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Abstract

The integration of transcriptomic studies and genome‐wide association studies

(GWAS) via imputed expression has seen extensive application in recent years,

enabling the functional characterization and causal gene prioritization of

GWAS loci. However, the techniques for imputing transcriptomic traits from

DNA variation remain underdeveloped. Furthermore, associations found when

linking eQTL studies to complex traits through methods like PrediXcan can

lead to false positives due to linkage disequilibrium between distinct causal

variants. Therefore, the best prediction performance models may not ne-

cessarily lead to more reliable causal gene discovery. With the goal of im-

proving discoveries without increasing false positives, we develop and compare

multiple transcriptomic imputation approaches using the most recent GTEx

release of expression and splicing data on 17,382 RNA‐sequencing samples

from 948 post‐mortem donors in 54 tissues. We find that informing prediction

models with posterior causal probability from fine‐mapping (dap‐g) and bor-

rowing information across tissues (mashr) can lead to better performance in

terms of number and proportion of significant associations that are colocalized

and the proportion of silver standard genes identified as indicated by
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precision‐recall and receiver operating characteristic curves. All prediction

models are made publicly available at predictdb.org.
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1 | INTRODUCTION

Transcriptome studies with whole‐genome interrogation
characterize genetic effects on gene expression traits. These
mechanisms help elucidate the function of loci identified in
genome‐wide association studies (GWAS) by identifying po-
tential causal genes that link genetic variation with complex
traits (Aguet et al., 2019; Albert & Kruglyak, 2015; Gusev
et al., 2018; Huckins et al., 2019; Mancuso et al., 2018).

In particular, the Genotype‐Tissue Expression (GTEx)
Project (Aguet et al., 2019) has sequenced whole genomes
from 948 organ donors and generated RNA‐seq data across 52
tissues and 2 cell lines. Results and tools derived from this
comprehensive catalog of transcriptome variation have en-
abled a myriad of applications such as drug repurposing (So
et al., 2017) and clinical discoveries in cancer susceptibility
genes (Wu et al., 2018), to name a few.

The general consensus that many noncoding variants
associated with complex traits exercise their action via gene
expression regulation has motivated the development of im-
puted transcriptome association approaches such as
PrediXcan (Barbeira et al., 2018; Gamazon et al., 2015),
TWAS/FUSION (Gusev et al., 2016), and UTMOST (Hu
et al., 2019). In essence, these methods predict gene expres-
sion traits based on individuals' genotypes and test how these
predictions correlate with complex traits.

Reliable prediction models for gene expression traits are
key components of imputed transcriptome association stu-
dies. Given the predominantly sparse genetic architecture of
gene expression traits (Wheeler et al., 2016) and overall ro-
bustness and performance (Fryett, Inshaw, Morris, & Cor-
dell, 2018; Huckins et al., 2019), Elastic Net (Friedman,
Hastie, & Tibshirani, 2010) has become the algorithm of
choice for predicting transcriptome variation.

Despite Elastic Net's many advantages such as robustness
and sparsity, we hypothesized that transcriptome imputation
can be improved by leveraging biologically informed meth-
ods. Recent efforts (Hu et al., 2019) have exploited the high
degree of eQTL sharing across tissues (Aguet et al., 2017) by
leveraging cross‐tissue patterns in the broad GTEx panel to
improve prediction performance, more notably in tissues with
small sample sizes. Also, important methodological
progress in fine‐mapping (Wang, Sarkar, Carbonetto, &
Stephens, 2018; Wen, Pique‐Regi, & Luca, 2017) and an
adaptive shrinkage method that improves effect size estimates
across multiple experiments (Urbut, Wang, Carbonetto, &

Stephens, 2019) provide opportunities to further improve
quality of downstream associations.

In this article, we analyze different transcriptome
prediction strategies and compare their strengths both in
prediction performance and downstream phenotypic
associations.

Proximity and linkage disequilibrium (LD) between dis-
tinct causal variants can lead to noncausal associations be-
tween predicted expression and complex traits (Barbeira
et al., 2018; Wainberg et al., 2019). Since the ultimate goal of
imputed transcriptome studies is to identify causal genes, our
main focus here is to improve discoveries with less emphasis
on expression prediction performance. We also applied the
same model building techniques to alternative splicing traits
quantified with LeafCutter (Y. I. Li et al., 2018). We make all
results, prediction models and software available to the
research community.

2 | METHODS

We executed all methods using open source software
running in a high‐performance cluster. We release all of
our code and the data analyzed in this paper to ease re-
producibility and accessibility.

2.1 | GTEx data processing

We downloaded GTEx data for version 8 release from dbGAP
(Accession Number phs000424.v8.p1). This data arises from
17,382 RNA‐seq samples from 54 tissues of 948 post‐mortem
subjects, aligned to the GRCh38 assembly. Primary and ex-
tended results generated by consortium members are avail-
able on the Google Cloud Platform storage accessible via the
GTEx Portal (see URLs).

