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Abstract

Curcumin is a polyphenol compound that alleviates several neuroinflammation-related dis-

eases including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, epilepsy and

cerebral injury. However, the therapeutic efficacy of curcumin is limited by its poor physico-

chemical properties. The present study aimed to develop a new carrier-linked curcumin pro-

drug, curcumin diethyl γ-aminobutyrate (CUR-2GE), with improved physicochemical and

anti-neuroinflammatory properties. CUR-2GE was designed and synthesized by conjugat-

ing curcumin with gamma-aminobutyric acid ethyl ester (GE) via a carbamate linkage. The

carbamate linkage was selected to increase stability at acidic pH while GE served as a pro-

moiety for lipophilic enhancement. The synthesized CUR-2GE was investigated for solubil-

ity, partition coefficient, stability, and bioconversion. The solubility of CUR-2GE was less

than 0.05 μg/mL similar to that of curcumin, while the lipophilicity with log P of 3.57 was sig-

nificantly increased. CUR-2GE was resistant to chemical hydrolysis at acidic pH (pH 1.2 and

4.5) as anticipated but rapidly hydrolyzed at pH 6.8 and 7.4. The incomplete hydrolysis of

CUR-2GE was observed in simulated gastrointestinal fluids which liberated the intermediate

curcumin monoethyl γ-aminobutyric acid (CUR-1GE) and the parent curcumin. In plasma,

CUR-2GE was sequentially converted to CUR-1GE and curcumin within 1 h. In lipopolysac-

charide (LPS)-stimulated BV-2 microglial cells, CUR-2GE effectively attenuated the pro-

inflammatory mediators by decreasing the secretion of nitric oxide and cytokines (TNF-α
and IL-6) to a greater extent than curcumin due to an increase in cellular uptake. Altogether,

the newly developed acid-stable CUR-2GE prodrug is a potential pre-clinical and clinical

candidate for further evaluation on neuroprotective and anti-neuroinflammatory effects.
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Introduction

Neuroinflammation is a major contributing factor to the pathophysiology of several CNS dis-

eases, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, epilepsy and cere-

bral injury [1, 2]. Microglia, a resident immune cell in CNS, plays an essential role in

maintaining the homeostasis of the CNS and is involved in the progression of neuroinflamma-

tion-associated diseases [3, 4]. In this pathophysiological condition, microglia are activated,

leading to the magnificent release of several pro-inflammatory mediators, including cytokines,

chemokines, growth factors, NO, and PGE-2 [5, 6]. Thus, abrogating pro-inflammatory medi-

ators released by microglia is a possible option to improve neuroinflammation-associated

diseases.

Curcumin (Fig 1) has been shown to alleviate several neuroinflammation-related diseases

[7–9]. At the cellular level, curcumin modulated microglia by reducing pro-inflammatory

mediators and increasing endogenous anti-inflammatory mediators [10, 11]. The extremely

low oral bioavailability of curcumin due to its chemical and metabolic instability is the primary

limiting factor for oral nutraceutical and pharmaceutical development. Several approaches

have been employed and applied to overcome the above disadvantages of curcumin such as

nanoparticles [12–15], polymer conjugates [16], and dicarboxylate prodrugs [17–19].

Prodrugs are pharmacologically inactive substances that undergo metabolic or chemical

conversion to active parent molecules [20, 21]. In drug development, prodrug performance is

commonly optimized by modulating physicochemical and biopharmaceutical properties

through the addition of a promoiety to the parent drug via an appropriate linkage. The type of

linkage is mainly associated with the persistence of the prodrug whereas the promoiety gener-

ally influences solubility or lipophilicity of the parent drug [22, 23]. Several curcumin prodrugs

with an ester linkage showed the improvement of stability, permeability and efficacy such as

dicarboxylate conjugates (curcumin diethyl disuccinate, curcumin diethyl diglutarate and cur-

cumin diglutaric acid) and polymer conjugates (curcumin-monomethoxy polyethylene glycol)

[7, 16–19, 24].

In addition to the extensively developed ester prodrugs of various bioactive molecules, car-

bamate prodrugs have gained much interest in drug design and discovery. It is primarily

known for enhancing chemical stability under acidic conditions and improving permeability

across cellular membranes. Carbamates are carbamic acid esters used in the prodrug approach

to achieve first-pass and systemic hydrolytic stability. They are generally more enzymatically

stable than the esters [22]. As a result, several natural phenolic compounds such as resveratrol,

quercetin, and pterostilbene, have been developed using the carbamate prodrug approach.

[25–29]. In designing a carbamate prodrug, a phenolic-OH group of a parent compound is

linked to suitable non-toxic natural promoieties such as amino acids (Leu, Ile, Phe, Thr), poly-

ols (glycerol), sugars (galactose) and polymers (polyethylene glycol) via an N-monosubstituted

carbamate ester (-OC(O)NHR) linkage [25–29]. For promoieties without amino-functional

groups such as glycerol, galactose, and polyethylene glycol, the amino group must be intro-

duced by 3–4 more steps in the carbamate synthesis route. The primary amine was activated

by reacting with bis(4-nitrophenyl) carbonate and then transesterification with a phenolic-OH

group of a parent compound to give a carbamate prodrug. Amino acids are the most com-

monly used promoieties in carbamate prodrugs because they contain an amino-functional

group readily for conjugation. However, it provided unsatisfactory absorption of the prodrug

due to the high hydrophilicity from ionizable carboxylate groups, resulting in a negligible

amount of carrier-mediated uptake [28]. Prodrugs containing amino acids with hydrophobic

side chains were developed and demonstrated better permeability and absorption than the par-

ent compound after oral administration to rats [25].
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Gamma-aminobutyric acid (GABA) is a natural amino acid derivative found in microor-

ganisms, plants, vertebrates and mammalians [30]. GABA can be actively transported to the

brain by GABA transport (GAT)/betaine-GABA transporter [31]. In contrast, the basolateral

GABA transporter and the proton-coupled amino acid transporter (hPAT1) are involved in

GABA absorption in the intestine [32]. The neuronal GABA physiological functions include

synaptic transmission modification, promoting neuronal growth and relaxation, and prevent-

ing insomnia and depression [33, 34]. Furthermore, anti-oxidant, anti-inflammation, anti-

microbial, anti-hypertension, hepatoprotection, and intestinal protection were reported as

GABA pharmacological properties on non-neuronal peripheral tissues and organs [34]. The

FDA has approved GABA as a food ingredient [35]. As a result, the use of GABA as a promoi-

ety could be safe.

In the present study, we designed and synthesized a novel GABA ethyl ester (GE) prodrug

of curcumin, curcumin diethyl γ-aminobutyrate (CUR-2GE, Fig 1) via a carbamate linkage to

improve prodrug stability under an acidic environment and lipophilicity. The physicochemical

properties including solubility, partition coefficient, kinetic studies of hydrolysis and biocon-

version in human plasma were investigated. In addition, the anti-neuroinflammatory effects of

CUR-2GE were evaluated on LPS-stimulated BV-2 microglial cells and compared to

curcumin.

