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Weixing Cao1,2 and Xiaohu Zhang1,2,5* 

Abstract 

Accurate monitoring of wheat phenological stages is essential for effective crop management and informed agricul-
tural decision-making. Traditional methods often rely on labour-intensive field surveys, which are prone to subjective 
bias and limited temporal resolution. To address these challenges, this study explores the potential of near-surface 
cameras combined with an advanced deep-learning approach to derive wheat phenological stages from high-
quality, real-time RGB image series. Three deep learning models based on three different spatiotemporal feature 
fusion methods, namely sequential fusion, synchronous fusion, and parallel fusion, were constructed and evaluated 
for deriving wheat phenological stages with these near-surface RGB image series. Moreover, the impact of differ-
ent image resolutions, capture perspectives, and model training strategies on the performance of deep learning 
models was also investigated. The results indicate that the model using the sequential fusion method is optimal, 
with an overall accuracy (OA) of 0.935, a mean absolute error (MAE) of 0.069, F1-score (F1) of 0.936, and kappa coef-
ficients (Kappa) of 0.924 in wheat phenological stages. Besides, the enhanced image resolution of 512 × 512 pixels 
and a suitable image capture perspective, specifically a sensor viewing angle of 40° to 60° vertically, introduce more 
effective features for phenological stage detection, thereby enhancing the model’s accuracy. Furthermore, concern-
ing the model training, applying a two-step fine-tuning strategy will also enhance the model’s robustness to random 
variations in perspective. This research introduces an innovative approach for real-time phenological stage detec-
tion and provides a solid foundation for precision agriculture. By accurately deriving critical phenological stages, 
the methodology developed in this study supports the optimization of crop management practices, which may result 
in improved resource efficiency and sustainability across diverse agricultural settings. The implications of this work 
extend beyond wheat, offering a scalable solution that can be adapted to monitor other crops, thereby contributing 
to more efficient and sustainable agricultural systems.
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Introduction
Wheat is a widely cultivated and consumed cereal crop 
in the world, and the management practices for its cul-
tivation rely on monitoring its phenological stages [19]. 
Accurate monitoring of wheat phenological stages can 
optimize field management, predict yield and harvest 
times, facilitate pest and disease control, and adjust 
planting structures, thereby playing a crucial role in 
enhancing planting efficiency [32, 33]. The traditional 
monitoring of wheat phenological stages often relies 
on manual field surveys, which consume a significant 
amount of labor and suffer from subjective biases. The 
development of crop growth monitoring platforms and 
intelligent algorithms has led to the investigation of vari-
ous methods for obtaining wheat phenological stages 
information, including satellite [22] and unmanned aerial 
vehicles [44]. Although satellite remote sensing platforms 
can acquire images covering extensive areas, their tem-
poral resolution is low, making it challenging to obtain 
high-temporal-resolution image series [16]. The use of 
unmanned aerial vehicle platforms for data collection is 
limited by the inherent difficulties of acquiring images 
in bad weather conditions [7]. Conversely, near-surface 
platforms equipped with cameras offer a practical solu-
tion by continuously capturing high-resolution image 
series throughout the day and under all weather con-
ditions [38, 55]. Moreover, their low-cost, convenient 
operation renders them an invaluable tool for monitoring 
wheat phenological stages [21, 24, 54].

In addition, recent advances in deep learning have led 
to remarkable progress in the field of agriculture [17, 29] 
offering new solutions for complex tasks such as wheat 
spike detection [57], pest and disease detection [42] and 
yield prediction [50]. The advancement can be attrib-
uted to the efforts of researchers who have been actively 
engaged in the collection and construction of new data-
sets, as well as the examination of the characteristics of 
these data [40]. Furthermore, the development of novel 
model architectures built on agricultural datasets has 
been instrumental in this progression [56]. However, 
research on crop phenological stage detection using deep 
learning remains very limited. Previous studies frequently 
concentrated on identifying specific phenological stages 
and used single-stage images as input for detection mod-
els [25, 43, 55]. However, single-stage images are unable 
to fully capture the changes in crop phenology character-
istics throughout the phenological stages, resulting in low 
classification accuracy[48, 51]. Although some studies 
incorporate temporal features into deep learning mod-
els, they fail to consider the relationship between these 
features and spatial features [38, 55]. Consequently, there 
is currently no effective wheat phenological stages detec-
tion model that can seamlessly integrate spatial features 

and temporal features to achieve real-time detection of 
wheat phenological stages.

