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Abstract: N-glycolylneuraminic acid (NeuGc), a non-human sialic acid derivative synthesized
by cytidine-5′-monophospho-N-acetylneuraminic acid hydroxylase (CMAH), plays a crucial role
in mediating infections by certain pathogens. Although it has been postulated that NeuGc
biosynthesis and CMAH expression are downregulated during microbial infection, the underlying
mechanisms remain unclear. The present study showed that exposure to lipopolysaccharide (LPS),
a Gram-negative bacterial endotoxin, leads to loss of NeuGc biosynthesis in pig small intestinal
I2I-2I cells. This LPS-induced NeuGc loss was accompanied by decreased CMAH transcript levels,
especially intestine-specific 5′pcmah-1. Furthermore, LPS suppressed the activity of the Pi promoter
responsible for 5′pcmah-1 by inhibiting DNA binding of Est1. These findings provide insight into
the regulatory mechanisms of Neu5Gc biosynthesis during pathogenic infectious events, which may
represent a host defense mechanism that protects the self against pathogenic bacterial infections even
in non-sanitary environments.

Keywords: N-glycolylneuraminic acid (NeuGc); cytidine-5′-monophospho-N-acetylneuraminic acid
hydroxylase (CMAH); lipopolysaccharide (LPS); Ets1

1. Introduction

Sialic acids are typically found at the non-reducing ends of oligosaccharide chains, which
are involved in various biological processes, such as the immune response and infections [1,2].
N-glycolylneuraminic acid (NeuGc) is one of the major types of sialic acid found in most mammals
except in humans in physiological state [3]. NeuGc-containing glycoconjugates have been implicated
as a crucial mediator in the infection process [4–8]. Indeed, Neu5Gc acts as a target receptor or
ligand for microbial pathogens such as Escherichia coli K99 and for bacterial toxins such as subtilase
cytotoxin secreted by Shiga toxigenic E. coli [4,7,8]. Meanwhile, accumulating evidence indicates that
the NeuGc level is regulated during the developmental process as well as upon infection by intestinal
parasites [4,5,9]. For example, in the pig small intestine, Neu5Gc concentration is maximal at birth and
gradually decreases in adults, which may explain the susceptibility of newborn piglets to pig enteric
pathogens such as E. coli K99 [4,9]. In addition, the NeuGc level is downregulated by the rat intestinal
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parasite Nippostrongylus brasiliensis [5]. These findings raise the obvious question of precisely how
NeuGc levels are regulated in the course of infection.

Biosynthesis of NeuGc is mediated by a specific hydroxylase, cytidine-5′-monophospho-N-
acetylneuraminic acid hydroxylase (CMAH), which catalytically converts CMP-NeuAc to
CMP-NeuGc [10–12]. The profile of NeuGc formation has been found to correlate with CMAH
abundance in tissues, and CMAH expression is one of the major factors determining NeuGc level [9].
Previous studies have reported that CMAH expression is tissue-dependent and is regulated during
infection by certain parasites or bacterial endotoxins [5,9,13]. Although these results indicate that
CMAH expression, which is directly related to NeuGc biosynthesis, may be downregulated by certain
infectious agents, the underlying mechanisms remain unclear.

Previously, we demonstrated that the pig CMAH (pcmah) gene has two distinct 5′ alternative
splicing forms, 5′pcmah-1 and 5′pcmah-2, which exhibit intestine-specific and housekeeping expression,
respectively [14,15]. In an effort to elucidate the regulatory mechanisms relevant to these
pcmah transcripts, we identified two distinct promoters, intestine-specific Pi and housekeeping
Ph, which are responsible for the expression of 5′pcmah-1 and 5′pcmah-2, respectively [14,16].
Furthermore, our previous study established that the transcription factor Ets1 is necessary for
intestine-specific activity of the Pi promoter [16]. However, it is unclear how pcmah is regulated during
the infectious process.