Materials

Curcumin was purchased from Shaanxi Kanglai Ecology Agriculture Co., Ltd. (Xi’an, China).

GABA-ethyl ester and bis(4-nitrophenyl) carbonate were obtained from Tokyo Chemical

Industry (TCI, Tokyo, Japan). The chemicals, solvents and reagents were ethyl acetate dichlor-

omethane (DCM), hexanes (RCI, Labscan Bangkok, Thailand), 4-dimethylaminopyridine

Fig 1. Synthesis of CUR-2GE and CUR-1GE. Reagents and condition (a) DMAP/ACN 50˚C 3 h (b) DMAP/ACN 50˚C 24 h with GE-1: curcumin at molar

ratio 4.5: 1 (c) DMAP/ACN 50˚C 24 h with GE-1: curcumin at molar ratio 1: 2.5.

https://doi.org/10.1371/journal.pone.0265689.g001
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(DMAP) (Sigma-Aldrich, St. Louis, MO, USA), sodium sulfate (Merck, Darmstadt, Germany),

acetonitrile (Burdick and Jackson, Ulsan, Korea). The chemicals and instruments used in the

physicochemical properties, stability and anti-neuroinflammatory effect, including lipopoly-

saccharide (LPS) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT),

dimethyl sulfoxide (DMSO), Dulbecco’s Modified Eagle Medium (DMEM) without phenol

red were purchased from Sigma-Aldrich (St. Louis, MO, USA). Potassium chloride, glacial ace-

tic acid, monobasic potassium phosphate and sodium acetate anhydrous are supplied by

Scharlau (Sentmenat, Spain). Acetonitrile was from Fisher Scientific (Seoul, Korea). An Elga

Maxima 21F water purification system (Veolia Water Technologies, Wycombe, UK) was used

to generate ultrapure water. Ethanol, sodium hydroxide and sodium lauryl sulfate (SLS) were

purchased from Carlo Erba (Barcelona, Spain). Hydrochloric acid and n-octanol were pur-

chased from QRëc (Auckland, New Zealand) and Panreac Quimica (Barcelona, Spain), respec-

tively. Human plasma was provided from Nation Blood Center, Thai Red Cross Society

(Bangkok, Thailand). BV-2 murine microglia were supplied by AcceGen Biotechnology (New

Jersey, USA). DMEM with phenol red were obtained from Gibco, Thermo Fisher Scientific

(Waltham, MA, USA). Fetal bovine serum was supplied by Merck Millipore (Burlington, MA,

USA). L-Glutamine, penicillin and streptomycin were purchased from Caisson Labs (Smith-

field, Utah, United States).

Methods

Synthesis and structural elucidation

The carbamate ester prodrug, CUR-2GE, was prepared in two steps: firstly, the primary amine

of GABA ethyl ester was activated by reacting with bis(4-nitrophenyl) carbonate to produce

the intermediate compound, ethyl 4-(((4-nitrophenoxy)carbonyl)amino)butanoate (GE-1).

After that, the curcumin was conjugated with GE-1 by esterification reaction [28]. The chemi-

cal structures of CUR-2GE and GE1 were elucidated and confirmed by nuclear magnetic reso-

nance spectroscopy (NMR) and high-resolution mass spectrometry (HRMS). 1H and
13C-NMR were performed on a Bruker Fourier 400 MHz (Bruker, Zuerich/Faellanden, Swit-

zerland) using CDCl3 as a solvent. The chemical shifts and coupling constants were measured

in parts per million (ppm) and hertz (Hz), respectively. HRMS were operated on a MicrO-

TOF-QII Bruker time-of-flight high-resolution mass spectrometer coupled with an electro-

spray ion source (Bruker, Bremen, Germany).

Ethyl 4-(((4-nitrophenoxy)carbonyl)amino)butanoate (GE-1). A solution of GABA-

ethyl ester (0.685 g, 4.1 mmol) and DMAP (1.0 g, 8.2 mmol) in acetonitrile (20 mL) was added

dropwise to a solution of bis(4-nitrophenyl) carbonate (1.37 g, 4.5 mmol) in acetonitrile (10

mL) and the resulting solution was stirred at 50˚C for 3 h. The reaction mixture was then

diluted in DCM (20 mL) and 0.5 N HCl (10 mL). The aqueous layer was extracted with DCM

(3 × 10 mL) and all the organic fractions were collected, dried over sodium sulfate, filtered and

evaporated under reduced pressure (Büchi Rotavapor R-200, Flawii, ST. Gallen, Germany).

The obtained residue was purified by column chromatography on silica gel (Merck, Darm-

stadt, Germany) (hexane:EtOAc = 7:3) to obtain a colorless oil (920.87 mg, 75.68%). Thin-

layer chromatography on a silica gel 60 G254 (Merck, Darmstadt, Germany) was used to mon-

itor each eluent fraction. Rf; GE-1 = 0.22 and bis(4-nitrophenyl) carbonate = 0.58 (hexane:

EtOAc = 7:3). 1H NMR (300 MHz, CDCl3) δ 8.27 (d, J = 9.0 Hz, 2H, H10), 7.34 (d, J = 9.1 Hz,

2H, H9), 5.46 (s, NH), 4.18 (q, J = 7.0 Hz, 2H, H2), 3.38 (q, J = 6.9 Hz, 2H, H6), 2.45 (t, J = 7.0

Hz, 2H, H4), 1.96 (p, J = 7.0 Hz, 2H, H5), 1.60 (s, OH), 0.90 (t, J = 6.8 Hz 3H, H1) (S1 Fig);

HRMS (ESI) m/z calculated for (C13H16N2O6Na) 319.0901, found 319.0898 [M+Na+]

(PPM = 0.94) (S2 Fig).
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Curcumin monoethyl γ-aminobutyrate (CUR-1GE). GE-1 (60 mg, 0.2 mmol) in 5 mL

of DCM was added dropwise to a mixture of curcumin (184 mg, 0.5 mmol) and DMAP (48

mg, 0.4 mmol) in 10 mL of DCM. The reaction was stirred at 50˚C for 24 h and 10 mL of 0.5 N

HCl was added. The collected aqueous layer was extracted with DCM (3 × 10 mL). The com-

bined organic solution was dried over sodium sulfate, concentrated under reduced pressure.

