International clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society to National Glycohemoglobin Standardization Program values

In 1999, the Japan Diabetes Society (JDS) launched the previous version of the diagnostic criteria of diabetes mellitus, in which JDS took initiative in adopting glycated hemoglobin (HbA_{1c}) as an adjunct to the diagnosis of diabetes. In contrast, in 2009 the International Expert Committee composed of the members of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) manifested the recommendation regarding the use of HbA_{1c} in diagnosing diabetes mellitus as an alternative to glucose measurements based on the updated evidence showing that HbA1c has several advantages as a marker of chronic hyperglycemia²⁻⁴. The JDS extensively evaluated the usefulness and feasibility of more extended use of HbA_{1c} in the diagnosis of diabetes based on Japanese epidemiological data, and then the 'Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus' was published in the Journal of Diabetes Investigation⁵ and Diabetology International⁶. The new diagnostic criterion in Japan came into effect on 1 July 2010. According to the new version of the criteria, HbA_{1c} (JDS) ≥6.1% is now considered to indicate a diabetic type, but the previous diagnosis criteria of high plasma glucose (PG) levels to

diagnose diabetes mellitus also need to be confirmed. Those are as follows: (i) FPG \geq 126 mg/dL (7.0 mmol/L); (ii) 2-h PG \geq 200 mg/dL (11.1 mmol/L) during an oral glucose tolerance test; or (iii) casual PG \geq 200 mg/dL (11.1 mmol/L). If both PG criteria and HbA_{1c} in patients have met the diabetic type, those patients are immediately diagnosed to have diabetes mellitus^{5,6}.

In the report, the $\mathrm{HbA_{1c}}$ measurements in Japan are well calibrated with Japanese-Clinical-Laboratory-Use Certified Reference Material (JCCRM). The certified values are determined by a high-resolution type ion-exchange high performance liquid chromatography (HPLC) (KO 500 method) and certified using the designated comparison method (DCM) of the Japan Society of Clinical Chemistry (JSCC) and the JDS. After incorporating a proportional

bias correction to the value anchored to the peptide mapping method of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC), the DCM actually measures β-N-monodeoxyfructosyl hemoglobin and has an intercept approximately equal to zero against the peptide mapping method of IFCC in measuring fresh raw human blood samples. Furthermore, standardization of HbA_{1c} in Japan was initiated in 1993, and the serial reference materials from JDS Lot 1 to JDS Lot 4 are well certified using the DCM until now. In the new diagnosis criteria^{5,6}, the new cut-point of HbA_{1c} (JDS) for diagnosis of diabetes mellitus is 6.1%, which is equivalent to the internationallyused HbA_{1c} (National Glycohemoglobin Standardization Program [NGSP]) 6.5%, as HbA_{1c} (NGSP)(%) is reported to be equivalent to 1.019 × HbA_{1c} (JDS)% +

Table 1 | Differences in glycated hemoglobin values between Japan Diabetes Society and National Glycohemoglobin Standardization Program for assessments of diagnosis and treatment of diabetes mellitus

(a) Diagnostic reference values of HbA_{1c} (NGSP) and HbA_{1c} (JDS)

Diagnostic reference values	HbA _{1c} (NGSP)	HbA _{1c} (JDS)
Standard range (%)	4.6-6.2	4.3-5.8
Diabetes range (%)	≥6.5	≥6.1
Possible diabetes range (%)	6.0-6.4	5.6-6.0
High risk range for diabetes (%)	5.6–5.9	5.2-5.5

(b) Assessments of the glycemic control using HbA_{1c}

Assessment of control state	HbA _{1c} (NGSP)	HbA _{1c} (JDS)
Excellent (%)	<6.2	<5.8
Good (%)	6.2–6.8	5.8-6.4
Fair		
Inadequate (%)	6.9–7.3	6.5-6.9
Not good (%)	7.4–8.3	7.0-7.9
Poor (%)	≥8.4	≥8.0

 ${\rm HbA_{1}}_{\!o}$ glycated hemoglobin; JDS, Japan Diabetes Society; NGSP, National Glycohemoglobin Standardization Program.

Received 13 January 2012; revised 25 January 2012; accepted 27 January 2012

^{*}Corresponding author. Atsunori Kashiwagi Tel: +81-77-548-2500 Fax: +81-77-548-3593 E-mail address: kasiwagi@belle.shiga-med.acjp In 2007, the Japan Diabetes Society established The Committee on the Standardization of Diabetes Mellitus-Related Laboratory Testing, which published an announcement including international clinical harmonization of glycated hemoglobin in Japan in J Jpn Diabetes Soc 2012; 54: Issue 12 (in Japanese). An abridged version of this commentary was published on the website of Japan Diabetes Society¹.

0.3%, which is reasonably estimated by the equation of HbA_{1c} (JDS)% + 0.4%, as the difference between the two equations is within error of HbA_{1c} measurements (2 \sim 3%).