To address the limitations of existing methods for crop 
phenology detection, our study employed near-surface 
cameras to collect a comprehensive dataset of wheat 
phenological stages throughout the growth period. By 
introducing advanced spatiotemporal feature fusion tech-
niques, we constructed and optimized a detection model 
that overcomes the shortcomings of single-stage image 
analysis. This approach markedly improves the accuracy 
of phenological stage detection, facilitating monitoring 
and enhanced generalization across diverse conditions. 
Consequently, it offers a robust and efficient solution for 
precise crop monitoring.

Materials and methods
Data collection and preprocessing
Study area and near‑surface camera image acquisition
The study was conducted from November 29, 2022, 
to June 3, 2023, at Baima Experimental Station of Nan-
jing Agricultural University in Lishui District, Nanjing 
City, Jiangsu Province, China (119°09′ E, 31°37′ N). The 
experiment was conducted using six plots, each measur-
ing 30 m in length and 3 m in width. For data collection, a 
RGB camera (Hikvision E DS-2DE4223IW-D/GLT/XM, 
Hangzhou Hikvision Digital Technology Co., Ltd., China) 
was employed to capture wheat images with a resolu-
tion of 1920 × 1080 pixels from 8:00 to 17:00 daily, at a 
height of 3 m above the ground. The spatial resolution of 
the images was 0.05 cm per pixel, with a vertical viewing 
angle ranging from 20° to 80°, which was varied manually 
according to the plot. Data collection spanned 107 days 
over the entire growing season, during which 450 images 
were taken from each plot daily. Images collected at dif-
ferent time stamps within a day were labelled as the same 
phenological stage. Concurrently, the study recorded the 
commencement dates of all phenological stages, from 
emergence to maturity, in accordance with the estab-
lished definition of wheat phenological stages [58].

Image datasets preprocessing
Since the input to the model consists of image series, 
this study preprocessed the images to construct a stand-
ardized image series dataset. The original images were 
cropped to standard images of 1000 × 1000 pixels. Each 
image was then manually annotated with phenological 
stage labels, and a set of time series of t image samples 
was created to describe the dynamic characteristics of 
wheat phenological stages (Fig.  1). Constructing image 
time series samples involved three steps.

Step 1: Randomly select an image i and place it at 
the t-th position in the time series, using the growth 
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stage label l of the selected image as the label for this 
time series sample.
Step 2: Fill the positions 2/3t + 1 to t-1 in the time 
series with sequential images preceding the times-
tamp of image i and assign the same labels as image i 
to these images.
Step 3: Fill the remaining positions 1 to 2/3t in the 
time series with sequential images prior to pheno-
logical stage l, where each image is from different 
phenological stages from the first stage to stage l-1. 
In other words, for a time series sample containing 
t images, with the phenological stage label l, these 
images represent different phenological stages from 

the first stage to stage l-1, arranged in chronological 
order.

In this study, t was set to 30. The image series sam-
ples were split into training, validation, and test sets 
in a 6:2:2 ratio. Furthermore, data augmentation tech-
niques, including random rotation, flipping, and bright-
ness adjustment, were applied to the training set 
(Fig.  1), resulting in a total of 13,648 image series sam-
ples (Table  1). Furthermore, in order to investigate the 
impact of image resolution on the model, three differ-
ent resolution datasets were constructed. These com-
prised a low-resolution dataset with 128 × 128 pixels, a 

Fig.1 The data collection and preprocessing diagram

Table 1 The number of image series of different wheat phenological stages

Phenology stage Train set (Before 
augmentation)

Train set (After 
augmentation)

Validate set Test set Overall (After 
augmentation)

Emergence 612 1836 204 204 2244

Tillering 716 2148 254 254 2656

Jointing 490 1470 163 163 1796

Booting 388 1164 112 112 1388

Heading 370 1110 121 121 1352

Anthesis 284 852 98 98 1048

Filling 366 1098 105 105 1308

Maturity 496 1488 184 184 1856
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medium-resolution dataset with 256 × 256 pixels, and a 
high-resolution dataset with 512 × 512 pixels.