The obtained residue was purified by column chromatography on silica gel (hexane:

EtOAc = 6:4) to yield curcumin monoethyl γ-aminobutyrate (CUR-1GE, Fig 1) as an orange

powder (76.60 mg, 72.88%). Rf; CUR-1GE = 0.28, curcumin = 0.55 and GE-1 = 0.7 (hexane:

EtOAc = 6:4). 1H NMR (300 MHz, CDCl3) δ 7.62 (d, J = 15.8 Hz, 2H), 7.16 (dd, J = 9.9, 7.2 Hz,

2H, H4, 4 7.16,)׳ (s, 1H, H6), 7.14 (d, J = 2.8 Hz, 1H, H9, 10, 10 7.08,)׳ (s, 1H, H6 6.95)׳ (d,

J = 8.2 Hz, 1H, H9 6.54,)׳ (t, J = 15.3 Hz, 2H, H3, 3 5.85,)׳ (s, 1H, H1), 5.30 (t, J = 6.0 Hz, NH),

4.18 (q, J = 7.1 Hz, 2H, H6 3.97,)׳׳ (s, 3H, OCH3CHC), 3.91 (s, 3H, OCH3), 3.36 (q, J = 6.9 Hz,

2H, H2 2.45,)׳׳ (t, J = 7.0 Hz, 2H, H4 1.94,)׳׳ (p, J = 6.9 Hz, 2H, H3 1.61,)״ (s, OH), 1.15–0.95 (t,

J = 6.5 Hz, 3H, H7 13;)׳׳ C NMR (75 MHz, CDCl3) δ 184.38, 181.98, 173.25, 154.10, 151.91,

148.01, 146.85, 141.48, 141.07, 139.57, 133.60, 127.57, 124.05, 123.61, 123.03, 121.78, 121.00,

114.88, 111.43, 109.68, 101.51, 60.60, 55.97, 40.73, 31.48, 25.00, 14.24 (S3 and S4 Figs); HRMS

(ESI) m/z calculated for (C28H31NO9Na) 548.1891, found 548.1864 [M+Na+] (PPM = 4.85)

(S5 Fig). Chromatographic purity was 99.16% determined by ultra performance liquid chro-

matography (UPLC) (S6 Fig).

Curcumin diethyl γ-aminobutyrate (CUR-2GE). Curcumin (62 mg, 0.169 mmol) and

DMAP (81 mg, 0.676 mmol) were dissolved in 10 mL of DCM and added dropwise to GE-1

(226 mg, 0.761 mmol) in 5 mL of DCM. The reaction was stirred at 50˚C overnight. The reac-

tion mixture was added with 10 mL of 0.5 N HCl. The aqueous layer was extracted with DCM

(3 × 10 mL). The combined organic solution was dried over sodium sulfate, concentrated

under reduced pressure and purified by column chromatography on silica gel (hexane:

EtOAc = 6:4) to yield CUR-2GE as yellow solid (54 mg, 47.41%). Rf; CUR-2GE = 0.11, CUR-

1GE = 0.28, curcumin = 0.55 and GE-1 = 0.7 (hexane:EtOAc = 6:4). 1H NMR (300 MHz,

CDCl3) δ 7.64 (d, J = 15.7 Hz, 2H, H4, 4 7.14,)׳ (d, J = 6.7 Hz, 6H, H6, 9, 10, 6 6.57,)׳10,׳9,׳ (d,

J = 15.7 Hz, 2H, H3, 3 5.88,)׳ (s, 1H, H1), 5.31 (t, J = 5.6 Hz, NH), 4.18 (q, J = 7.1 Hz, 4H, H6״),
3.94 (s, 6H, OCH3), 3.35 (q, J = 6.9 Hz, 4H, H2 2.44,)״ (t, J = 7.0 Hz, 4H, H4 1.90,)״ (p, J = 6.9

Hz, 4H, H3 1.61,)״ (s, OH), 0.91 (t, J = 6.9 Hz, 6H, H7 13;)״ C NMR (75 MHz, CDCl3) δ 183.13,

173.25, 154.08, 151.93, 141.59, 140.07, 133.49, 124.07, 123.63, 121.11, 111.47, 101.75, 60.60,

55.97, 40.73, 31.48, 25.00, 14.24 (S7 and S8 Figs); HRMS (ESI) m/z calculated for

(C35H42N2O12Na) 705.2635, found 705.2629 [M+Na+] (PPM = 0.85) (S9 Fig). Chro-

matographic purity was 96.18% determined by UPLC (S6 Fig).

UPLC analysis

UPLC condition was modified from a previous report on an analysis of CDD [36]. The quanti-

fication of CUR-2GE, CUR-1GE and curcumin was performed on the Waters Acquity

UPLCTM H-Class system (Waters Corporation, MA, USA). The samples were separated on

Acquity UPLCTM BEH C18 1.7 μm, 2.1 x 50 mm column (Waters Chromatography Ireland

Limited, Dublin, Ireland) at 33˚C. The mobile phase consisted of 2%v/v acetic acid in water

(A) and acetonitrile (B). The gradient program was used with the following profiles: initial A-B

of 55:45 at 0 min; linear-gradient A-B of 20:80 from 0–2.7 min; isocratic A-B of 20:80 from

2.7–4.5 min; linear-gradient A-B of 55:45 from 4.5–5.0 min; isocratic A-B of 55:45 from 5.0–

7.0 min. The flow rate was 0.3 mL/min, and the injection volume was 2 μL. The photodiode

array detector was set at 400 nm (λmax, CUR-2GE = 400.5, λmax, CUR-1GE = 415.0, λmax, Curcumin =

428.2). The Waters EmpowerTM 3 software was used for system control and data processing.
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The retention times of curcumin, CUR-1GE and CUR-2GE were 1.6, 2.3 and 2.8 min, respec-

tively (S4 Fig). The UPLC condition was applied for determination of the chromatographic

purity and physicochemical properties of the synthesized compounds.

Determination of physicochemical properties

Powder X-ray diffraction. The crystalline characteristics of CUR-2GE were determined

using a powder x-ray diffractometer (PXRD) (Bruker, WI, USA) with Cu Kα radiation (λ =

1.5418 Å for combined Kα1 and Kα2) [18]. A 1 g of CUR-2GE was spread on a glass plate. The

scanned angle range of XRD patterns was 2.0–50.0˚. The scan rate, the voltage and the current

of the X-ray generator were set at 2.4˚/min, 40 kV and 15 mA, respectively.

Solubility. An excess amount of CUR-2GE (2 mg) was added to 2 mL of three solvents,

water, phosphate buffer pH 4.5 and ethanol. The samples were sonicated at 25˚C for 1 h and

then placed on an orbital shaker at 100 rpm at 25˚C for 1 h. The obtained mixture was then

centrifuged at 25˚C at 14,000 rpm for 10 min [37, 38]. The supernatant was analyzed using

UPLC and the solubility of CUR-2GE in each medium was determined. Experiments were per-

formed in triplicate. The solubility category was classified according to USP [39]. The percent-

age of CUR-2GE in the undissociated form at various pH values was calculated based on the

Henderson-Hasselbalch equation [40] (see S1 Appendix).