The gastrointestinal tract, where many trillions of commensal and infectious bacteria reside, has the
highest concentrations of LPS [17,18]. Gut-derived bacterial LPS plays an essential role in inducing
intestinal and systemic inflammatory responses, and it has been implicated as a pathogenic factor of
necrotizing enterocolitis and inflammatory bowel disease [19]. With regard to NeuGc regulation, it was
reported that mRNA expression of CMAH is downregulated by lipopolysaccharide (LPS), which in
turn contributes to NeuGc loss, in mouse B cells [13]; however, the underlying mechanisms remain to
be elucidated. In this study, we focused on the regulatory mechanisms by which infectious conditions
imposed by bacterial endotoxin LPS induce NeuGc loss in pig intestinal epithelial cells. We discovered
that LPS-induced NeuGc loss arises through intestine-specific transcriptional regulation of the pcmah
gene. Therefore, these findings provide insight into a host defense mechanism that protects the self
against pathogenic bacterial infections.

2. Results

2.1. LPS Exposure Leads to Loss of NeuGc Biosynthesis in Pig Small Intestinal IPI-2I Cells

To investigate the effects of bacterial endotoxin on NeuGc biosynthesis, pig small intestinal IPI-2I
cells were treated with 100 ng/mL LPS. We observed a significant reduction in NeuGc biosynthesis in
IPI-2I cells after LPS exposure (Figure 1a). As CMAH expression is a key rate-limiting step in NeuGc
regulation, we assessed the levels of CMAH protein and mRNA following LPS treatment. Indeed, LPS
treatment resulted in a time-dependent gradual loss of CMAH protein, which was accompanied by
decreased levels of CMAH mRNA (Figure 1b,c). These results indicate that LPS induces NeuGc loss
through a reduction in transcription of the CMAH gene in pig small intestinal IPI-2I cells.
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Figure 1. LPS exposure induces NeuGc loss and downregulation of pcmah. IPI-2I cells were treated 
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Figure 1. LPS exposure induces NeuGc loss and downregulation of pcmah. IPI-2I cells were treated
with 100 ng/mL LPS for the indicated times. (a) Neu5Gc levels in the cells were determined by
ELISA. Graphs represent three independent experiments performed in triplicate. Data represent the
mean ± SD. * P < 0.05 by two-tailed Student’s t test. (b) Protein level of pcmah was analyzed by
immunoblotting. β-ACTIN was included as an internal loading control. Numbers below blot images
indicate fold-change in protein expression. (c) mRNA expression levels of pcmah were determined by
RT-PCR. Numbers below images indicate fold-change in protein or mRNA level.

2.2. LPS-Induced pcmah Loss Is Mediated by the Intestine-Specific 5′pcmah-1 Transcript

Previously, we demonstrated that the pig cmah gene has two distinct 5′ alternative splicing forms,
5′pcmah-1 and 5′pcmah-2, which exhibit intestine-specific and housekeeping expression, respectively [14]
(Figure 2a). Given our previous finding that 5′pcmah-1 and 5′pcmah-2 encode an identical pCMAH
protein [15] (Figure 2a), we questioned which transcript is responsible for the loss of CMAH protein
following LPS treatment in IPI-2I cells. Intriguingly, LPS treatment drastically reduced 5′pcmah-1 but
not 5′pcmah-2 transcript levels in IPI-2I cells (Figure 2b), suggesting that LPS-induced pCMAH loss is
mediated by a reduction of the intestine-specific transcript rather than the housekeeping transcript.
We next attempted to elucidate the underlying mechanism responsible for transcriptional loss of
5′pcmah-1 following LPS exposure. Since 5′pcmah-1 is mainly controlled by the Pi (intestine-specific)
promoter [14,16], we examined the effects of LPS treatment on Pi promoter activity using serially
constructed 5′-deletion mutants, Pi-700, Pi-542, Pi-260 and Pi-233. The activity of Pi-542 and Pi-700 was
markedly decreased upon LPS treatment in IPI-2I cells, while there was no alteration in the activity of
Pi-260 or Pi-230 after LPS treatment (Figure 2c). This result indicates that the region between 542 and
260 bp may be responsible for LPS-induced transcriptional loss of 5′pcmah-1.
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Figure 2. LPS downregulates levels of intestine-specific 5’pcmah-1 transcript and Pi promoter of pcmah
in IPI-2I cells. (a) A schematic diagram for genomic structure of the pcmah. 5’pcmah-1 and 5’pcmah-2,
two alternative splicing variants of the pcmah, have a distinct transcription initiation site located in
exons 0 and 1a, respectively. Each promoter region responsible for intestine specific splicing variant
5’pcmah-1 and housekeeping splicing variant 5’pcmah-2 is indicated by Pi (intestine specific promoter)
and Ph (housekeeping promoter), respectively. Shaded boxes indicate the coding exons, while open
boxes indicate untranslated exons. Two splicing variants of the pcmah share a common ORF region
(shaded arrow boxes). (b) IPI-2I cells were treated with 100 ng/mL LPS for 1 h. mRNA expression
of pcmah, 5’pcmah-1, and 5’pcmah-2 were determined by qRT-PCR. Numbers below images indicate
fold-change in mRNA expression. (c) The indicated 5’ deletion constructs for the Pi promoter region
were transiently transfected into IPI-2I cells. After 24 h, the cells were treated with LPS for 1 h.
Luciferase and β-galactosidase activity in the transfected cells was measured. For each transfection,
luciferase activity was normalized with β-galactosidase activity and the relative value was determined
from the ratio of normalized activity and activity in cells transfected with the empty pGL3-basic vector.
Transcription factors in the region are indicated. Graphs represent three independent experiments
performed in triplicate. Data represent the mean ± SD. * P < 0.05, ** P < 0.01 by two-way ANOVA.