Methods
In this study, the Residual network (ResNet) was selected 
as the baseline network [14]. Three different spatiotem-
poral feature fusion methods, namely sequential fusion 
(2.2.1), synchronous fusion (2.2.2), and parallel fusion 
(2.2.3), were integrated to construct three different 
detection models (Fig.  2). All three deep learning mod-
els incorporated the self-attention mechanism non-local 

module [41], which is a non-local attention model that 
weights and sums the features across the entire input 
space to capture global information. Each fusion method 
employs two training strategies: training from scratch 
and fine-tuning. Training from scratch involves initial-
izing the model parameters randomly and training the 
model from the beginning using the training dataset. In 
contrast, fine-tuning refers to the process of taking a pre-
trained model, one that has been previously trained on a 
larger dataset, and further training it on a smaller, task-
specific dataset. Fine-tuning typically involves modifying 

Fig.2 The architecture of three fusion methods. a Sequential Fusion. b Synchronous Fusion. c Parallel Fusion. d The description of each symbol 
used to represent the network architecture in (a) (b) (c). The prior knowledge concerns the temporal sequence of phenological stage labels. With 
the exception of the initial stage, the final time node’s phenological stage label is always subsequent in time to that of the intermediate time node
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the learning rates and optimization parameters specific 
to the new task, and it can be done by either retraining 
the entire network or updating only specific layers [15, 
39].

Sequential fusion
Sequential fusion employs a model architecture that 
combines Convolutional Neural Networks (CNN) and 
Long Short-Term Memory (LSTM) in order to achieve 
the fusion of spatiotemporal features. The CNN is 
responsible for feature extraction, while the LSTM is 
tasked with feature memorization [4]. In this study, 
ResNet50 was selected as the convolutional neural net-
work component of the model architecture. As ResNet50 
is solely responsible for extracting spatial features within 
this model architecture, rather than image classifica-
tion output, the fully connected layer and softmax layer 
of ResNet50 were removed. A new fully connected layer 
was devised to align with the input dimension of the 
LSTM. The LSTM is responsible for processing and cap-
turing temporal relationships in the sequence data, and 
it outputs the predicted phenological stage (Fig. 2a). Fur-
thermore, the sequential fusion model can be optimized 
in the LSTM network by comparing the output of the 
intermediate time nodes with the output of the final time 
node, given the strict chronological order of wheat phe-
nological stages. With the exception of the initial phe-
nological stage label, the final time node’s phenological 
stage label output is consistently temporally subsequent 
to the intermediate time node’s phenological stage label 
output.

Synchronous fusion
Synchronous fusion employs a three-dimensional con-
volutional neural network (3D CNN) model architecture 
to integrate spatiotemporal features. In contrast to two-
dimensional convolutional neural networks, which are 
limited to the consideration of spatial information, three-
dimensional convolutional neural networks are capable 
of simultaneously analyzing both spatial and temporal 
features [5]. The samples of the wheat phenological stage 
consist of image series containing both spatial and tem-
poral information. The synchronous fusion of spatiotem-
poral features in wheat phenological stage image series is 
achieved through the employment of 3D convolutional 
operations. In this study, a three-dimensional version of 
ResNet50, designated as 3D-ResNet50, was selected as 
the architectural foundation for the three-dimensional 
convolutional neural network model. The structure 
of 3D-ResNet50 is analogous to that of 2D-ResNet50, 
employing residual connections to facilitate the training 
of deep networks (Fig. 2d). The application of dilation to 
various modules, including convolutional layers, enables 

the 3D-ResNet50 model to process input samples from 
image series and subsequently generate the predicted 
label for the phenological stage (Fig. 2b).

Parallel fusion
Parallel fusion employs a dual-stream network architec-
ture to fuse spatiotemporal features. A dual-stream net-
work is comprised of two parallel convolutional neural 
networks, each processing optical flow and RGB images 
separately [34]. The predicted label is obtained through 
feature layer fusion. By capturing both dynamic and static 
features in wheat phenological stages, the dual-stream 
network model achieves a parallel fusion of spatiotem-
poral features. In this study, two parallel ResNet50 net-
works were constructed as a dual-stream network. One 
ResNet50 network processes optical flow and describes 
the direction and speed of pixel motion in images. This 
represents pixel-level motion patterns between adjacent 
frames in the image series. The other ResNet50 network 
is tasked with processing the last RGB image in the image 
series, which represents the spatial features. The softmax 
layer of each ResNet50 network outputs a probability dis-
tribution for the classification categories. The distribu-
tions are then combined to obtain the predicted label for 
the phenological stage. (Fig. 2c).