For solubility mimicking gastrointestinal pH, an excess amount of CUR-2GE (1 mg) was

added to a vial containing 2 mL of buffer pH 1.2, 4.5 or 6.8 with and without a surfactant

(0.5% SLS) [41]. The mixture was sonicated for 1 h before orbital shaking at 37˚C at 100 rpm

for 1 h. After that, the mixture was centrifuged at 25˚C at 14,000 rpm for 10 min prior to

UPLC analysis. Experiments were performed in triplicate. The dose number (D0) at different

media was determined and the BSC solubility class was assigned. (see S1 Appendix).

Partition coefficient. The partition coefficient of CUR-2GE was quantified using the

shake flask method according to the guideline of OECD 107 with some modifications [17, 42].

A saturated mixture of n-octanol/water was firstly prepared at 25˚C by stirring an equal vol-

ume of n-octanol/water for 24 h and left standing until complete separation. A 1 mg of CUR-

2GE was dissolved in saturated n-octanol and water at volume ratios of 1:1, 1:2 and 2:1 in

screw cap tubes. Experiments were run in duplicate. The tube was shaken through 180˚ over

the transverse axis approximately 100 times in 5 min at room temperature (25˚C) to reach

equilibrium and phase distribution. The phases were then separated by centrifugation at 25˚C

at 5,500 rpm for 10 min. The organic phase was collected followed by aqueous phase centrifu-

gation at 25˚C at 14,000 rpm for 10 min. A small aliquot of the organic phase was then diluted

with acetonitrile. CUR-2GE concentrations in each phase were analyzed by UPLC, and the Po/

w value was determined. In addition to water used as an aqueous phase, the partition coeffi-

cient between n-octanol and buffer at pH 4.5 and the Po/buffer pH 4.5 value were determined (see

S1 Appendix).

Chemical stability

Chemical stability of CUR-2GE was performed at 37˚C in aqueous buffer solutions at pH 1.2,

4.5, 6.8 and 7.4. CUR-2GE (1 mg) was dissolved in DMSO (1 mL) and adjusted with the dilu-

ent in a 5-mL volumetric flask to obtain a stock solution at 200 μg/mL. The stock solution was

diluted with a pre-incubated buffer in a vial at 37˚C at an initial concentration of 10 μg/mL

[26]. Each sample was incubated at 37˚C at appropriate intervals and analyzed using UPLC.

The experiment was performed in triplicate. The hydrolytic products were also identified by

comparing chromatographic retention times to curcumin and CUR-1GE. Kinetic profiles of

CUR-2GE and its hydrolytic products, including curcumin and CUR-1GE, were determined
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by plotting percent peak area vs. incubation time. The linear slope of the natural logarithm of

concentrations against time was used to calculate the degradation rate (k) and half-life (t1/2)

using the linear pseudo-first-order model (see S1 Appendix).

Release study

The amount of curcumin released from CUR-2GE in human plasma was determined at 37˚C

at various time points. A stock solution of CUR-2GE (100 μg/mL) in the diluent was prepared

and diluted with pre-incubated human plasma at 37˚C for 5 min to obtain the final concentra-

tion of 5 μg/mL. The mixture was incubated at 37˚C for 5, 10, 20, 30 and 60 min and each ali-

quot (300 μL) was added with 300 μL of acetonitrile to stop the reaction and further

centrifugated at 4˚C at 14,000 rpm for 30 min. The concentration of CUR-2GE in the superna-

tant was analyzed using UPLC [19, 26]. Experiments were carried out in triplicates. The initial

time point (0 min) was prepared by adding 300 μL acetonitrile to the pre-incubated human

plasma. The percent peak area of CUR-2GE and its hydrolytic products was plotted against

incubation time. The k and t1/2 values were determined using the linear pseudo-first-order

model.

Identification of incomplete hydrolytic products of CUR-2GE

The incomplete hydrolytic products of CUR-2GE were identified in buffers (pH 1.2, 4.5, 6.8

and 7.4) and human plasma. For hydrolysis in the buffer solutions, the stock solution of CUR-

2GE at 200 μg/mL was diluted with a pre-incubated buffer in a vial at 37˚C to obtain a final

concentration at 10 μg/mL. Samples in buffers pH 1.2 and 4.5 were subsequently incubated at

37˚C for 24 h while those in buffers pH 6.8 and 7.4 were incubated at 37˚C for 7 min. For

hydrolysis in human plasma, the stock solution of CUR-2GE at 100 μg/mL in the diluent was

prepared and diluted with pre-incubated human plasma at 37˚C for 5 min to obtain a final

concentration of 5 μg/mL. The sample was incubated at 37˚C for 1 h and an aliquot of 300 μL

was added with 300 μL of acetonitrile to stop the reaction. The reaction mixture was then cen-

trifuged at 4˚C at 14,000 rpm for 30 min. The supernatant was analyzed using UPLC-MS/MS

described below. CUR-2GE, CUR-1GE and curcumin standards were prepared at 10 μg/mL in

diluent (2% acetic acid in water: acetonitrile (80: 20, v/v)) and were subjected to UPLC-MS/

MS analysis. The retention times and MS/MS spectra of CUR-2GE and its hydrolytic products

in buffers and human plasma were compared with those of the standards. The UPLC-MS/MS

approach was modified from previous studies [43, 44]. The MRM mode was used to select tar-

geted compounds then the product ion scan mode was used to identify their fragmentation

pattern.

UPLC-MS/MS analysis

The chromatography was performed on Waters Acquity UPLCTM system equipped with

Waters Acquity UPLCTM I-Class Binary Solvent system pump (Waters Corporation, MA,

USA), with modification from the UPLC analysis mentioned above. The Acquity UPLCTM

I-Class Binary Solvent system pump can be set to deliver the mobile phase at a flow rate range

of 0.010–2.000 mL/min. The separation of analytes was achieved by using an Acquity UPLCTM

BEH C18 1.7 μm, 2.1 x 50 mm column (Waters Chromatography Ireland Limited, Dublin, Ire-

land) at 33˚C. The mobile phase consisted of 2%v/v acetic acid in water (A) and acetonitrile

(B), with gradient elution at a flow rate of 0.175 mL/min. The gradient elution program was

optimized as follows: an initial A-B of 55:45 at 0 min; linear-gradient A-B of 20:80 from 0–2.7

min; isocratic A-B of 20:80 from 2.7–4.5 min; linear-gradient A-B of 55:45 from 4.5–5.0 min;

isocratic A-B of 55:45 from 5.0–7.0 min. The injection volume was 2 μL.
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Mass spectrometric analysis of CUR-2GE, CUR-1GE and curcumin was achieved with MS/

MS detection in a positive ion mode using a Waters XevoTM TQ-S, triple-quadrupole tandem

mass spectrometer (Waters Corporation, Milford, Manchester, UK). Detection of the ions was

carried out in the multiple reaction monitoring (MRM) by monitoring the transition at m/z

683>177 for CUR-2GE, m/z 526>177 for CUR-1GE and m/z 369>177 for curcumin with 100

ms dwell time for all compounds. Product ion scan was triggered at a threshold of 50. The

parameters used for the electrospray source were as follows: capillary voltage 3.0 kV, cone volt-

age 20, 25 and 65 V for CUR-2GE, CUR-1GE and curcumin, respectively, desolvation temper-

ature 300˚C, desolvation gas flow 800 L/h, cone gas flow 150.0 L/h and nebulizer flow 7.0 bar.