Eight hundred and ninety‐nine whole‐genome se-
quencing samples were analyzed, 68 of them at an average
coverage of 30x on HiSeq200, and the rest on HiSeqX.
Eight hundred and sixty‐six GTEx donors' samples were
included in the downstream variant call files, after ex-
cluding one each from 30 duplicate samples and 3 donors.
Among these, 838 subjects with RNA‐seq data were in-
cluded for QTL mapping and analysis.

Whole transcriptome RNA‐Seq data were aligned using
STAR (v2.5.3.a; Dobin et al., 2013). For the STAR index,
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GENCODE v26 was used with the sjdbOverhang 75 for a 76‐
bp paired‐end sequencing protocol. Default parameters were
used for RNA‐Seq by expectation maximization (RSEM) (see
URLs; B. Li & Dewey, 2011) index generation. GTExutilized
Picard (see URLs) to mark and remove potential polymerase
chain reaction (PCR) duplicates and RNA‐SeQC (DeLuca
et al., 2012) to process postalignment quality control. RSEM
was then used for per‐sample transcript quantification. Sub-
sequently, read counts were normalized between samples
using trimmed mean of M values (Robinson & Osh-
lack, 2010). For eQTL analyses, latent factor covariates were
calculated using probabilistic estimation of expression re-
siduals (PEER) (Stegle, Parts, Durbin, & Winn, 2010) as fol-
lows: 15 factors for N<150 per tissue; 30 factors for
150≤N<250; 45 factors for 250≤N<350; and 60 factors for
N≥ 350. Expression phenotypes were adjusted for unwanted
variation using covariates such as gender,
sequencing platform, and PCR protocol, the top five principal
components from genotype data, and said PEER factors. Fi-
nally, fastQTL (Ongen, Buil, Brown, Dermitzakis, & Dela-
neau, 2016) was used for cis‐eQTL mapping in each tissue.
Only protein‐coding, long intergenic noncoding RNA, and
antisense biotypes as defined by Gencode v26 were con-
sidered for further analyses. To study alternative splicing,
GTEx applied LeafCutter (version 0.2.8; Y. I. Li et al., 2018)
using default parameters to quantify splicing QTLs in cis with
intron excision ratios (Aguet et al., 2019).

We used the deterministic approximation of posteriors
(dap‐g; Wen, Lee, Luca, & Pique‐Regi, 2016), enloc (Wen
et al., 2017), and coloc (Giambartolomei et al., 2014) re-
sults published in Aguet et al. (2019).

2.2 | GTEx expression and splicing
modeling

We used the same genotypes, phenotypes, covariates, gene
annotations, and variant annotations from the main GTEx
analysis.

When building prediction models, we imposed an
additional restriction: we used only samples of European
ancestry for the sake of leveraging a well‐defined popu-
lation LD structure. Only variants with minor allele fre-
quency (MAF) < 0.05 in these samples were included. We
used 49 tissues with sample sizes ranging from 65 (Kidney
Cortex) to 602 (Muscle Skeletal).

This ancestry restriction mitigated problems due to LD
mismatch when integrating with most publicly available
GWAS summary statistics, which are conducted on pre-
dominantly European populations. Prediction models in
other ancestries are important, and we are currently
dedicating substantial effort to creating and analyzing
such models. However, non‐European models are beyond
the scope of this paper.

We only generated models for genes annotated in
GENCODE v26 as protein‐coding, long noncoding RNA
(lncRNA), or pseudogenes.

2.3 | Elastic net models

We fitted an Elastic Net model for each gene–tissue pair
with available adjusted expression data. We restricted the
set of variants to those present in the HapMap 3 CEU track
(Altshuler, Gibbs, Peltonen, & The International HapMap 3
Consortium, 2010) with MAF> 0.01. The motivation be-
hind this choice was to restrict the analysis to a robust set of
single nucleotide polymorphisms (SNPs) that has a sig-
nificant intersection with the most publicly available GWAS
summary statistics. For every gene, variants within 1MB
upstream of the gene's transcription start site and 1MB
downstream of the transcription end site where used as
explanatory variables for gene expression.

We used the R package glmnet (Friedman et al., 2010),
with mixing parameter α= .5 and penalty parameter
chosen through 10‐fold cross‐validation.

Prediction performance was estimated using a nested
cross‐validation approach. Expression was predicted out‐
of‐sample for each fold, with Elastic Net parameters es-
timated only within training data, and the correlations to
observed values at each fold were combined via Fisher's
transformation and Stouffer's method. Only those models
with mean Pearson's correlation across 10 folds ρ> .1 and
nested cross‐validated correlation test p< .05 were kept.