Experiment and results
Experimental parameter settings
The experiments were conducted on a server equipped 
with 2  Intel®  Xeon® CPUs, 7  NVIDIA®  TESLA® A100 
GPUs (each with 40  GB memory), 1  TB of memory, 
and running Ubuntu 20.04. Furthermore, all three deep 
learning model architectures employed the backpropaga-
tion algorithm [31] to optimize the network parameters. 
The Adam optimizer was selected as the optimization 
algorithm, which incorporates the attributes of adaptive 
learning rate and momentum, facilitating the equilib-
rium between the convergence velocity and the perfor-
mance of the model [18]. The cross-entropy loss function 
was employed, as it is a commonly utilized approach for 
multi-class classification tasks. This function effectively 
measures the discrepancy between the model’s output 
probability distribution and the observed labels, thereby 
enhancing the accuracy and performance of the model in 
fitting the data [6]. In addition to the choice of optimizer 
and loss function, dropout was introduced to prevent 
overfitting [35]. This method involves randomly dropping 
out some neurons’ outputs from the hidden layers of the 
network, thereby reducing the complexity of the model 
and improving its generalization ability. This regulariza-
tion method helps to improve the model’s generaliza-
tion ability to unknown data and enhances the model’s 
robustness. The hyperparameters for network training 
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were set as follows: a batch size of 16, a learning rate of 
0.0001, and a dropout rate of 0.3.

Performance evaluation
To assess the model’s performance more objectively 
and efficiently, this study selected the confusion matrix, 
overall accuracy (OA), mean absolute error (MAE), 
F1-score (F1), kappa coefficient (Kappa), and the num-
ber of parameters as evaluation metrics. The confusion 
matrix, an N × N grid, was used to display the correlation 
between predicted and actual labels, enabling the assess-
ment of model performance for each category. OA, F1, 
and Kappa were derived from true positive (TP), false 
negative (FN), false positive (FP), and true negative (TN) 
cases. When an image labeled as stage i was correctly 
classified as stage i, it was considered TP. If an image 
labeled as stage i was misclassified as another stage, it 
was considered FN. Conversely, if an image was predicted 
as stage i but actually belonged to a different stage, it 
was regarded as FP. OA, F1 and Kappa were determined 
using formulas 1–5 and ranged from 0 to 1, with higher 
values indicating better performance.

MAE is the mean of the absolute differences between 
predicted labels and observed labels, which is employed 
to assess the extent of the discrepancy between predicted 
and observed labels.

where i represents the i-th class, n represents the total 
number of samples, ŷ represents the predicted label, and 
y represents the observed label.

(1)OA =
TP + TN

TP + TN + FP + FN

(2)Precisioni =
TPi

TPi + FPi

(3)Recalli =
TPi

TPi + FNi

(4)F1 scorei =
2 ∗ Precisioni ∗ Recalli

Precisioni + Recalli

(5)

p0 = OA

pe =
(TP + FP)*(TP + FN) + (FP + TN)*(FN + TN)

(TP + TN + FP + FN)2

Kappa =
p0 − pe

1− pe

(6)MAE=

n∑

i=1

ŷ− y

Experimental results
The experimental results indicate that the three different 
spatiotemporal feature fusion methods proposed in this 
study effectively improve the overall accuracy of wheat 
phenological detection (Table 2, Table 3, Fig. 3). In terms 
of model complexity, the synchronous and parallel fusion 
models exhibit a notable increase in complexity rela-
tive to the baseline, with a parameter count of 48.93  M 
and 57.87  M, respectively. In terms of overall accuracy, 
the sequential fusion and synchronous fusion methods 
achieved the highest accuracy. In particular, these two 
methods got accuracies of 0.935 and 0.928, respectively, 
on the high-resolution dataset. In contrast, the parallel 
fusion method exhibited only a modest improvement in 
accuracy, reaching 0.888. With regard to the classification 
accuracy of different phenological stages, all three fusion 
methods demonstrate the highest performance in detect-
ing the maturity stage. The sequential fusion and paral-
lel fusion methods exhibited the lowest performance 
in detecting the anthesis stage, while the synchronous 
fusion method demonstrated the lowest performance in 
detecting the booting stage.