2.3. LPS Interferes with Ets1 Binding to the Pi Promoter Region of pcmah

In an effort to identify the LPS-responsive element in the Pi promoter, we noted that genetic
deletion of the region containing the Ets1 binding site, from Pi-542 to Pi-260, resulted in a failure
to decrease Pi promoter activity after LPS treatment (Figure 2b). In this regard, we previously
demonstrated that the Ets1 binding element is essential for the basal activity of the Pi promoter, which
in turn contributes to intestine specific expression of 5’pcmah-1 in IPI-2I cells [16]. Given the crucial
role of Ets1 binding element in an intestine-specific activity of the Pi promoter [16], we questioned that
the Ets1 binding element may also act as an LPS-responsive element in the Pi promoter. To investigate
the role of Ets1 binding element in the suppressive effect of LPS on Pi promoter activity, we engineered
a mutant form of the Pi-542 construct (Pi-542-Mut) in which the Ets1-binding element has been
mutated (Figure 3a). Consistent with our previous results [16], mutation of the Ets1 binding site on
Pi-542 significantly decreased the activity of Pi-542 in intestinal IPI-2I cells (Figure 3a,b). However, LPS
treatment did not further reduce the activity of the Pi-542-Mut construct (Figure 3b).
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Figure 3. The Ets1 binding element is crucial for LPS-induced repression of Pi activity. (a) Nucleotide
sequences of the Ets1 binding site (WT) and mutated bases (Mut) in Pi-542 are shown. (b) Luciferase
activity of WT and Mut Pi-542 in IPI-2I cells with or without LPS treatment (100 ng/mL, 1 h).
Graphs represent three independent experiments performed in triplicate. Data represent the mean ±
SD. * P < 0.05 by one-way ANOVA.