We refer to these models as EN‐M.

2.4 | Cross‐tissue gene expression
imputation models

We employed the cross‐tissue gene expression imputation
(CTIMP; Hu et al., 2019) framework on the same data from
EN‐M models in the previous section. This method fits ex-
pression for a gene in multiple tissues simultaneously
through a regularized linear model, using a Lasso penalty
within each tissue and a group Lasso penalty for cross‐tissue
patterns. As it internally uses genotypes from all samples
available across all tissues, we expect improvements over EN‐
M to be larger for tissues of smaller sample sizes where EN‐M
deals with a less informative LD structure among variants.

We performed fivefold cross‐validation for model
tuning and evaluation following the authors' description.
We computed cross‐validated correlation measures across
folds as in the previous method, and kept those models
achieving the thresholds of cross‐validated correlation
ρ> .1 and p< .05. As in EN‐M, we restricted the model
training to variants in the HapMap 3 CEU track with
MAF> 0.01; this became necessary because using all
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variants proved too computationally expensive since
CTIMP consumes large amounts of memory and proces-
sing time. We briefly show in Figures S4–S6 that this
additional restriction brings negligible effects in model
training performance and prediction.

We refer to these models as CTIMP‐M.

2.5 | Elastic net informed by dap‐g
results

We also trained models via the Elastic Net algorithm
using fine‐mapping information to refine the list of var-
iants to be used as explanatory variables and lent more
weight to variants with higher chances of affecting ex-
pression phenotypes. To this aim, we used dap‐g's pos-
terior inclusion probability (PIP) of a variant affecting
gene expression to select explanatory variables, without
restricting to variants in the HapMap CEU track. For
every gene, we used all variants in the gene's cis‐window
with MAF> 0.01 and PIP > 0.01. Since dap‐g groups var-
iants in clusters according to LD, we kept the top variant
(by PIP) per cluster to avert variable redundancy. Since we
reasoned that more probable variants should bear more
impact in the model's outcome, we multiplied each var-
iant's penalty term in the Elastic Net regularization by a
factor of 1− PIP. We used the same thresholds from the
previous subsections (ρ> .1 and p< .05) to select models
with acceptable prediction performance.

We refer to these models as DAPGW‐M.

2.6 | Multivariate adaptive shrinkage in
R‐based models

Finally, we explored an entirely different algorithm to de-
termine the prediction models. We executed multivariate
adaptive shrinkage in R (mashr; Urbut et al., 2019) to es-
timate the models' effect sizes by leveraging cross‐tissue
variations while allowing for sparse and possibly correlated
effects in a Bayesian framework. We used mashr on the
same set of variants from DAPGW‐M models. We kept
models only for eGenes and effect sizes only for variants
with PIP > 0.01 (from dap‐g) at each gene–tissue pair.
Unfortunately, there is no natural prediction performance
measure in this scenario as cross‐validation was not
performed.

We refer to these models as MASHR‐M.

2.7 | GEUVADIS data processing

We used GEUVADIS lymphoblastoid cell lines (LCL) ex-
pression study for independent validation of prediction

performance. We obtained GEUVADIS expression data and
sample information from the European Bioinformatics In-
stitute web portal at https://www.ebi.ac.uk/. We obtained
genotype data aligned to GRCh38 assembly from the Inter-
national Genome Sample Resource web portal http://www.
internationalgenome.org. We restricted data to individuals
of European ancestry, yielding 341 samples.

For each one of the four previous model training
schemes (EN‐M, CTIMP‐M, DAPGW‐M, and MASHR‐M)
we predicted expression through PrediXcan (Gamazon
et al., 2015) on GEUVADIS genotypes using GTEX LCL
models and correlated predictions to observations.

2.8 | GWAS processing and integration

We examined 87 GWAS from a heterogeneous set of traits
first presented in the GTEx v8 study (Aguet et al., 2019;
Barbeira, Bonazzola et al., 2019). These traits were selected to
support a phenome‐wide study of the impact of gene reg-
ulation. Given the heterogeneous landscape of the GWAS,
with intricate differences in data processing protocols and
underlying human genome reference versions, it was neces-
sary to make the GWAS variants homogeneous and compa-
tible with those from the GTEx study.

First, the GWAS' variants were harmonized to the
GTEx study's variants by mapping genomic coordinates
via liftover (Haeussler et al., 2018; https://pypi.org/
project/pyliftover) and keeping only variants with
matching alleles. Then, GTEx variants with missing
summary statistics for any GWAS were imputed with the
best linear unbiased prediction method, a standard in the
field (Lee, Bigdeli, Riley, Fanous, & Bacanu, 2013).

We executed S‐PrediXcan for each of four families of
models (EN‐M, CTIMP‐M, DAPGW‐M, and MASHR‐M)
using 49 tissues, for a total of 17,052 (trait, model family,
and tissue) tuples. We integrated with enloc and coloc
results published in Aguet et al. (2019).