However, on 1 October 2011, the Reference Material Institute for Clinical Chemistry Standards (ReCCS, Kanagawa, Japan) was certified as an Asian Secondary Reference Laboratory (ASRL) using the KO 500 method and the reference materials JCCRM411-2 (JDS Lot 4) after successful completion of NGSP network laboratory certification. Therefore, the HbA_{1c} unit is now traceable to the Diabetes Control and Complications Trial (DCCT) reference method. The comparison was carried out with the Central Primary Reference Laboratory (CPRL) in the University of Missouri School of Medicine. The conversion equation from HbA_{1c} (JDS) to HbA_{1c} (NGSP) units is officially certified as follows: NGSP (%) = $1.02 \times IDS$ (%) + 0.25%; conversely, JDS (%) = $0.980 \times$ NGSP (%) - 0.245%. Based on this equation, in the range of JDS values ≤4.9%, NGSP (%) = JDS (%) + 0.3%; in the range of JDS 5.0~9.9%, NGSP (%) = JDS (%) + 0.4%; and in the range of JDS 10 \sim 14.9%, NGSP (%) = JDS (%) + 0.5%. These results show that the previous equation of NGSP (%) = JDS (%) + 0.4% is also confirmed in the present equation, considering a 2~3% error of HbA_{1c} measurements. The council meeting of the JDS finally decided to use HbA1c (NGSP) values in clinical practice from 1 April 2012, although HbA_{1c} (JDS) values will be included until people become familiar with the new expression. Finally, it is also important to emphasize that the new HbA_{1c} (NGSP) values can be directly measured and printed out from 1 April 2012. However, both new diagnostic reference values and target values of glycemic control have been adjusted to those equivalent values of HbA_{1c} (JDS), as shown in the Table 1.

Atsunori Kashiwagi¹*, Masato Kasuga², Eiichi Araki³, Yoshitomo Oka⁴, Toshiaki Hanafusa⁵, Hiroshi Ito⁶, Makoto

Tominaga⁷, Shinichi Oikawa⁸, Mitsuhiko Noda⁹, Takahiko Kawamura¹⁰, Tokio Sanke¹¹, Mitsuyoshi Namba¹², Mitsuru Hashiramoto¹³, Takayuki Sasahara¹⁴, Yoshihiko Nishio¹⁵, Katsuhiko Kuwa¹⁶, Kohjiro Ueki¹⁷, Izumi Takei¹⁸, Masao Umemoto¹⁹, Masami Murakami²⁰, Minoru Yamakado²¹, Yutaka Yatomi^{22,23}, Hatsumi Ohashi²⁴, Committee on the Standardization of Diabetes Mellitus-Related Laboratory Testing of Japan Diabetes Society ¹Shiga University of Medical Science Hospital, Shiga, ²Research Institute, ⁹Department of Diabetes and Metabolic Medicine/Diabetes Research Center, National Center for Global Health and Medicine, ⁸Division of Endocrinology and Metabolism, Department of Internal Medicine, Nippon Medical School, Departments of ¹⁷Diabetes and Metabolic Diseases, ²²Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, 21 Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, ²³Department of Clinical Laboratory, The University of Tokyo Hospital, and ²⁴Division of Clinical Laboratory, Department of Medical Technology, Tokyo Saiseikai Mukoujima Hospital, Tokyo, ³Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, ¹⁴Department of Metabolic Medicine, Kumamoto Regional Medical Center, Kumamoto, ⁴Department of Metabolic Diseases, Center for Metabolic Diseases, Tohoku University Graduate School of Medicine, Sendai, ⁵Department of Internal Medicine (I), Osaka Medical College, Osaka, ⁶Okhotsk-kai Hospital, Kitami, Hokkaido, ⁷Rehabilitation Hananoie Hospital, Tochigi, ¹⁰Diabetes and Endocrine Internal Medicine, Chubu Rosai Hospital, Aichi, 11 Department of Clinical Laboratory Medicine, Wakayama Medical University, Wakayama, ¹²Division of Diabetes & Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, ¹³Division of Diabetes, Metabolism, and Endocrinology,

Kawasaki Medical School, Okayama, ¹⁵Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, ¹⁶Bio-Medical Standards Section, Organic Analytical Chemistry Division, National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki, ¹⁸Center for Diabetes and Endocrinology, Department of Internal Medicine, Ichikawa General Hospital, Tokyo Dental College, Chiba, 19 Reference Material Institute for Clinical Chemistry Standards, Kanagawa, and ²⁰Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan

REFERENCES

- Japan Diabetes Society. International clinical harmonization of hemoglobin A1c in Japan: from JDS to NGSP values. http://www.jds.or.jp/jds_or_jp0/ uploads/photos/813.pdf
- International Expert Committee. International expert committee report on the role of the A1C assay in the diagnosis of diabetes. *Diabetes Care* 2009; 32: 1327–1334.
- 3. American Diabetes Association.
 Diagnosis and classification of diabetes mellitus. *Diabetes Care* 2010; 33(Suppl.): 562–569.
- Report of a World Health Organization Consultation. Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus. *Diabetes Res Clin Pract* 2011; 93: 299–309.
- 5. The committee of Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. *J Diabetes Invest* 2010; 1: 212–228.
- 6. The committee of Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. *Diabetol Int* 2010; 1: 2–20.