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Extravascular signal decay rate R2 or R2∗ as a function of blood oxygenation, geometry, and field strength was calculated using a
Monte Carlo (MC) algorithm for a wider parameter range than hitherto by others. The relaxation rates of gradient-recalled-echo
(GRE) and Hahn-spin-echo (HSE) imaging in the presence of blood vessels (ranging from capillaries to veins) have been computed
for a wide range of field strengths up to 9.4 T and 50% blood deoxygenation. The maximum HSE decay was found to be shifted
to lower radii in higher compared to lower field strengths. For GRE, however, the relaxation rate was greatest for large vessels at
any field strength. In addition, assessments of computational reliability have been carried out by investigating the influence of the
time step, the Monte Carlo step procedure, boundary conditions, the number of angles between the vessel and the exterior field
B0, the influence of neighboring vessels having the same orientation as the central vessel, and the number of proton spins. The
results were compared with those obtained from a field distribution of the vessel computed by an analytic formula describing the
field distribution of an ideal object (an infinitely long cylinder). It was found that the time step is not critical for values equal to
or lower than 200 microseconds. The choice of the MC step procedure (three-dimensional Gaussian diffusion, constant one- or
three-dimensional diffusion step) also failed to influence the results significantly; in contrast, the free boundary conditions, as well
as taking too few angles into account, did introduce errors. Next neighbor vessels with the same orientation as the main vessel
did not contribute significantly to signal decay. The total number of particles simulated was also found to play a minor role in
computing R2/ R2∗ .

Copyright © 2007 Bernd Michael Mueller-Bierl et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

The effect of diffusion on signal decay in blood oxygena-
tion level-dependent (BOLD) imaging is mainly due to the
extravascular contribution of spins, especially at high field
strengths >4 T [1]. In the current study, the well-known
Monte Carlo (MC) approach modeling Brownian diffusion
of protons in a background magnetic field has been used to
compute extravascular (EV) BOLD signal changes. To this
end, the static dipole model presented previously [2] has
been extended to a dynamic model describing the sampling
of phases of the individual protons moving in the inhomo-
geneous magnetic field.

Earlier studies on the effect of subvoxel variations in mag-
netic susceptibility were reported by Fisel et al. [3]. Weis-

skoff et al. compared MC simulations with experiments with
polystyrene microspheres to demonstrate that enhanced re-
laxation can be explained quantitatively for both spin-echo
and gradient-echo experiments [4]. The effect of an en-
dogenous paramagnetic agent (deoxygenated hemoglobin)
on image contrast has been addressed by several authors, for
example, Ogawa et al. [5], Kennan et al. [6], and Boxerman
et al. [7]. All models are based on the fact that in the vicinity
of capillaries and venules, local magnetic field distortions are
generated by the presence of paramagnetic deoxyhemoglobin
in the blood.

Data from the models in the literature so far have mostly
been restricted to a magnetic field strength of 1.5 T, that is,
the clinical scanner field strength in the past, and mostly
for GRE only. However, nowadays, scanners with high or
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ultra-high field strength for humans up to 9.4 T are available
for research, and EV-BOLD data for these field strengths both
for GRE and HSE have not yet been provided. The aim of the
present work, therefore, was to investigate these issues at such
high magnetic field strengths.

To examine the contribution of extravascular spin in iso-
lation from other factors, an impenetrable vessel wall bound-
ary for extravascular spins was assumed. The range of inves-
tigated susceptibility values was determined using a deoxy-
genation content of 5% at 1.5 T as the lowest susceptibility
value and up to 50% at 9.4 T as the highest value. In addi-
tion, standard approaches used in the literature have been
evaluated as to how they influence the computed relaxation
rates. In particular, the choice of the time step, the diffusion
step, the number of angles and the influence of neighboring
vessels, and the number of protons were examined.