When analyzing the versatility of the models and
GWAS preprocessing schemes, we used GWAS studies
not belonging to the rapid GWAS study. This was decided
because the rapid GWAS project has a common, homo-
geneous variant set that could dominate comparisons.

2.9 | AUC estimation for silver standard
gene identification

Figure 1a,b show the receiver operating characteristic
(ROC) curve for silver standard gene identification in
Online Mendelian Inheritance in Man (OMIM) and the
rare‐variant‐based silver standard, respectively. To quan-
tify the difference in performance among the different
model families, we first computed the ROC of the two
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standards combined for each family. We then computed
the area under the ROC curve (AUC) using the standard
trapezoidal approach. The standard errors (SEs) of
the estimated AUC were estimated by a bootstrap
approach using 2,000 replicates, as implemented by
Robin et al. (2011).

3 | RESULTS

To identify optimal techniques for transcriptomic im-
putation, we have built models to predict genetically
regulated expression using four different approaches on
GTEx expression and splicing data (release version 8). To
reduce LD misspecification problems, most apparent
when applying summary statistics‐based versions of
PrediXcan on GWAS of European populations, we used
only European samples.

We restricted the analysis to genes that are anno-
tated as protein‐coding, lncRNA, and pseudogenes in
GENCODE version 26 (Frankish et al., 2019). We in-
cluded 49 different tissues with sample sizes ranging
from 65 (Kidney Cortex) to 602 (Muscle Skeletal).

The first strategy used the Elastic Net (Friedman
et al., 2010) algorithm to compute predictions as de-
scribed previously by Gamazon et al. (2015) and Wheeler
et al. (2016). For every gene available in each tissue, this
strategy used variants from the HapMap CEU track in a
window ranging from 1MB upstream of the transcription
start site to 1MB downstream of the transcription end
site as explanatory variables. Only those models achiev-
ing thresholds of cross‐validated correlation (ρ> .1) and
prediction performance p< .05 were kept. We will refer
to this family as the EN‐M models.

The second strategy used CTIMP (Hu et al., 2019).
CTIMP uses a regularized, generalized linear regression

FIGURE 1 Receiver operating characteristic (ROC) and precision‐recall curve (PR) curves. (a) The ROC (plotting true‐positive
ratio [TPR] to false‐positive ratio [FPR]) curve for the Online Mendelian Inheritance in Man (OMIM) silver standard. The area under
the ROC curve (AUC) is greatest for the multivariate adaptive shrinkage in R (MASHR‐M) models, followed closely by the
DAPGW‐Mmodels. After using a bootstrap method to estimate a 95% confidence interval around the AUC estimates, we observe that
the confidence intervals of all four model families overlap. (b) The ROC curve for the rare‐variant‐based silver standard. We observe
that all strategies perform better than taking a random choice. However, this silver standard is too limited to properly distinguish
between strategies. (c) The PR curve for the OMIM silver standard. MASHR‐M performs better than the other strategies in general
but precision becomes a noisy measure towards lower recall ranges. (d) The PR curve for the rare‐variant‐based silver standard. The
precision measure is too unstable to draw any conclusions. The OMIM silver standard not only validates the four proposed model
strategies as a consistent approach to detect causal genes but provides additional evidence of MASHR‐M's superiority. The second
silver standard, based on rare variants, is too limited to conclude anything beyond a high‐level validation of all four families
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algorithm to fit expression from different tissues
simultaneously. CTIMP optimizes a cost function in-
cluding a within‐tissue Lasso penalty and a cross‐tissue
group Lasso penalty, thus inheriting Lasso‐like behavior
that is less sparse than Elastic Net. We used the same
variants from the EN‐M strategy (HapMap CEU track,
same windows around each gene), and identical corre-
lation threshold (ρ > .1) and cross‐validated prediction
performance threshold (p< .05) to accept models. We
will refer to this family as the CTIMP‐M family. We
verified that this method's performance is not sig-
nificantly improved by using all available GTEx variants,
as explained in the Supporting Information Materials.

The third strategy used the PIP of a variant being
causal for gene expression as estimated by the Bayesian
fine‐mapping method dap‐g (Wen et al., 2016). First, for
every gene, we restricted to variants with posterior in-
clusion probabilities PIP > 0.01. Since dap‐g clusters
variants by their LD, we kept the variant with the highest
PIP from each cluster to avoid redundant explanatory
variables. Then, the selected variants were fed into the
Elastic Net algorithm, scaling each variant's effect size
penalty by a factor of 1− PIP (i.e., more likely variants
are less penalized). Only those models achieving good
enough cross‐validated prediction performance (p< .05)
and correlation (ρ> .1) were kept. We will refer to this
family as DAPGW‐M (dap‐g weighted). As discussed
later, the cross‐validated prediction performance of this
approach cannot be fairly compared to EN‐M and
CTIMP‐M because the preselection of fine‐mapped var-
iants is based on the same underlying data.