These results indicate that the Ets1 binding element on the Pi promoter is important for the activity
in response to LPS as well as basal promoter activity. Previously, we showed that Ets-1 transcription
factor is abundant in intestinal tissues, which in turn activates the Pi promoter, thereby contributing to
intestine-specific expression of pcmah [16]. However, there was no alteration in Ets1 protein abundance
in either the nuclear or whole protein fractions of LPS-treated IPI2I cells compared with control
(Figure 4a). It has been documented that intracellular signaling can inhibit the DNA-binding activity of
Ets1 [20]. To determine whether LPS affects binding of Ets1 to its binding element in the Pi promoter,
an electrophoretic mobility shift assay (EMSA) was performed using nuclear extracts of IPI-2I cells
treated with or without LPS, and a 32P-labeled oligonucleotide probe containing Ets1 binding element
of the Pi promoter region (Pi Ets1 probe). In this regard, a specific binding of Ets1 protein to the Pi
Ets1 probe has been previously demonstrated [16]. Notably, nuclear protein (NP) isolated from IPI-2I
cells successfully bound to the Pi-Ets1 probe; however, NP of LPS-treated IPI-2I cells failed to complex
with the oligonucleotide probe (Figure 4b). The result indicates a suppressive role of LPS on the
Ets1-oligonucleotide complex in IPI-2I cells. Taken together, our findings suggest that LPS may inhibit
DNA binding of Ets1, thereby suppressing the activity of the Pi promoter responsible for 5’pcmah-1 in
IPI-2I cells.
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Figure 4. LPS interferes with Ets1 binding to the Pi promoter region of pcmah. IPI-2I cells were treated
with 100 ng/mL LPS for 1 h. (a) Nuclear and cytosol fractions and whole cell lysates were analyzed by
immunoblot analysis with the indicated antibodies. Numbers below images indicate fold-change in
expression levels. (b) Nuclear extracts of IPI-2I cells treated with or without LPS were incubated with
a 32P-labeled oligonucleotide probe (Pi Ets1). The reaction mixture was then examined by EMSA as
described in the Materials and Methods Section. “NP” refers to nuclear protein. Arrows indicate the
specific binding complex for Ets1.
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3. Discussion

Intestinal epithelial cells, which line the gastrointestinal tract, function as a barrier against foreign
parasitic infections. NeuGc-containing glycoconjugates on the surface of intestinal epithelial cells have
been implicated as the primary compounds that interact with microbes or bacterial endotoxins during
the infection process [4–9]. Although NeuGc loss was previously observed in the microbial infection
process [4,5], the underlying mechanisms remain unclear. Here, we show that NeuGc loss can be
triggered by the bacterial endotoxin LPS via transcriptional repression of the pcmah gene, in particular
its intestine-specific transcript (5’pcmah-1).

LPS concentrations are highest in the gut lumen, where many trillions of commensal bacteria
reside [17,18]. In general, however, LPS in the gut lumen do not penetrate across the healthy intestinal
epithelium [21]. For instance, while the concentration of LPS in the gut lumen has been reported to be
1.8 µg/mL in the rat distal ileum [22], previous reports suggested plasma LPS levels of 0.1–1 ng/mL to
be physiologically relevant [23,24]. In this regard, we found that at least 50 ng/mL of LPS is required
to effectively inhibit the levels of CMAH protein and mRNA at our experimental conditions (data
not shown). Therefore, the evidence that high dose (100 ng/mL) of LPS effectively inhibits NeuGc
biosynthesis may be relevant to the pathological context rather than physiological conditions.

Given the crucial role of NeuGc as a target receptor for certain pathogens and toxins in the infection
process, it is intriguing, and perhaps counterintuitive, that LPS exposure leads to loss of NeuGc
biosynthesis. Nonetheless, it has been reported that the level of NeuGc-containing glycoconjugates is
maximal at birth and gradually decreases in the later stages of an infection [4]. This may explain the
observation that newborn pigs are particularly susceptible to pig enteric pathogens [4]. In light of this,
we postulate that NeuGc loss in intestinal epithelial cells following LPS exposure may be a defense
mechanism against infection.

The transcription factor Ets1 is widely expressed in developing and mature intestines and is
closely related to certain inflammatory disease processes [25]. We recently demonstrated that Ets1 plays
an important role in the activity of the Pi promoter responsible for intestine-specific expression of
pcmah [16]. While we showed that relatively high levels of Ets1 confer intestine-specificity of pcmah
expression [16], LPS treatment did not affect Ets1 protein levels in nuclear or whole cell lysates of
IPI-2I cells (Figure 4a). Nonetheless, it has been documented that intracellular signaling can inhibit the
DNA-binding activity of Ets1 [20,26,27]. Indeed, the DNA-binding activity of Ets-1 was significantly
reduced in LPS-stimulated human macrophage THP-1 cells [28]. Calcium-induced phosphorylation of
Ets-1 also causes a reduction in its DNA-binding activity [26]. These results raise the obvious question
of precisely how LPS could interfere Ets1 function. In this regard, it is well known that binding of
the LPS to specific cellular receptors, including toll-like receptor 4 (TLR4), triggers a downstream
signaling cascade leading to transcriptional regulation of numerous genes [29]. In line with these
results, our findings suggest that LPS signaling may inhibit DNA binding of Ets1, thereby suppressing
the activity of the Pi promoter responsible for 5’pcmah-1. Nevertheless, it will be important in future
studies to assess the precise underlying mechanisms by which LPS signaling interferes Ets1 function.