2. THEORY

Our aim was to study signal decay due to the phase sampling
of the individual spins during their random movement. The
spins in the brain parenchyma are diffusing in a background
magnetic field caused by deoxygenated blood present in cap-
illaries, venules, and veins. The field distribution is therefore
determined by vessels inside a computational volume, filled
with deoxygenated blood. The susceptibility creating the field
distribution around the blood vessel is proportional to the
level of blood deoxygenation and to the exterior field.

Weisskoff et al. proposed generalizing their results ob-
tained using a numerical model by the use of the Bloch-
Torrey equation [4]. Fujita also established a dimensionless
equation which is ruled by two parameters [8]. We briefly
recapitulate their arguments in the following paragraph and
thereby show how their theories relate to one other.

Because the MC method solution must respect the Bloch-
Torrey equations, generalized scaling laws might be derived
in advance to generalize the numerical solutions [4]. If the
length scale is made dimensionless by x �→ y = λ·x, we ob-
tain

dS(y, t)
dt

= iω(y)·S(y, t) +
(
λ2D

)·∇2S(y, t). (1)

If the time scale is made dimensionless by t �→ t′ = t/γ, we
obtain

dS(x, t′)
dt

= i·γ·ω(x)·S(x, t′) + (γ·D)·∇2S(x, t′). (2)

Substituting λ by λ �→ 1/R and γ by γ �→ TE, the general scale
independent relation

dS

dt
= −i·α·S + β·∇2S (3)

with α = ω·TE and β = DTE/R2 can be established. From
this equation, (3), (1), and (2) follow as special cases. The
minus sign in (3) indicates the direction of rotation in the
complex plane and therefore can be omitted. In the present
article, we use cgs units with D = 1 μm2/ms and TE =
40 milliseconds.
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Figure 1: Flow chart of the model. It consists of the dipole model
and a Monte Carlo time-step procedure. The inner of the two 3D
loops is substituted in the present work by a known field distribu-
tion for the element (i.e., the field distribution for an infinite vessel).

3. MATERIAL AND METHODS

3.1. Flow chart

Our model is similar to that of Boxerman et al. [7]. A flow
chart illustrating the model is shown in Figure 1. The total
signal is computed from individual complex transverse mag-
netizations of the protons, which are accumulating phases in
the magnetic background field. The magnetic background
field is described either by an analytic formula, or by inte-
grating the individual contributions from the discretized sus-
ceptibility distribution.

We used the field distribution caused by a vessel seg-
ment approximated by a paramagnetic cylinder with infinite
length to be the susceptibility distribution for an infinite ves-
sel, which is given by

δω· f (x) = δω·
(

1
r

)2

cos (2·φ)sin (θ) (r ≥ 1)

= δω·
(

cos 2θ − 1
3

)
(r ≥ 1),

(4)

where θ is the angle between the cylinder and the direction
of the static magnetic field, r and φ represent the nondimen-
sional radial coordinate relative to the vessel radius R and the
azimuthal angle in the plane orthogonal to the cylinder, re-
spectively, and δω is the susceptibility-induced maximal fre-
quency shift occurring at the vessel surface, given by

δω = 2π·Δχ·ω0Hct(1− Y). (5)
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In (5), Hct denotes the haematocrit value, that is, the fraction
of the volume taken up by the red blood cells, Δχ is the vol-
ume susceptibility difference per unit Hct between fully oxy-
genated and fully deoxygenated blood, ω0 is the static mag-
netic field strength in terms of frequency, and Y is the degree
of blood oxygenation.

Our parameter space was given by a haematocrit value
of Hct = 0.4, a susceptibility of fully deoxygenated blood
of Δχ =0.18 ppm (cgs units). Frequency thus varied from
1.4454 Hz (corresponding to 1−Y = 5% at 1.5 T) to 65 ×
1.4454 Hz (90.58 Hz corresponding to 1−Y = 50% at 9.4 T)
in steps of 5.7816 Hz. The radii varied from 3 μm to 60 μm in
logarithmical equidistant values.