The fourth strategy used mashr (Urbut et al., 2019)
effect sizes from variants selected by dap‐g as in the
DAPGW‐M approach. More specifically, fine‐mapped
variants were selected as in the DAPGW‐M approach
but the weights were obtained by applying mashr to the
marginal effect sizes and SEs from the GTEx eQTL ana-
lysis (Aguet et al., 2019). Unlike the previous methods,
this approach does not fit into a cross‐validation strategy
and therefore lacks a natural prediction performance
measure. Only eGenes with at least one cluster of var-
iants achieving dap‐g PIP > 0.1 were kept. We will refer
to this family as MASHR‐M.

We did not consider the BSLMM family of methods
for transcriptome prediction. These models contain both
a sparse and a polygenic component. The latter is likely
to induce LD contamination (Barbeira et al., 2018) and
does not reflect the sparse architecture of expression
traits (Wheeler et al., 2016).

We also applied the EN‐M and MASHR‐Mmethods to
alternative splicing quantification from LeafCutter (Y. I.
Li et al., 2018) and made them readily available to the
research community. These models were extensively

used by Aguet et al. (2019) and Barbeira, Bonazzola
et al. (2019).

3.1 | Summary of models

Given the differences in the computational approach, not
all prediction strategies generated models for every
available gene–tissue pair. As can be seen in Figure 2a,
EN‐M yielded the smallest number of valid models, for
281,848 gene–tissue pairs. CTIMP‐M produced 340,104
valid models, 21% more than EN‐M, as expected from its
integration of multiple tissues' information.

Fine‐mapping‐based methods generated even more
models: 518,537 from DAPGW‐M (84% more than EN‐M)
and 686,241 from MASHR‐M (143% more than EN‐M).
Please note that given the different criteria used to accept
a model as valid, simple counts of available models
should not be considered a measure of performance.

We show the distribution of cross‐validated prediction
performances in Figure 2b We include five representative
tissues ordered by increasing sample size (kidney, brain
—hippocampus, brain—cerebellum, breast, and skeletal
muscle). To perform a uniform comparison, we used only
gene–tissue pairs available to all model families. CTIMP‐
M showed better prediction performance than EN‐M on
tissues with a smaller sample size but performed simi-
larly on tissues with larger sample sizes. We attribute this
to CTIMP's design, which leveraged all existing samples'
genotypes in the tissues of smaller expression sample
size. MASHR‐M models had no natural prediction per-
formance measure and thus are excluded from these
panels. DAPGW‐M is presented for completeness but its
comparison to EN‐M and CTIMP‐M is unfair. We show
in Figure S1 the cross‐validated prediction performances
for all genes in each family.

3.2 | Fine‐mapping‐based models
perform well in the independent
expression data set

Next, we sought to validate the models' predictions in an
independent RNA‐seq data set. We analyzed data from
the GEUVADIS project (Lappalainen et al., 2013), which
includes 341 samples of European ancestry with geno-
type and LCL expression data. We predicted expression
using GTEx LCL models from the four strategies
and compared them with measured expression levels.
Figure 3a shows the number of genes that each family
was able to predict. DAPGW‐M and MASHR‐M had the
largest number of predictable genes, followed by
CTIMP‐M and EN‐M.
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To compare prediction performances, we used Spear-
man's rank correlation coefficient ρ as a robust measure
that handles the scale and complexity differences between
real GEUVADIS expression data and predicted expression
levels. Figure 3b shows the distribution of prediction

performance (Spearman's ρ) for genes present in all four
methods on the LCL tissue. We observed that all four fa-
milies achieved similar levels of performance, with
MASHR‐M, DAPGW‐M, and CTIMP‐M faring slightly but
consistently better than EN‐M. Mean correlations were

FIGURE 2 Models summary. (a) The number of models generated for protein‐coding genes, pseudogenes, and lncRNA across
the four strategies. MASHR‐M displayed the largest number of generated models. (b) Compares prediction performances for
gene–tissue pairs present in all four strategies, at five different tissues ordered by sample size. CTIMP‐M performed better than EN‐M
in tissues with a smaller sample size. DAPGW‐M is presented for illustration purposes; since it included an additional variable
selection step using the same underlying data, it cannot be fairly compared to EN‐M and CTIMP‐M. MASHR‐M does not have a
prediction performance measure. The intersection of gene–tissue pairs across the four strategies is mostly defined by Elastic Net, the
smallest set. 82% of Elastic Net models make up the intersection available to all strategies. Tissue abbreviations and sample size:
KDNCTX: kidney—cortex, n= 65; BRNHPP: brain—hippocampus, n= 150; BRNCHA: brain—cerebellum, n= 188; BREAST: breast
—mammary tissue, n= 337; MSCLSK: muscle—skeletal, n= 602. lncRNA, long noncoding RNA