Although our data clearly show that LPS treatment decreases mRNA and protein expression of pig
CMAH, it is important to note that, while NeuGc levels were reduced by LPS exposure, considerable
amounts of NeuGc remained (Figure 1a). One possible explanation for the remaining NeuGc involves
uptake and utilization of exogenous NeuGc. Indeed, it is well known that fetal bovine serum is a good
exogenous source of NeuGc. Nonetheless, we cannot exclude possible contributions of housekeeping
splicing variant 5’pcmah-2 as a compensatory mechanism and other regulatory mechanisms responsible
for NeuGc biosynthesis.

Altogether, our data provide evidence that infectious conditions, such as that imposed by the
bacterial endotoxin LPS, lead to a loss of NeuGc synthesis in intestinal epithelial cells. When porcine
intestinal cells meet the pathogenic bacterial endotoxin LPS, the cells begin to respond by recognizing
the bacterial infection and decreasing the concentration of NeuGc on the cell surface via downstream
signaling. In the process, reduction in NeuGc levels is brought about through intestine-specific
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transcriptional regulation of the pcmah gene, in particular 5’pcmah-1. In turn, this loss of NeuGc in
pig intestinal epithelial cells may alter the binding activities of any pathogen that employs NeuGc
for any part of its pathogenic process. Therefore, these findings provide insight into the regulatory
mechanisms of Neu5Gc biosynthesis during pathogenic infectious events, which may represent
a host defense mechanism that protects the self against pathogenic bacterial infections even in
non-sanitary environments.

4. Materials and Methods

4.1. Cell Culture

The IPI-2I cell line, derived from pig small intestinal tissue, was obtained from the European
Collection of Cell Culture (ECACC, Salisbury, UK) and cultured in DMEM (WelGENE, Daegu, Korea)
containing insulin (0.024 IU/mL, Sigma Aldrich, St Louis, MO, USA), glutamine (4 mM, Sigma Aldrich)
and 100 unit/mL penicillin–streptomycin (WelGENE). The cells were grown at 37 ◦C in a 5% CO2

incubator/humidified chamber.

4.2. Enzyme-Linked Immunosorbent Assay (ELISA) for NeuGc

Neu5Gc levels were measured with an ELISA assay kit using chicken polyclonal IgY (BioLegend,
Sandiego, CA, USA), as described previously [14].

4.3. Western Blot Analysis

Lysates extracted from a total of 2.5× 105 cells were used to perform Western blot.
Primary antibodies against CMAH, ETS1 and Lamin B (Santa Cruz Biotechnology, CA, USA) as
well as β-ACTIN (Sigma Aldrich) were used. Western blotting was followed by the appropriate
secondary antibodies conjugated with horseradish peroxidase. Immunoreactive bands were developed
with the chemiluminescence ECL detection system (Sigma-Aldrich) and signals were detected using
ChemiDoc (Davinchi-K, Seoul, Korea).