The following conditions were set for the quadrupoles of the Xevo TQ-S spectrometer: LM1

resolution of 3.0, HM1 resolution of 15.0, ion energy 1 at 0.5, collision energy at 20 eV, LM2

resolution of 3.0, HM2 resolution of 15.0 and ion energy 2 at 0.5. System control, data acquisi-

tion, and data processing were performed using Waters MassLynxTM software (Version 4.1

SCN950).

In vitro cellular uptake

BV-2 microglial cells were plated in a 96-well plate (Costar, NY, USA) at a density of 10,000

cells/well for 24 h [13]. The cells were incubated in DMEM media without phenol red for 4 h

in the presence of curcumin and CUR-2GE at concentrations of 20 μM and 100 μM. Then, the

sample was washed with PBS and the fluorescence intensity was measured using a fluorescence

microscope (Olympus IX51 inverted microscope, Tokyo, Japan).

Anti-inflammatory effects and molecular mechanism

Cytotoxicity. BV-2 microglial cells were cultured in DMEM supplemented with 10% fetal

bovine serum, 2 mM L-glutamine, 1% penicillin/streptomycin (100 units/mL penicillin and

100 μg/mL streptomycin) at 37˚C in 5% CO2. BV-2 microglial cells were plated in a 24-well

plate at a density of 2 × 105 cells/well for 24 h [45]. Various concentrations at 0, 1.25, 2.5, 5, 10,

or 20 μM of curcumin or CUR-2GE were determined for a non-toxic concentration. After 24

h, cell viability was assessed by an MTT assay. The media was removed and replaced with an

MTT solution in PBS (0.5 mg/mL). After 3-h incubation, the MTT solution was discarded,

and formazan crystals formed after the reaction was dissolved in DMSO. The absorbance was

then read at 540 nm using a microplate reader (CLARIOstar1, BMG Labtech, Ortenberg, Ger-

many). The percentage of cell viability was expressed relative to the control cells. In addition,

the cell viability of BV-2 microglial cells treated with LPS and a combination of LPS and the

test compounds was also determined.

Anti-inflammatory effects on LPS-stimulated BV-2 microglial cells. BV-2 microglial

cells were plated in a 24-well plate at a density of 2 × 105 per well for 24 h. The cells were pre-

incubated for 12 h with curcumin (10 μM), CUR-2GE (10 μM), medium (DMEM), or a vehicle

(0.5% DMSO). The cells were then induced with 1 μg/mL LPS for 24 h [45]. The culture

medium samples were collected and analyzed for nitric oxide (NO) and cytokines (TNF- and

IL-6) using NO and enzyme-linked immunoassay (ELISA) assays, respectively.

Nitric oxide assay. Nitric oxide (NO) production was determined by measuring nitrite,

the NO metabolite, using Griess reagent [46]. Briefly, the culture medium (100 μL) was added

with 1% sulfanilamide (50 μL) and incubated for 5 min. Then, a solution of 0.1% N-

(1-naphthyl)ethylenediamine dihydrochloride (50 μL) was added and incubated for 5 min.

The absorbance was measured at 520 nm using the microplate reader, and the nitrite concen-

tration was calculated against a calibration curve using NaNO₂ as a standard.
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Determination of TNF-α and IL-6. Quantification of TNF-α and IL-6 was performed

using commercially available ELISA kits according to the manufacturer’s protocol (BioLegend,

San Diego, CA, USA). The absorbance was measured at 450 nm using the microplate reader,

and the amount of TNF-α and IL-6 was determined against their corresponding standard

curves of TNF-α and IL-6.

Statistics. All experiments were performed in triplicate unless otherwise stated with

means ± standard deviation values. The differences between groups were statistically analyzed

using one-way ANOVA followed by the Bonferroni post hoc test. The p-value < 0.05 was con-

sidered to be statistically significant.

Results and discussion

CUR-2GE was designed and synthesized to improve the physicochemical properties of curcu-

min and accordingly enhance anti-neuroinflammation activity. The carbamate linkage was

selected to increase stability at acidic pH while GE served as the pro-moiety or carrier to

improve lipophilicity. The synthesized CUR-2GE was characterized and determined for the

physicochemical properties including solubility, partition coefficient, stability and bioconver-

sion in human plasma in the simulated gastrointestinal fluids. In vitro cellular uptake and anti-

inflammatory effects of CUR-2GE on LPS-stimulated BV-2 microglial cells were also

investigated.

Synthesis

The CUR-2GE prodrug was synthesized via two steps as shown in Fig 1. In the first step, the

free amino group of GABA-ethyl ester reacted with bis(4-nitrophenyl) carbonate in the pres-

ence of 4-(dimethylamino)-pyridine (DMAP) as a catalyst to produce the activated 4-nitrophe-

nyl carbamate, GE-1. In the last step, curcumin in excess was added to GE-1, and the designed

CUR-2GE prodrug was formed in a medium yield of 47.41%. Alternatively, in the synthesis of

CUR-1GE, GE-1 in excess was added to curcumin. The intermediate CUR-1GE was obtained

in a high yield of 72.88%.

Determination of physicochemical properties

Powder X-ray diffraction. PXRD was performed to evaluate the crystallinity of CUR-

2GE. The PXRD spectrum of CUR-2GE exhibited several intense peaks (S10 Fig), indicating

that the synthesized CUR-2GE powder was in a crystalline form.

Solubility. In this study, the solubility of CUR-2GE in common vehicles for formulation

including water and ethanol was determined. Since CUR-2GE is a prodrug that can be hydro-

lyzed in an aqueous solution, the solubility in buffer pH 4.5 was also conducted to avoid signif-

icant hydrolysis as CUR-2GE was relatively more stable under acidic pH (see Stability section

below). In addition, the short saturation time in the solubility test, 1-h sonication followed by

1-h shaking, was employed to avoid hydrolysis of CUR-2GE. The degradation of CUR-2GE in

all media except for the buffer at pH 1.2 with SLS is less than 10%, which falls within the ICH

limit for degradation of the tested substance at 10% [47], indicating the validity of the solubility

results.

In water and buffer pH 4.5, CUR-2GE solubility was less than 0.05 μg/mL, while in ethanol,

the solubility increased to 17.85 μg/mL (Table 1). According to USP, the solubility classifica-

tion of CUR-2GE in water, buffer pH 4.5 and ethanol is designated as practically insoluble

(<0.1 mg/mL), similar to that of curcumin [17, 48, 49]. The results suggest that ethanol would

be an alternative solvent or co-solvent for the formulation of CUR-2GE.
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In the biopharmaceutics classification system (BCS), the solubility of drug substances is

conducted according to the international guidelines [47, 50] using a saturated solubility test at

pH 1.2–6.8, 37˚C to mimic pH in the gastrointestinal tract [51–53]. As shown in Table 1,

CUR-2GE had low solubility (< 1 μg/mL) and high D0 values (> 1) in buffers at all tested pH.