FIGURE 3 Validation in a separate
expression cohort. (a) The number of genes
predicted in the GEUVADIS cohort using the
LCL models from each of the four strategies.
MASHR‐M had the most models available,
followed in decreasing order by DAPGW‐M,
CTIMP‐M, and EN‐M. (b) The distribution of
prediction performances (Spearman's ρ) for
genes available to all four families.
DAPGW‐M and MASHR‐M performed
slightly but consistently better than EN‐M
and CTIMP‐M. We attributed the small
differences to the GTEx LCL tissue having a
small sample size (n=115 individuals),
much lower than the 341 available in
GEUVADIS. Also, the intersection of genes
available to all four strategies is dominated by
those present in Elastic Net, the smallest set;
and genes that can be modeled with Elastic
Net tend to be the ones with less complicated
patterns of variation. GTEx, Genotype‐Tissue
Expression Project; LCL, lymphoblastoid cell
lines

860 | BARBEIRA ET AL.



.028 (SE= 0.006), .027 (SE= 0.006), and .018 (SE= 0.006)
points larger for MASHR‐M, DAPGW‐M, and CTIMP‐M,
respectively compared to EN‐M.

We attribute the smaller performance differences to
low power, since GTEx LCL tissue has a sample size of
n= 115 individuals, much lower than the 341 available in
GEUVADIS.

3.3 | Fine‐mapping improves the
number and colocalization of associations

Next, we assessed whether any of these models perform
better at identifying causal genes. We considered the
number and proportion of colocalized genes among the
significant ones as measures of association quality.

We used the four families of models to correlate
predicted expression with 87 phenotypes through 49 tis-
sues using the summary version of PrediXcan. Results of
applying the EN‐M models to GWAS summary statistics,
harmonized and imputed to GRCh38 (Schneider
et al., 2017), were presented by Aguet et al. (2019). In this
section, we say that a gene–tissue pair is significant if it
achieves a p‐value below the Bonferroni‐corrected
threshold (0.05/number of gene–tissue pairs) within
each trait.

We used enloc (Wen et al., 2017) results published in
Aguet et al. (2019) to assess the colocalization status of
GWAS and transcriptomic traits as evidence for a shared
underlying mechanism. Briefly, enloc computes the “re-
gional colocalization probability” (rcp) that a trait shares

causal variants with a gene's expression (or an intron's
splicing quantification), within a GWAS region and the
overlapping gene's cis‐window. We say that a gene–tissue
pair is “colocalized” with a trait if it achieves an enloc
rcp > 0.5. Note that rcp≤ 0.5 should not be interpreted as
a false association; rather, it only means that there is
not enough evidence of colocalization. See Section 4 on
the conservative nature of colocalization approaches in
Barbeira, Bonazzola et al. (2019).

We say that a gene–tissue pair that is both significant
and colocalized is a “prioritized” detection or candidate.
To simplify the interpretation of results across multiple
tissues, we count the number of unique genes among the
prioritized gene–tissue pairs for each trait.

We found that MASHR‐M typically yields more can-
didate genes. On average 28.3 (standard deviation
[SD] = 44.4), 25.5 (SD= 40.3), 36.7 (SD= 57.8), 36.6
(SD= 57.0) genes were identified with EN‐M, CTIMP‐M,
DAPGW‐M, and MASHR‐M, respectively. We display the
numbers of detections for each trait in Figure 4, through
Q–Q plots comparing MASHR‐M to the other the model
families. We observe in Figure 4a that the fine‐mapping
informed families of models, DAPGW‐M and MASHR‐M,
yielded a similar number of candidates per trait, con-
sistently larger than EN‐M and CTIMP‐M. When com-
paring the fraction of colocalized genes among significant
genes (Figure 4b), MASHR‐M yielded a larger proportion
of colocalized genes compared to the other three families.
On average 8.18% (SE= 0.013), 8.88% (SE= 0.013), 9.01%
(SE= 0.013), 11.7% (SE= 0.013) of identified genes with
EN‐M, CTIMP‐M, DAPGW‐M, and MASHR‐M,

FIGURE 4 PrediXcan associations across 87 traits (a) A Q–Q plot for the number of colocalized, significant genes per trait.
Fine‐mapping‐informed models (DAPGW‐M and MASHR‐M) achieved similar numbers of colocalized detections, both slightly
higher than EN‐M and CTIMP‐M. (b) A Q–Q plot for the fraction of colocalized genes among significant genes per trait. MASHR‐M's
distribution is shifted towards higher proportions than the other families. We say a gene is significant if it achieves a
Bonferroni‐adjusted threshold of 0.05 per number of available gene–tissue pairs, in at least one tissue. Likewise, we say a gene is
colocalized if it achieves enloc rcp > 0.5 in any tissue. We say a gene is a candidate or “prioritized” detection if it is both significant
and colocalized in any tissue. rcp, regional colocalization probability

BARBEIRA ET AL. | 861



respectively, were colocalized. In general, we observed
that associations obtained through both DAPGW‐M and
MASHR‐M models tend to agree (see Figure S2 as an
example).