Alternatively, one could discretize the paramagnetic
cylinder representing the vessel into elementary volumes,
for example, of size of the computational cell. In the dipole
model, to each elementary volume, a dipole strength pm =
MΔV is assigned, where M is the magnetization propor-
tional to the exterior field strength M = χB0. The elemen-
tary volume then contributes to the field distribution by an
amount of ΔBz = (pm/r3)(3cos 2θ − 1).

To compute the total field distortion Bz, a spatial inte-
gration to summate all contributions has to be performed.
Diffusion was computed according to 3 models which can
be distinguished by the choice of the diffusion step. They are
given by the following definitions.

STEP1D

Take a fixed step (� = √
2Dτ) in each direction (along the

positive or negative axis, directions chosen randomly).

STEP3D

Take a fixed step (� = √6Dτ) in a randomly chosen direction.

GAUSS3D

Take a random step with a Gaussian distribution (σ=√6Dτ)
in a randomly chosen direction.

In the formulae, D is the diffusion coefficient and τ is
the time step. As diffusion strength, we used D = 1 μm2/ms,
which is typical for the cerebral cortex [7]. As a random gen-
erator, the routine ran1 from the numerical recipes [9] was
chosen. The various MC step methods were first tested by
computing the radial distribution of the protons after N time
steps for M protons. Unless stated otherwise, the time step τ
was chosen as 10 microseconds and TE was 40 milliseconds
at maximum, and the number of protons was 243.

Using these definitions, the routines given by Ogawa et
al. [5] (Step3D), Boxerman et al. [7] (Gauss1D), and Weis-
skoff et al. [4] (Gauss1D) were explored. Gauss1D, of course,
is a hybrid of Step1D and Gauss3D. The arbitrarily chosen
direction must be determined from random values lying in-
side a sphere (except the origin). To determine the direction,
the values have been projected onto the unit sphere’s sur-
face. The time step was chosen as either 10 microseconds or
200 microseconds for the GE and SE signal relaxation rate
computations. Initial positioning and the Monte Carlo steps

were ruled by two separate random generators from Press et
al., that is, using the same starting conditions, the results can
be reproduced completely. Computations have been repeated
and mean values have been calculated to reduce numerical
noise due to the finite-sized sample of proton spins.

The model consists of the following steps:

(1) place a cylinder with a given orientation relative to B0

in a volume of interest;
(2) distribute protons randomly in that volume of interest;
(3) compute the field at the location of each proton as a

superposition of the field generated by the cylinder;
(4) (optional) add the gradient fields from the MR se-

quence at the location of each proton (e.g., to simulate
a CPMG echo train);

(5) advance the phase of each proton according to its local
field and, in case of a 180◦ pulse for HSE, invert the
direction of phase accumulation;

(6) advance each proton in an MC step in an arbitrary di-
rection (in the case of a 3D step chosen from an arbi-
trary position on the surface of a unit sphere);

(7) if the proton has transgressed the cylinder wall, repeat
step (6) with a given probability, which is determined
by the vessel wall porosity (in our case: repeat step (6)
always);

(8) if the proton has left the volume of interest, it might
reenter, depending on suitable boundary conditions.

The resulting signal was computed by summating all
(normalized) complex magnetizations of the EV spins. Spins
which did not contribute (spins inside the vessel) were ig-
nored.

In (4), the cosine of the angle is computed as a scalar vec-
tor product. This, together with expressing the trigonomet-
ric functions by a cosine function, prevents the evaluation of
trigonometric series, which is highly time consuming.

Instead of one cylinder, we also used 5 and 9 cylinders as
illustrated, for example, by Kennan et al. for 5 cylinders [6].

As conditions at the limits of the computational domain,
we used periodical boundary conditions (with the spins re-
entering the computational domain from the adjacent side of
the domain), reflecting boundary conditions (with the spins
being reflected at the limits of the domain), and free bound-
ary conditions (where the spins are free to leave the domain).

Background gradients can be added to the exterior field
at any time during the computations, so that diffusion-
sensitive sequences like CPMG can be established.