However, SLS significantly enhanced CUR-2GE solubility, particularly at pH 6.8, possibly due

to the various effects of SLS in reducing surface tension, increasing wettability and forming

micelles in the medium [54]. Physiologically, CUR-2GE solubility can be improved in the

intestinal tract with endogenous surfactants such as bile salts and lipids. In buffer pH 1.2 with

SLS, CUR-2GE was unstable with more than 10% degradation, leading to invalid solubility

results (S11 Fig and S1 Table). SLS accelerated CUR-2GE degradation at buffer pH 1.2 is prob-

ably due to a process known as micellar catalysis [55–57].

Partition coefficient. The Log Po/w and Log Po/buffer pH 4.5 values of CUR-2GE were found

to be 3.57 and 3.43 as summarized in Table 1. It is of note that the amount of CUR-2GE in

aqueous phases was not detectable, and therefore the LOQ of 0.05 μg/mL was used for Log P

calculation. The Log P values in both conditions are more than 3, indicating that CUR-2GE is

a lipophilic drug with good passive absorption [58]. The Log Po/w of CUR-2GE is significantly

Table 1. Solubility of CUR-2GE, BCS solubility classification and partition coefficients (Log P).

Condition Solubility (μg/mL) Log P

Water Ethanol Buffers Water Buffer pH 4.5

pH 1.2 pH 4.5 pH 6.8

25˚C <LOQ 17.85 ± 1.76 ND <LOQ ND 3.57 ± 0.19 3.43 ± 0.14

37˚C ND ND <LOQ 0.64 ± 0.51 0.34 ± 0.50 ND ND

37˚C +0.5%SLS ND ND NV 23.35 ± 0.18 148.12 ± 38.53 ND ND

D0 x 103 ND ND 74.16 5.80 10.89 ND ND

Solubility and partition coefficient presented as mean ± SD; <LOQ refers to less than 0.05 μg/mL; ND, not determined; NV, not valid because more than 10% of

hydrolytic products of CUR-2GE was observed (S1 Table).

D0 calculated using M0: the highest dose strength of capsule (927 mg), Cs: the saturation solubility of CUR-2GE at 37˚C without 0.5%SLS (mg/mL) and V0: the initial

gastric volume (250 mL).

https://doi.org/10.1371/journal.pone.0265689.t001

Fig 2. Representative chromatograms of CUR-2GE incubated at 37˚C in buffers at pH 1.2, 4.5, pH 6.8, pH 7.4, and human plasma for 24 h, 24 h, 7 min, 7

min, and 30 min, respectively. The retention times of curcumin, CUR-1GE and CUR-2GE were 1.6, 2.3 and 2.8 min, respectively, and the retention times of

major unknown compounds 1 and 2 were 0.9 and 2.0 min, respectively.

https://doi.org/10.1371/journal.pone.0265689.g002
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greater than the previously reported values of curcumin ranging from 2.19 to 3.29 [18, 59–61].

The increased log P confirmed that the presence of the GE-promoities at both phenolic groups

of curcumin contributed to the higher lipophilicity of CUR-2GE as designed.

Fig 3. Chemical stability of CUR-2GE in various buffers and human plasma. Kinetic profiles of CUR-2GE and its hydrolytic products in buffers and human

plasma: (A) pH 1.2, (B) 4.5, (C) 6.8, (D) 7.4 and (E) human plasma. Data of CUR-2GE and its hydrolytic products are expressed as the percentage of the initial

peak area of CUR-2GE (%Total). (F) Pseudo-first-order kinetic plots of CUR-2GE hydrolysis in buffers and human plasma.

https://doi.org/10.1371/journal.pone.0265689.g003
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Stability and release study

Hydrolysis of CUR-2GE was investigated in buffers (pH 1.2, 4.5, 6.8 and 7.4) and human

plasma representing the pH of the gastrointestinal system and blood. Representative chro-

matograms of CUR-2GE at different pH are displayed in Fig 2. CUR-2GE was observed at a

retention time of 2.8 min, two known products (curcumin and CUR-1GE at retention times of

1.6 and 2.3 min, respectively) and two major unknown compounds (compounds 1 and 2 at

retention times of 0.9 and 2.0 min, respectively).

Kinetic profiles of CUR-2GE, the released CUR-1GE and curcumin in buffers at pH 1.2,

4.5, 6.8, 7.4 and human plasma are shown in Fig 3A–3E, respectively. The hydrolysis data of

CUR-2GE in all tested media fitted well with the pseudo-first-order kinetic with r2 values close

to 0.9 (Fig 3F and Table 2) and the kinetic parameters (k and t1/2) are summarized in Table 2.

The k values of CUR-2GE were in the following order: pH 7.4> 6.8 > 1.2> 4.5 with the

hydrolysis rate of CUR-2GE in buffer pH 7.4 higher than pH 6.8, 1.2 and 4.5 by 1.94, 262 and

778 folds, respectively. Consistency, the half-life value (t1/2) was in reverse to the k values as in

the following order: pH 4.5> 1.2 > 6.8> 7.4.

The chemical stability of CUR-2GE in human plasma was determined to confirm the bio-

conversion of CUR-2GE to curcumin. CUR-2GE completely released curcumin in human

plasma via CUR-1GE at the first hour with the t1/2 value of 0.40 h (Fig 3E), consistent with pre-

vious reports on the half-life of carbamate prodrugs in the blood ranging from 0.17 to 1 h [28,

29]. CUR-2GE was converted to curcumin with the rate in human plasma approximately

8.7-fold lower than that in buffer pH 7.4, suggesting that plasma protein may stabilize CUR-

2GE [62]. However, comparing stability between CUR-2GE and curcumin in human plasma,

the t1/2 value of CUR-2GE in human plasma was 0.40 h which was significantly less than the

half-life of curcumin in human plasma previously reported at 8 h [63]. These results infer that

the selected carbamate bond connecting the parent curcumin to the promoiety was rapidly

hydrolyzed to yield the intermediate CUR-1GE and curcumin. Thus, the CUR-2GE carbamate

prodrug may prolong the plasma exposure of curcumin, resulting in a higher amount of curcu-

min for exerting its biological effects.

At acidic pH 1.2, two peaks of the unknown hydrolytic products (1 and 2) were observed,

possibly due to acid-hydrolysis of the ester group of GABA with the plausible mechanism

shown in Fig 4 [22, 64]. However, these unknown compounds are absent at pH 4.5. The higher

stability of CUR-2GE in buffer pH 4.5 possibly due to the 2 H-bond stabilization, resulting

from dimer formation between the syn carbamate groups of CUR-2GE and an acetate ion in

the buffer [22, 65–67].