We were thus led to favor MASHR‐M, which pro-
duced the largest number of models, with a larger
number of colocalized, significant associations as well as
higher proportions of colocalized associations among
significant genes.

Enloc relies on the dap‐g algorithm itself as a compo-
nent, so that the fraction of colocalized genes could have
been biased towards dap‐g informed methods. To make
sure that the use of dap‐g is not driving the improved
colocalization rate of MASHR‐M over the other strategies,
we verified the performance using another colocalization
method, coloc (Giambartolomei et al., 2014).

We observed that MASHR‐M still had a better rate of
colocalization among significant associations, although
with smaller differences as can be seen in Figure S3. This
is probably in part due to coloc's reduced power and
limiting assumption of a single causal variant (see
Barbeira, Bonazzola et al., 2019 for details).

3.4 | Fine‐mapping improves
identification of silver standard genes

As an independent way to assess each prediction strat-
egy's ability to identify causal genes, we framed the
problem as one of causal gene prediction and use stan-
dard prediction performance measures such as ROC and
precision‐recall. This avoids using an ad‐hoc significance
or colocalization thresholds.

As proxies for causal genes, we leveraged two differ-
ent “silver standards” as described by Barbeira, Bo-
nazzola et al. (2019). The first one, based on the OMIM
database (Amberger, Bocchini, Scott, & Hamosh, 2019),
features 1,592 known gene–trait associations. The second
one is based on rare‐variant association studies (Liu
et al., 2017; Locke et al., 2019; Marouli et al., 2017) and
contains 101 gene–trait associations.

We restricted our analysis to gene–trait pairs in the
vicinity of the corresponding traits' GWAS loci since we
did not expect any of the methods to detect reliable sig-
nals elsewhere. We used approximately independent LD
regions (Berisa & Pickrell, 2016) to define the vicinity.

Using absolute values of z scores as an association
scores for each strategy, we assessed their ability to
“predict” the silver standard gene–trait associations. We
show in Figure 1 the ROC and PR curves on OMIM and
rare‐variant‐based silver standards.

Using the OMIM‐based silver standard (Figures 1a
and 1c), we observed that the MASHR‐M strategy

outperforms the other strategies, with DAPGW‐M a close
second.

Using the rare‐variant‐based silver standard
(Figures 1b and 1d), we observed that all four strategies
are able to detect known causal genes. However, the
limited size of this standard did not allow us to distin-
guish between the four families.

When considering the AUC for the combined OMIM
and rare‐variant‐based silver standards, we computed the
point estimate and estimated the SEs using a bootstrap
approach (implemented in Robin et al., 2011). We ob-
served the MASHR‐M models had the highest AUC of all
of the model families. Differences in AUC between
MASHR‐M and CTIMP‐M and EN‐Mmodels were 0.0636
(SE= 0.0307) and 0.0682 (SE= 0.0287), respectively,
providing evidence that MASHR‐M models are better
equipped for detecting known genes and reinforcing our
choice of MASHR‐M as the best option.

3.5 | Importance of imputation of
missing summary statistics in practice

The prediction models' usefulness depends on the avail-
ability of their variants in the GWAS of interest. Publicly
available GWAS use different sequencing and genotyping
techniques, based on different genotype imputation pa-
nels and human genome release versions so that the lists
of available variants vary wildly across traits. Thus, a
GWAS might lack particular variants from a prediction
model, so that the model cannot properly infer variation
patterns as shown in Barbeira, Pividori et al. (2019). Since
many fine‐mapped variants in the GRCh38‐based GTEx
study can be absent in a typical GWAS, we sought to
assess the impact of variant compatibility in real
applications.

We compared S‐PrediXcan results from MASHR‐M
models on 69 publicly available GWAS with two pre-
processing schemes:

1. Harmonization only (no imputation): Simple harmo-
nization of variants by lifting over genomic co-
ordinates from the GWAS to match the GRCh38‐based
GTEx prediction models, and then filtering for
matching alleles (“Harmonization” for short)

2. Harmonization and imputation of missing summary
statistics (“Imputation” for short) on harmo-
nized GWAS.

The 69 traits included in this analysis are those
among the 87 traits not belonging to the Rapid GWAS
project, to prevent the highly homogeneous Rapid GWAS
datasets from dominating comparisons.
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We show in Figure 5 the effect of these preprocessing
schemes on various performance metrics, segregated by the
human genome release version (hg17, hg18, and hg19).