4.4. Reverse Transcription-Polymerase Chain Reaction and Real-Time Quantitative PCR

Total RNA was isolated using TRIZOL reagent (Invitrogen, Carlsbad, CA, USA), and cDNA was
synthesized using AccuPower®RT-PreMix (Bioneer, Daejon, Korea), according to the manufacturer’s
recommended protocol. PCR was performed with the following specific primers: pcmah,
5′-ATGAGCAGCATCGAACAAAC-3′ (forward) and 5′-ACAACCAGTTCGTCTTGACA-3′

(reverse); 5′pcmah-1, 5′-GTCAACGGAAATACTGAGCTGGGT-3′ (forward) and 5′-
TCGTCTTGACAGAAGCTTCCAGGA-3′ (reverse); 5′pcmah-2, 5′-TGCTTCTCCAGGGGCGAAACC-3′

(forward) and 5′-TCGTCTTGACAGAAGCTTCCAGGA-3′ (reverse); β-actin, 5′-
CACGCCATCCTGCGTCTGGA-3′ (forward) and 5′-TCTGCATCCTGTCGGCGATG-3′ (reverse).
For generalization of the obtained data, equal amounts of mRNA were used. Expression levels of
β-actin as an internal control were analyzed and confirmed. Real-time quantitative RT-PCR was
performed using iQ SYBR Green super mix (Bio-Rad) with the specific primers on a CFX96 real-time
PCR detection system. All real-time quantitative PCR experiments were performed in triplicate
and quantification cycle (Cq) values were determined using Bio-Rad CFX96 Manager 3.0 software.
Relative quantifications of the mRNA levels were performed using the comparative Ct method with
β-ACTIN as the reference gene.

4.5. DNA Constructs and Site-Directed Mutagenesis

The DNA constructs corresponding to the intestine-specific (Pi) promoter of the pig CMAH
gene have been described previously [14,16]. Site-directed mutagenesis was performed using
a QuickChange XL Site-directed Mutagenesis kit (Stratagene, San Diego, CA, USA) according
to the manufacturer’s instructions. To create mutations in the Ets1-binding sites of the Pi
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promoter region, the following primer set was used: 5′-TATGCCACATTGGGCAGCCCT-3′ (forward)
and 5′-AGGGCTGCCCAATGTGGCATA-3′ (reverse). The mutant construct was confirmed by
DNA sequencing.

4.6. Luciferase Reporter Assay

For the luciferase assay, IPI-2I cells were co-transfected with 0.25 pmol of the indicated Ph
or Pi promoter constructs and 0.25 µg of β-galactosidase reporter plasmid using polyethylenimine
transfection reagent (Polyscienses, Warrington, PA, USA). After 24 h, the cells were treated with LPS
(100 ng/mL, Sigma) for 1 h. Luciferase activity and β-galactosidase activity were determined using a
luciferase reporter assay system kit (Promega, Madison, WI, USA). Luciferase activity was normalized
to β-galactosidase activity.

4.7. Electromobility Shift Assay (EMSA)

For EMSA, a single-stranded oligonucleotide was commercially synthesized using IDT DNA (IDT,
IA, USA), as follows: Pi Ets-1, 5′-TATGCCACAGGAAGCAGCCCT-3′. To anneal the double strand
probes, complementary oligonucleotides were added together in a 1:1 molar ratio and incubated at
95 ◦C for 2 min and at 25 ◦C for 45 min. The EMSA experiment was performed using a gel shift assay
system kit (Promega, USA), as previously described [14].

4.8. Statistical Analysis

All data are representative of at least three separate experiments. Statistical differences were
calculated by Student’s t-test (two-tailed, unpaired), one-way ANOVA or two-way ANOVA using
GraphPad Prism software. A P-value of less than 0.05 was considered statistically significant.

5. Conclusions

The present study demonstrated to the regulatory mechanisms by which LPS induces NeuGc loss in
pig small intestinal I2I-2I cells (Figure 5). The LPS-induced NeuGc loss was accompanied by decreased
CMAH transcript levels, especially intestine-specific 5’pcmah-1. In this process, the transcription factor
Ets1 played a crucial role in the downregulation of 5’pcmah-1 following LPS treatment. We postulate
that LPS may interfere the Ets1 function via intracellular signaling pathway by binding to specific
cellular receptors, including toll-like receptor 4 (TLR4). Indeed, it was shown that LPS interferes with
Ets1 binding to DNA, thereby suppressing the activity of the Pi promoter responsible for 5’pcmah-1.
Therefore, these results provide insight into the regulatory mechanisms of Neu5Gc biosynthesis during
pathogenic infectious events.
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