The occurrence of vessel direction varies with sin (θ),
where θ is the angle between the exterior field and the ves-
sel orientation. For our computations, we used 6, 9, and 18
angles, equally distributed between 0 and 90◦. The total sig-
nal from vessels with varying orientation thus becomes [5]

Stot =
∑

sin (θ)·∥∥S(θ)
∥∥

∑
sin (θ)

. (6)

The relaxation rate R2 was computed using a two-point
evaluation function at TE = 16 milliseconds and TE =
40 milliseconds assuming Stot = S∗0 exp (-TE∗R2) [5].
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Figure 2: The radial spin position distribution shown after diffu-
sion at time interval TD. The protons all started from the origin at
T = 0 and propagated in space corresponding to the different Monte
Carlo step procedures Step1D, Step3D, and Gauss3D.
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Figure 3: The analytical versus the computed decay curve of the
transverse magnetization shown for a CPMG set of parameters.

4. NUMERICAL RESULTS

Testing of the diffusion process is shown in Figures 2 and
3: Figure 2 shows the distribution of spins after a fixed dif-
fusion time TD together with the theoretical distribution.
Figure 3 shows the CPMG signal decay together with its an-
alytical course. Both the local spin distribution as well as
the CPMG signal decay follows the theoretical predictions
with some random noise due to the limited number of pro-
tons.

Results for the computation of R2/R2∗ for GRE and
HSE imaging are shown in Figure 4. The curves are the
mean values of 8 computations, each with a different ran-
dom series initialization. Time step length has been set at
10 microseconds within these simulations. As can be seen,
HSE relaxation rates are greatest for small radii, whereas for
GRE large vessel radii have the highest relaxation rates. In ad-
dition, as expected, the relaxation rate both for GRE and HSE
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Figure 4: R2/R2∗ relaxation rate (in s−1) for SE, GE, from de-
oxygenation corresponding to a frequency of 1.4454 Hz to 65 ×
1.4454 Hz. Data are shown in steps of 8 × 1.4454 Hz. The time
step length in these computations was 10 microseconds. The mean
value for 8 computations with different random series initialization
is shown.

increase with blood oxygenation and field strength. Higher
susceptibility for HSE results in shifting the maximal relax-
ation rate to even smaller radii.

Comparison of these results to computations with a time
step length of 200 microseconds is shown in Figure 5. They
agree with the results using the smaller time steps. The 200-
microsecond data are slightly noisier since there is no aver-
aging as in the 10-microsecond data, which have been com-
puted 8 times for different random series initialization. Com-
parisons to a Gauss3D diffusion step computation and to a
free boundary condition computation are also shown (time
step 200 microseconds in both). Only the data for the free
boundary computation are slightly inconsistent with the oth-
ers.

Figure 6 compares the results of the 8 computations with
a computation using 9 or 18 angles instead of 6 (time step
200 microseconds each). A nonnegligible deviation of the GE
curve, and a slightly smaller deviation also for the SE curve
can be seen (in the static dephasing regime: a deviation of 5%
for 6 angles, i.e., a deviation of 2.5% for 9 compared to 18
angles). Again, data from the 9-angle versus 18-angle com-
parison have been computed only once.

In Figure 7, neighbor rods are taken into account and the
result is compared to the result of the 8 computations with
different random series initialization. Data for the 5 or 9 next
neighbors have been computed once. There are no apparent
differences compared to the computations with only one ves-
sel.

Finally, in Figure 8, the data for different numbers of
spins in the computational domain can be found. The num-
bers of spins distributed in the computational domain were
243, 303, 363, 423, and 483 (time step 200 microseconds each).
A change in the number of spins does not result in any sig-
nificant difference between the calculated relaxation rates.
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Figure 5: R2/R2∗ relaxation rate (in s−1) for time step length of
10 microseconds versus 200 microseconds. Data for the Gauss3D
step and for the free boundary conditions are also shown. The free
boundary condition data clearly deviate from the other data.
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Figure 6: R2/R2∗ relaxation rates (in s−1) shown for 9 angles and
18 angles compared to the data for 6 angles between the exterior
field and the vessel direction.