Figure 5a summarizes the increase in the number of
gene associations computed for every trait–tissue pair.
For hg17‐ and hg18‐based GWAS, the gain through
summary‐statistics imputation is almost threefold. Some
hg19‐based GWAS traits without imputation yield a good
enough number of computable genes.

Figure 5b shows the distribution of the median frac-
tion of model SNPs also present in the GWAS, within
each tissue–trait combination. Roughly 60% of models'

variants are present in hg17‐ and hg18‐based GWAS
without imputation; this percentage is substantially
higher for hg19‐based GWAS without imputation. Im-
puting summary statistics increase this median percen-
tage to 100% on all tissue–trait combinations across the
analyzed human genome release versions.

Figure 5c shows the increase in the number of genes
detected per trait. As in the previous panels, the increase
is more noticeable for hg17‐ and hg18‐based GWAS,
while smaller for hg19‐based studies.

Therefore, we recommend to always perform variant
harmonization due to its low complexity and time

FIGURE 5 Effect of imputation on association quality. We display here a comparison of S‐PrediXcan results from MASHR‐M
models on 69 GWAS traits using two different preprocessing schemes: simple harmonization of GWAS variants to GTEx's, and
additional imputation of missing summary statistics. Results are grouped by the different human genome release versions underlying
each GWAS: 2 traits were defined on hg17, 13 on hg18, and 54 on hg19. (a) The distribution of the number of associations per
trait–tissue pair that can be computed; imputation dramatically increased the number of associations for hg17‐ and hg18‐based traits.
Some hg19‐based traits exhibited a good number of computable associations after just a simple harmonization. Panel (b) shows, per
trait–tissue pair, the distribution of the median fraction of model SNPs present in the GWAS. It is nearly one for the most trait–tissue
pairs in the imputation scheme, ranging between 0.5 and 1 with the harmonization scheme. (c) The number of colocalized,
significantly associated genes that can be found after applying imputation and harmonization schemes. The gain of imputation for
hg19 is less dramatic than in the other comparisons in this figure, given the conservative nature of the colocalization filter. GTEx,
genotype‐tissue expression; GWAS, genome‐wide association studies; SNP, single nucleotide polymorphism
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requirements, followed by summary‐statistics imputation
if possible. For newer GWAS with modern sequencing
and genotyping, summary‐statistics imputation may not
be as critical depending on their intersection with model
variants.

4 | DISCUSSION

Through extensive analysis of different model training
schemes, we conclude that using fine‐mapping informa-
tion (from dap‐g) and cross‐tissue patterns (from mashr)
improve the reliability of causal gene detection. These
models (MASHR‐M) yield more detections when in-
tegrating GWAS and eQTL studies and show improved
performance when validating results in a silver standard
of known gene‐to‐trait associations (OMIM database).
We make all prediction models and results publicly
available.

Special consideration must be paid to how well
each model's variants intersect GWAS' variants. Fine‐
mapping‐informed models are sparse and parsimonious.
This could be a hurdle when the fine‐mapped variants of
import are missing or have low imputation quality in a
GWAS, as is often the case with older studies. In this
scenario, our recommendation is to impute any missing
variants. If that is not possible, the association with the
incomplete prediction may still detect the underlying
association albeit with reduced power. The MASHR‐M
and DAPGW‐M models have predictors that belong to
different LD clusters and the effect sizes are based on
marginal regression and smoothing across tissues such
that missing one of the “causal clusters” is unlikely to
add false positives. The alternative is falling back to
models such as CTIMP‐M, defined on a robust set of
variants available to most GWAS, at the cost of decreased
performance (detection and prediction). EN‐M ad-
ditionally features some “built‐in” redundancy: for a set
of variants in LD among each other, they all tend to be
included in a model with the effect spread between them.

While our recommended MASHR‐M method offers
several benefits compared to existing approaches, there is
still room for improvement. Potential developments
could rely on fine‐mapping methods that jointly in-
corporate cross‐tissue patterns or consensus between
different fine‐mapping approaches. Also, epigenetic in-
formation has been shown to improve transcriptome
prediction (Zhang et al., 2019) as well. Future improve-
ments should incorporate this epigenetic information and
other biologically informed annotations jointly.

Our validation in silver standards, especially our dif-
ficulty interpreting the results from the rare‐variant‐
based silver standard, also illustrates the need for well‐

curated, large databases of known gene‐to‐phenotype
associations to assess the performance of either new or
improved methods.

In conclusion, we present here a method for pre-
dicting the genetically regulated component of tran-
scriptomic traits with a superior performance both in
terms of prediction performance and gene–trait associa-
tion detection.
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