At pH 6.8 and 7.4 close to the neutral pH, CUR-2GE was hydrolyzed to the parent curcumin

via the CUR-1GE intermediate (Fig 5). The degradation mechanism may be due to the hydrolysis

of carbamates through deprotonation and elimination process giving two intermediates, CUR-

1GE and isocyanate. The CUR-1GE was further hydrolyzed via the same mechanism. The isocya-

nate intermediate rapidly reacted with water and further decomposed generating carbon dioxide.

Table 2. Pseudo-first-order kinetic parameters for hydrolysis of CUR-2GE at 37˚C in buffers at pH 1.2, 4.5, 6.8 and 7.4 and human plasma.

pH k (h-1) t1/2 (h) r2

1.2 0.0583 ± 0.0007 11.88 ± 0.14 0.9998 ± 0.0001

4.5 0.020 ± 0.004 36.41 ± 8.53 0.9503 ± 0.0328

6.8 7.89 ± 0.54 0.09 ± 0.01 0.9977 ± 0.0012

7.4 15.31 ± 0.70 0.045 ± 0.002 0.9868 ± 0.0018

Human plasma 1.76 ± 0.30 0.40 ± 0.08 0.8937 ± 0.0946

https://doi.org/10.1371/journal.pone.0265689.t002
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Fig 4. Proposed acid-catalyzed hydrolysis mechanisms of CUR-2GE in buffers at pH 1.2 and 4.5.

https://doi.org/10.1371/journal.pone.0265689.g004
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The isocyanate formation may account for the significant increase in hydrolytic rate previously

observed with aromatic N-monosubstituted carbamate esters [68].

Mass fragmentation of CUR-2GE, CUR-1GE and curcumin

The MS parameters were tuned in a positive electrospray ionization mode. The mass fragmen-

tation patterns of CUR-2GE, CUR-1GE and curcumin standards were shown in S12 Fig (see

Supplementary section). The precursor ions of CUR-2GE, CUR-1GE and curcumin at m/z

683, 526 and 369, respectively, were fragmented in the collision cell to the same predominant

product ion at m/z 177. Hence, the multiple reaction monitoring (MRM) mode was adopted

for analysis with the transitions of m/z 683>177 for CUR-2GE, m/z 526>177 for CUR-1GE

and m/z 369>177 for curcumin.

Fig 5. Proposed hydrolysis mechanisms of CUR-2GE in buffers at pH 6.8 and 7.4.

https://doi.org/10.1371/journal.pone.0265689.g005
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Identification of incomplete hydrolytic products of CUR-2GE

The retention times and product ions of CUR-2GE, CUR-1GE and curcumin are summarized

in Table 3. The UPLC-MS/MS chromatogram showed the retention times in the order of

CUR-2GE, curcumin and CUR-1GE about 2.87, 1.98 and 2.47 min, respectively (Fig 6). The

peak with a retention time of 2.18 min and 1.69 min represented a tautomer of CUR-2GE and

CUR-1GE, respectively, as it exhibited the same transition ion, which was similar to curcumin

and other curcumin prodrugs [69–72].

The MS/MS spectra of curcumin showed several product ions at m/z 177, 245 and 285 (Table 3).

CUR-1GE lost a mono-ethyl γ-aminobutyrate moiety leading to the formation of curcumin ion at

m/z 369 and several product ions at m/z 177, 245 and 285 of curcumin. The MS/MS spectrum of

CUR-2GE showed the loss of a mono-ethyl γ-aminobutyrate moiety to form a line peak at m/z 526,

subsequently identified as CUR-1GE. In addition, CUR-2GE could lose two functional groups of

ethyl γ-aminobutyrate resulting in the product ion with m/z 369, subsequently identified as curcu-

min. The fragmentations of curcumin, CUR-1GE and CUR-2GE are proposed in Fig 7.

The UPLC-MS/MS of curcumin in buffers at pH 4.5, 6.8, 7.4 and human plasma showed

the retention time at 1.98 min consistent with the curcumin standard (Fig 6). The MS/MS

spectra demonstrated the product ions at m/z 177, 245 and 285 (Table 3), confirming that the

peak at 1.98 min was curcumin. In a similar analysis, the retention time about 2.46 min was

consistent with the CUR-1GE standard (Fig 6). The product ions generated at m/z 177, 245,

285 and 369 in buffers and m/z 178 and 369 in human plasma confirmed the peak at 2.46 as

CUR-1GE (Table 3).

Table 3. UPLC-MS/MS results of CUR-2GE and its hydrolytic products after incubation.

Analyte Source Retention time

(min)

Formula MRM transition

(m/z)

Cone voltage

(V)

Collision energy

(eV)

Product ions (m/z)

CUR-2GE Curcumin

CUR-1GE

Standard 2.87 C35H42N2O12 683.25>177.10 20 20 177.24, 245.08, 285.05,

369.15, 526.04

Standard 1.98 C21H20O6 369.15>177.10 65 20 177.09,245.08, 285.01

Standard 2.47 C28H31NO9 526.15>177.10 25 20 177.12, 244.90, 285.16, 369.28

CUR-2GE pH 1.2 2.86 C35H42N2O12 683.25>177.10 20 20 176.53, 369.41, 526.62

pH 4.5 2.85 C35H42N2O12 683.25>177.10 20 20 177.43, 245.45, 285.02,

369.26, 526.46

pH 6.8 2.85 C35H42N2O12 683.25>177.10 20 20 177.42, 244.77, 368.91, 526.73

pH 7.4 2.86 C35H42N2O12 683.25>177.10 20 20 177.06, 285.07, 368.95, 526.45

Human

plasma

ND C35H42N2O12 683.25>177.10 20 20 ND

Curcumin pH 1.2 ND C21H20O6 369.15>177.10 65 20 ND

pH 4.5 1.98 C21H20O6 369.15>177.10 65 20 177.04, 244.80, 285.48

pH 6.8 1.98 C21H20O6 369.15>177.10 65 20 177.12, 245.54, 285.18

pH 7.4 1.98 C21H20O6 369.15>177.10 65 20 177.40, 245.01, 284.94

Human

plasma

1.98 C21H20O6 369.15>177.10 65 20 177.12, 245.23, 285.18

CUR-1GE pH 1.2 2.46 C28H31NO9 526.15>177.10 25 20 176.98, 246.19, 285.48, 368.57

pH 4.5 2.45 C28H31NO9 526.15>177.10 25 20 177.29, 245.02,288.07, 367.81

pH 6.8 2.46 C28H31NO9 526.15>177.10 25 20 177.27, 249.93, 285.25, 371.52

pH 7.4 2.46 C28H31NO9 526.15>177.10 25 20 177.15, 244.79, 284.26, 368.80

Human

plasma

2.46 C28H31NO9 526.15>177.10 25 20 178.88, 368.87

ND = not detected.