In the meantime, datasets with different resolutions 
exhibit different classification accuracy. The high-reso-
lution dataset consistently demonstrates good classifica-
tion accuracy, while the low-resolution dataset performs 
poorly. The performance of the medium-resolution 
dataset is slightly inferior to that of the high-resolution 
dataset. The discrepancies in accuracy between the three 
methods and the high-resolution dataset are 0.021, 0.009, 
and 0.015, respectively. In comparison, the discrepancies 
in accuracy between the three methods and the low-reso-
lution dataset are considerably higher. The discrepancies 
in accuracy between the three methods are 0.088, 0.065, 
and 0.041, respectively (Fig. 4).

The angle of data collection has a profound effect 
on the model’s training. The sequential fusion method 
yielded model accuracies of 0.874, 0.890, and 0.848 on 
datasets collected from viewing angles of 20° to 40°, 
40° to 60°, and 60° to 80°, respectively. In the synchro-
nous fusion method, the model accuracies on datasets 
from these angles are 0.885, 0.893, and 0.853, respec-
tively. In the parallel fusion method, the model accu-
racies on datasets from these angles are 0.855, 0.861, 

Table 2 The quantitative comparison of different methods

Method OA MAE F1 Kappa Params(M)

Baseline (ResNet50) 0.882 0.173 0.876 0.862 26.40

Sequential fusion 0.935 0.069 0.936 0.924 33.88

Synchronous fusion 0.928 0.073 0.914 0.917 48.93

Parallel fusion 0.888 0.160 0.884 0.870 57.87
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and 0.834, respectively. The results demonstrate that 
when the acquisition angles are identical, synchronous 
fusion exhibits the most optimal performance, fol-
lowed by sequential fusion. In contrast, parallel fusion 
demonstrates relatively inferior performance (Fig.  5). 
Across different fusion methods, models trained with 
data from different angles exhibit inferior performance 
compared to those trained with data from all angles. 

Nevertheless, within specific angle ranges, datasets 
ranging from 40° to 60° are best for deriving wheat 
phenology.

Moreover, different training strategies have a sig-
nificant impact on the final accuracy of the models. In 
sequential fusion and synchronous fusion, fine-tuning 
training was found to improve the model accuracy by 
0.086 and 0.070, respectively, in comparison to training 

Table 3 The F1-score of different methods in deriving different phenological stages

Method Emergence Tillering Jointing Booting Heading Anthesis Filling Maturity

Baseline 0.868 0.882 0.883 0.847 0.902 0.788 0.885 0.952

Sequential fusion 0.904 0.909 0.945 0.947 0.924 0.902 0.962 0.995

Synchronous fusion 0.950 0.958 0.935 0.806 0.835 0.826 1.000 1.000

Parallel fusion 0.873 0.886 0.901 0.882 0.891 0.819 0.884 0.939

Fig.3 The confusion matrix yielded by four methods: baseline (a), sequential fusion (b), synchronous fusion (c), and parallel fusion (d). Serial 
numbers 1–8 represent the phenological stages: emergence, tillering, jointing, booting, heading, anthesis, filling, and maturity, respectively
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from scratch. In parallel fusion, fine-tuning training 
results in an improvement in model accuracy of 0.060 
(Fig. 6).

Discussion
The three spatiotemporal feature fusion methods pro-
posed in this study have effectively enhanced the per-
formance of detecting wheat phenological stages. In 

contrast to traditional methods that solely employ single 
image inputs, which fail to consider the temporal aspects 
of wheat phenology [48, 52], this study employs image 
series as model inputs, integrating both spatial features 
and temporal features of the data, thereby enhancing the 
accuracy of phenological stages classification.

