match between supply and demand.43,44 However, a swine model of

cardiopulmonary bypass found that cerebral blood flow decreased

concomitantly with increased cerebral vascular resistance as ani-

mals were cooled from 37 to 18�C.45 These opposing findings are

challenging to reconcile, but may be due to differences in model,

method of cooling, use of anticoagulation, measurement technique

(whole brain versus regional), and potential loss of cerebral blood

flow autoregulation following CA. This is relevant because the brain

experiences heterogeneous reperfusion, with some areas remaining

relatively ischemic despite return of circulation (i.e., “no-reflow” phe-

nomenon).46 More work is needed to understand the effects of

hypothermia on macro and microcirculation following ECPR.

In this study, animals treated with 24 �C without rewarming

required a higher cumulative dose of vasopressin (p = 0.07) to main-

tain a perfusing blood pressure. Animal studies in cardiac surgery

models have shown that hypothermia decreases vascular response

to vasopressors.47 It also follows that animals treated with 24 �C
without rewarming were not able to defibrillate successfully into a

perfusing rhythm. Clinically, prolonged absence of cardiac contractil-

ity poses a risk for intracardiac thrombus. This risk may be mitigated
by continuous therapeutic anticoagulation, which was maintained in

our animals throughout the study.

Coagulopathy is a known complication of therapeutic hypother-

mia and is also common in patients treated with ECPR.48 We per-

formed a battery of coagulation testing in our animals.

Unsurprisingly, all three ECPR groups in this study developed a con-

sumptive coagulopathy. However, animals cooled to 24 �C without

rewarming had less severe derangement, with significantly higher

levels of fibrinogen and antithrombin III than their 34 �C counterparts.

The mechanism underlying this observation deserves further study.

Notably, the severity of coagulopathy is associated with worse out-

comes in human studies of ECPR, namely major bleeding and

death.48,49 Overall, our data corroborate previous findings of coagu-

lopathy following prolonged cardiac arrest and ECPR while casting

doubt on the dogma that colder temperatures necessarily worsen

coagulation.

This study had limitations. First, we did not compare hypothermia

to normothermia. Second, experimental blinding was not possible

due to the clearly visible effects of moderate hypothermia. However,

hemodynamics and histopathology were subject to blinded assess-

ment. Third, despite consistent methods of CPR, animals within

groups had more variability in CPR hemodynamics than we antici-

pated. We excluded animals with the lowest CPP at the end of

CPR, as differences in CPR perfusion can confound post-

resuscitation care. However, CPP did not correlate with lactate at

the end of CPR. Although VA-ECMO management was highly proto-

colized, there were differences in hemodynamics and vasopressor

requirement. An important limitation is that we were unable to include



Fig. 4 – Global brain injury score at 4 h post-cardiac arrest. There were no significant differences (p = 0.21) in global

brain injury at 4 h following cardiac arrest across experimental groups treated with VA-ECMO at 34 �C (pink), 24 �C
without rewarming (green), or 24 �C with rewarming (blue). Boxplot horizontal lines indicate median global brain

injury scores, boxes represent the 25th and 75th percentiles, whiskers represent the 5th and 95th percentiles, and

the dot indicates the outlier. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Table 2 – Immunostaining characteristics at 4 h following cardiac arrest.

IHC Antibody 34 �C (n = 8) 24 �C without rewarming (n = 9) 24 �C with rewarming (n = 7)

APP 13 (12.9, 13.3)# 7.5 (7, 8.5)*,^ 12.5 (12, 13)#

Caspase-3 12 (9.6, 14) 9.5 (9, 10.5)^ 12.3 (11.3, 12.9)#

GFAP 8.3 (5.8, 10.9)# 3 (3, 3.5)*,^ 7.3 (6.5, 9.1)#

IBA-1 13.3 (11, 14.6) 11.5 (10.5, 13) 8.5 (8, 9.4)

MBP 7.3 (6.3, 9) 8.5 (8, 9) 6.5 (5.1, 10.5)

Total IHC score 56 (49.8. 59.8)# 40.5 (39.5, 41)* 45.3 (42.4, 53.4)

Intensity of IHC antibody immunostaining was evaluated by brain region (caudate nucleus, putamen, internal capsule, frontal cortex, hippocampus, and Purkinje

cells of the cerebellum), scored on a scale of 0–4, and summed. IHC indicates immunohistochemistry; APP, amyloid precursor protein; GFAP, glial fibrillary acidic

protein; IBA-1, ionizing calcium-binding adaptor molecule; MBP, myelin basic protein.
# p < 0.05 compared to 24 �C without rewarming.
* p < 0.05 compared to 34 �C.
^ p < 0.05 compared to 24 �C with rewarming. Values are median (interquartile range).
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ECMO flow data due to substantial missingness (10 of 24 animals)

from a storage issue. Fourth, we evaluated brief durations of

hypothermia with short-term histopathologic and immunohistochem-

ical outcomes. Our scoring system was validated for a 72-hour end-

point, and injury was highly variable within groups. These factors
could lead to detection of a less severe brain injury on pathology

and thus underpower the study. Future studies could measure longer

durations of hypothermia, slower rewarming speeds, and clinical

endpoints such as neurologic exams or neuroimaging. However, clin-

ical outcomes are challenging to obtain with an ECPR model in which
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there is a high amount of instrumentation and ethical concerns about

the surviving animals.

Conclusion

This large animal study of ECPR using short-term endpoints sug-

gests that reperfusion with moderate hypothermia to 24 �C is not

clearly beneficial over 34 �C and requires more intensive hemody-

namic management. Moderate hypothermia to 24 �C produces

higher carotid blood flow, a modest improvement in immunohisto-

chemical markers of brain injury, and less severe coagulopathy but

the clinical relevance is unclear.
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