https://doi.org/10.1371/journal.pone.0265689.t003
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Fig 6. UPLC-MS/MS chromatograms of CUR-2GE, curcumin, CUR-1GE. (A) CUR-2GE, curcumin and CUR-1GE standards at 10 μg/mL,

CUR-2GE incubated at 37˚C in buffers at (B) pH 1.2 for 24 h, (C) pH 4.5 for 24 h, (D) pH 6.8 for 7 min, (E) pH 7.4 for 7 min and (F) human

plasma for 1 h. The peak of CUR-2GE, curcumin and CUR-1GE was shown at the retention times about 2.87, 1.98 and 2.47, respectively. The

peak with retention times of 2.18 and 1.69 min represented tautomers of CUR-2GE and CUR-1GE, respectively, as they exhibited the same

transition ions. Other peaks were generated from an insource fragmentation.

https://doi.org/10.1371/journal.pone.0265689.g006
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Curcumin was not detected in acidic pH 1.2. CUR-1GE was found at all buffer pH levels

and in human plasma, indicating that CUR-2GE was incompletely hydrolyzed and CUR-1GE,

an intermediate of CUR-2GE, was formed before the parent curcumin.

In vitro cell uptake in BV-2 microglial cells

To assess the uptake of CUR-2GE to microglial cells, the fluorescence intensity of curcumin or

CUR-2GE in BV-2 microglial cells was monitored under a fluorescence microscope after 4-h

incubation. As shown in Fig 8, both curcumin and CUR-2GE were evenly distributed in the

Fig 7. Proposed mass fragmentations of (A) curcumin, (B) CUR-1GE and (C) CUR-2GE.

https://doi.org/10.1371/journal.pone.0265689.g007
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Fig 8. In vitro cellular uptake of curcumin and CUR-2GE. (A) Representative images of curcumin and CUR-2GE

uptake in BV-2 microglial cells. The scale bars correspond to 502 μm (center) and 100 μm (right). The fluorescence

intensity was further analyzed using ImageJ software. (B) Bar graph showing the fluorescent intensity of a single cell

along the dotted line and (C) total average fluorescence intensity of 50 cells. The data in Fig 8C are expressed as

mean ± SD (n = 50). ���p<0.001, control vs other treatments, ###p<0.001, Curcumin vs CUR-2GE.

https://doi.org/10.1371/journal.pone.0265689.g008
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Fig 9. Effects of curcumin and Cur-2GE on cytotoxicity and secretion of pro-inflammatory mediators in LPS-stimulated BV-2 microglial

cells. (A-B) Cytotoxicity, (C) NO, (D) TNF-α, (E) IL-6 and (F) Cell viability. Data are expressed as mean ± SD of three independent experiments.

$ $p< 0.01, $ $ $p< 0.001 compared to the control group. ���p< 0.001 compared to the LPS group. ###p< 0.001 significant difference between

curcumin and CUR-2GE groups. The differences were analyzed by one-way ANOVA followed by the Bonferroni post hoc test.

https://doi.org/10.1371/journal.pone.0265689.g009

PLOS ONE Physicochemical properties and anti-neuroinflammatory activities of CUR-2GE

PLOS ONE | https://doi.org/10.1371/journal.pone.0265689 March 18, 2022 19 / 26

https://doi.org/10.1371/journal.pone.0265689.g009
https://doi.org/10.1371/journal.pone.0265689


cells (Fig 8A). The cells treated with CUR-2GE had higher fluorescence intensity than curcu-

min (Fig 8B and 8C), indicating the more cellular uptake of CUR-2GE. It was possibly due to

its higher lipophilicity and consequently better cell penetration via passive transport. In addi-

tion, the presence of GABA-ethyl ester in the CUR-2GE may interact with GABA transporters

commonly found in neuronal microglial cells, facilitating drug uptake into BV-2 microglial

cells via active transport [73, 74].

Anti-inflammatory effect on BV-2 microglial cells

Cytotoxicity. The cytotoxicity of curcumin and CUR-2GE was determined to identify

their non-toxic concentrations. It was found that curcumin and CUR-2GE at

concentrations� 10 μM had no cytotoxicity and were considered as non-toxic concentrations

(Fig 9A and 9B). Thus, the highest non-toxic concentration at 10 μM was used for subsequent

cell-based assays.

Effects on NO, TNF-α and IL-6 levels. The anti-neuroinflammatory effects of CUR-2GE

on the secretion of pro-inflammatory mediators (NO, TNF-α and IL-6) were investigated in

LPS-stimulated BV-2 microglial cells. LPS at 1 μg/mL was sufficient to robustly increase NO,

TNF-α and IL-6 without affecting cell viability (Fig 9C–9F). CUR-2GE inhibited NO produc-

tion and cytokine releases (TNF-α and IL-6) to a greater extent than curcumin in LPS-stimu-

lated BV-2 microglial cells (Fig 9C–9E). Our results are consistent with the previous

suggestion on the activity of curcumin against LPS-induced BV-2 microglial cells [10]. CUR-

Fig 10. Proposed mechanism of CUR-2GE in LPS-stimulated BV-2 microglial cells. CUR-2GE with improved stability and

lipophilicity profiles enhanced cellular uptake of curcumin, leading to greater anti-inflammatory effects in LPS-stimulated BV-2

cells. CUR, curcumin; GE, gamma-aminobutyric acid ethyl ester; IL-6, interleukin 6; LPS, lipopolysaccharide; NO, nitric oxide;

TNF-α, tumor necrosis factor α.

https://doi.org/10.1371/journal.pone.0265689.g010
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2GE had more significant anti-neuroinflammatory activity than curcumin, possibly due to the

improved physicochemical properties via the prodrug approach. In summary, CUR-2GE sig-

nificantly enhanced anti-neuroinflammatory activity and increased inhibition of pro-inflam-

matory mediators in the LPS-stimulated BV-2 microglial cell model (Fig 10).

Conclusions

In this study, CUR-2GE, a new carbamate prodrug of curcumin, has been successfully synthe-

sized and investigated on its physicochemical properties and anti-inflammatory effects. CUR-

2GE is characterized as a poorly soluble compound with a high partition coefficient. It is stable

at acidic pH and rapidly hydrolyzes at neutral pH. The solubility of CUR-2GE can be

improved using surfactants. CUR-2GE is digested in the gastrointestinal fluids and converted

to CUR-1GE and curcumin readily for absorption. As a prodrug, CUR-2GE can also be bio-

converted in plasma and release curcumin to exert biological activity. The potent inhibition of

pro-inflammatory cytokines by CUR-2GE suggests that CUR-2GE has potential for further

pre-clinical and clinical investigation on its anti-inflammatory effects for the treatment of sev-

eral neurodegenerative disorders associated with neuroinflammation and microglial

activation.
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