The three fusion methods proposed in this study are 
fundamentally different. Sequential fusion employs 

Fig.4 The performance of different fusion methods on different resolution datasets

Fig.5 The performance of different fusion methods on datasets with different view angles. The specific angles of the acquired images are classified 
as 20° to 40°, 40° to 60°, and 60° to 80°. Datasets were divided based on these angles for the purpose of training
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ResNet50 to extract spatial features from input image 
series samples and generates feature maps in chronologi-
cal order by using LSTM networks, which are employed 
to obtain classification results [2]. Synchronous fusion 
expands all two-dimensional operations in ResNet50 
along the temporal dimension into three-dimensional 
operations, thereby enabling direct processing of image 
series samples. This approach achieves simultaneous 
feature extraction and classification of spatiotemporal 
features [12]. In parallel fusion, two ResNet50 networks 
are employed. One network is used for extracting spa-
tial features from single images, while the other is used 
for extracting temporal features from optical flow series 
[36]. In the parallel fusion method, the optical flow fea-
tures between image series are taken as temporal fea-
tures of the samples. However, it should be noted that 
the image series samples in this study are not strictly 
continuous images. Consequently, while the outcomes 
achieved through the utilization of optical flow charac-
teristics exhibit a marginal improvement in comparison 
to training with single-stage images, the enhancement 
in accuracy is relatively modest, and the impact is not 
pronounced.

In contrast, both sequential fusion and synchronous 
fusion demonstrate excellent performance in extracting 
temporal features, resulting in a notable enhancement 
in accuracy. Indeed, sequential fusion entails the gradual 
incorporation of an LSTM network into the framework 
of a convolutional neural network, thereby facilitating a 
progressive integration of information [30]. In contrast, 
synchronous fusion involves extending two-dimensional 

operations to three-dimensional operations during the 
feature extraction process, thereby enabling comprehen-
sive and synchronized feature fusion at each step [13]. 
Consequently, the synchronous fusion method exhibits 
a greater parameter count compared to the sequential 
fusion method, resulting in increased consumption of 
memory resources and runtime during both model train-
ing and prediction. Furthermore, the sequential fusion 
method enables the optimization and adjustment of out-
put time nodes based on prior knowledge. The optimized 
sequential fusion method achieved an accuracy of 0.935, 
which was higher than that of the synchronous fusion 
method (Fig. 7).

The diverse deployment methods of near-surface cam-
eras result in a corresponding diversity in the resolu-
tion and angles at which images are captured. The slow 
change in the appearance of wheat phenology makes it 
challenging to distinguish between images of adjacent 
stages in the task of wheat phenological stages classifi-
cation [59]. The inclusion of more spatial information in 
high-resolution images leads to enhanced performance 
in the detection of wheat phenological stages [53]. The 
results of the study (Fig.  4) indicate that an increase 
in image resolution significantly enhances the perfor-
mance of classification, particularly in stages involving 
subtle features. The results demonstrated that high-res-
olution datasets exhibited superior performance, while 
low-resolution datasets exhibited significantly poorer 
performance. The performance of the medium-resolu-
tion dataset is intermediate between the two extremes, 
exhibiting a significant improvement compared to the 

Fig.6 The performance of different fusion methods with different training strategies
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low-resolution dataset and a relatively minor difference 
compared to the high-resolution dataset. Consequently, 
this study indicates that both medium-resolution and 
high-resolution datasets can effectively accomplish the 
task of wheat phenological stages classification. However, 
the optimal choice between the two should be based on 
the memory resources available during training.

In the meantime, the outcomes of the wheat pheno-
logical stages classification at various image acquisition 
angles demonstrate that datasets within the vertical range 
of 40° to 60° are best in this study (Fig. 5). This phenom-
enon may be attributed to the fact that the shooting angle 
within this range allows for the capture of a greater num-
ber of wheat plants, thereby reducing the uncertainty 
associated with heterogeneity. In the meantime, images 
captured at greater angles encompass features of vary-
ing scales, furnishing the model with a more comprehen-
sive array of information for the extraction of features 
representing different phenological stages [11]. The data 
within the range of 20° to 40° provide information at the 
organ scale, such as wheat type and color [3]. In contrast, 
the dataset within the range of 40° to 60° includes a more 
significant number of phenological features, such as the 
proportion of spikes, stems, and leaves, as well as the 
curvature of spikes and the collective information of the 
canopy [52]. However, data within the range of 60° to 80° 
may be less detailed due to occlusion by wheat leaves in 
the foreground. Consequently, when utilizing near-sur-
face cameras at a height of 3 m, the angle range of 40° to 
60° is deemed to offer the most advantageous outcome.

Moreover, the performance of deep learning mod-
els is significantly influenced by the training strategies 
employed. Training a deep learning network from scratch 
necessitates the availability of a substantial quantity of 

annotated training data, such as those found in the Ima-
geNet [8] or COCO [23] datasets. However, in the field 
of crop phenology, the acquisition of large-scale publicly 
available datasets is challenging [55]. Consequently, in the 
absence of millions of labeled data to support it, training 
a network from scratch is not the optimal approach for 
optimizing model parameters [37]. Given that the three 
fusion methods employed in this study are all based on 
the same baseline, we employed a pre-trained ResNet50 
as an initial model. In both sequential fusion and parallel 
fusion, the pre-trained ResNet50 was employed directly. 
However, in synchronous fusion, each layer of the 
ResNet50 is expanded from a two-dimensional structure 
to a three-dimensional structure. Implementing corre-
sponding expansion operations on the pre-trained model 
is necessary. Specifically, convolutional kernels are cop-
ied along the temporal dimension and evenly distributed 
across all temporal dimensions. Each three-dimensional 
convolution contains the same pretrained parameters 
across all temporal dimensions, thus ensuring that the 
input dimensions of the three-dimensional convolutional 
layer are matched [49]. The results indicate that the uti-
lization of pre-trained models and the subsequent fine-
tuning of the model parameters through backpropagation 
can further enhance model performance (Fig. 6).

Previous studies have demonstrated that soil back-
ground [20] and weather conditions [28] can signifi-
cantly influence the accuracy of wheat phenological 
stage detection. For example, soil under sunlight may 
produce considerable shadows [27], while rainy con-
ditions might introduce water reflections that affect 
image quality [45]. To address these challenges, our 
study employed a broader time range for data collection, 
extending from 8:00 to 17:00 daily and encompassing a 

Fig.7 The confusion matrix yielded by sequential fusion without prior knowledge (a) and sequential fusion with prior knowledge (b)
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variety of weather conditions, including cloudy, sunny, 
and rainy days. This approach not only enhances the gen-
eralization capability of the dataset but also enables the 
model to perform effectively across diverse daytime field 
environments. This method leverages the advantages 
of near-surface cameras in the field, which can capture 
images at any time of day, unrestricted by weather con-
ditions. However, it should be noted that our dataset is 
limited to RGB images captured during daylight hours, 
excluding nighttime data, which presents a limitation of 
the current study. Future research could address this by 
incorporating near-infrared data collected during night-
time [9, 26, 47], thereby further improving the model’s 
applicability and generalization capacity. Additionally, 
while the sequential fusion architecture, as described in 
this study, has been demonstrated to be effective in the 
task of wheat phenological stages classification. How-
ever, it should be noted that this approach also increases 
the model’s parameter count. Future research will con-
centrate on the reduction of model complexity and the 
optimization of resource requirements through the appli-
cation of model compression and simplification. Among 
the techniques mentioned above, knowledge distillation 
[10], weight quantization [1], and lightweight model 
design [46] will be of particular importance. Implement-
ing these technologies helps simplify model structures 
and reduce computational and storage requirements 
without sacrificing model performance. The above meth-
ods allow the models to be made lighter, making them 
easier to apply to practical near-surface camera systems. 
This lightweight model structure will provide more con-
venient and efficient solutions for real-time monitoring 
and decision support in the agricultural sector, providing 
strong support for the intelligent development of agricul-
tural production.

Conclusion
This study proposes a new approach for deriving wheat 
phenological stages based on near-surface RGB image 
series and three different spatiotemporal feature fusion 
methods. The results indicate that the sequential fusion 
architecture is an effective method for detecting the 
phenological stages of wheat and achieves a balance 
between performance and resource consumption. Fur-
thermore, the employment of high-resolution datasets, 
two-stage fine-tuning training, and observations within 
the 40° to 60° range can also enhance the performance 
of the model. The findings of this study have broader 
implications, as the methodology developed here holds 
the potential to be extended to other crops in future 
research. By enabling more accurate monitoring of the 
phenological stages across various crops, this approach 
provides a robust foundation for optimizing agricultural 

practices, improving crop management, and ultimately 
contributing to a more sustainable agricultural system. 
The ability to precisely monitor crop phenology is critical 
for resource-efficient agriculture, and this research repre-
sents a significant advancement in that direction.
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