5. DISCUSSION

When compared to lower field strengths, the maxima of the
spin-echo decay were found to be shifted to lower radii. A
set-up with too few angles as well as the use of free bound-
ary conditions introduces errors and therefore should be
avoided. All other parameters (time-step, number of protons,
and influence of neighboring vessels of the same orientation,
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Figure 7: R2/R2∗ relaxation rates (in s−1) shown for 5 vessels (cen-
tral vessel and 4 next neighbors), respectively, shown for 9 vessels
(8 next neighbors) versus data for one single vessel. All neighbor
vessels possess the same direction as the central vessel.

101

log (radius) (μm)

0

5

10

R
el

ax
ra

te
(1

/s
)

93.95 Hz

24 GRE
24 HSE
30

36
42
48

Figure 8: R2/R2∗ relaxation rates (in s−1) shown for the computa-
tional set up with edge lengths of the computational cell of 24, 30,
36, 42, and 48 mean spin-to-spin distances along each edge, corre-
sponding to 243, 303, 363, 423, and 483spins in each computational
cell.

choice of the MC step model used) did not influence the re-
sults in our computations.

The current loop approach according to Biot Savart
proved the use of the dipole formulae for a finite voxel el-
ement to be correct [2]. The plot of the field distribution of
an infinite vessel is in agreement with the field distribution of
a very long discretized vessel. However, we found that results
for a discretized cylinder slightly deviate from the results for
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an infinitely long cylinder. For consistency, we show only re-
sults obtained for the infinite cylinder in the present work.
Moreover, the CPMG decay experiment showed that our dif-
fusion modeling works quite well for all MC step methods
investigated.

As discussed by Ogawa et al. [5], at the limit of infinite
numbers of spins and time steps, the signal S(θ) in (6) would
be real. However, because we use a finite number of proton
spins, there is a residual complex part of the signal. In (6),
we forced S to be real by taking its absolute value. However,
as the number of spins increases, the residual part should
diminish and, at the limit of infinite numbers of protons,
should vanish.

The precursor modeling approaches according to Balac
et al. [10], Bhagwandien et al. [11], Lüdeke et al. [12], and
Bakker et al. [13] are all limited in that they rely either on
singular analytical solutions for spheres and cylinders, or on
complicated procedures such as boundary element meth-
ods (BEMs), finite differences (FDs), or finite element meth-
ods (FEMs). The dipole model, in contrast, uses arbitrarily
chosen elements (discretized to a grid) in combination with
simple geometries (spheres, finite cylinders, parallelepipeds).
This allows the design of special interventional instruments
(e.g., a biopsy needle with markers) and the computation
of the decay of the transverse magnetization in “real world”
geometry as in a trabecular bone model, or in a vessel net-
work to model signal decay in brain parenchyma. Branches
of vessels might be simulated using our model. Use of an-
alytic field distributions remains possible, thereby allowing
modeling similar to Boxerman et al. [7], Ogawa et al. [5],
Kennan et al. [6], or Fujita [8].

Discretization of the susceptibility distribution can be
made more precise than the mean distance between protons
by introducing distance factors [14]. An estimate of arbitrar-
ily high resolution can then be achieved by Richardson Ex-
trapolation [9].

Intra- and extravascular pools were separated by a rou-
tine which tests whether a spin is intra- or extravascular. The
same routine can be used to detect the transgression of a
boundary, and in the case of impenetrable vessel walls, the
diffusion step can then be rejected until a transgression-free
step has been attained. This is achieved by testing whether
a spin was extravascular before the MC step but becomes
intravascular after it, or vice versa. Actually, vessel walls
are to be regarded as impenetrable, because exchange rates
are much longer (typically 500 milliseconds) than TE (typ-
ically 100 milliseconds) as discussed in Fisel et al. [3], and
in Boxerman et al. [7]. Using a rejection with probability P
(drawn from a random series), vessel walls might be mod-
eled as partially penetrable. Spins belonging to the intravas-
cular pool are not considered to contribute to the BOLD sig-
nal.

The boundaries of the computational domain might be
treated as periodical boundary conditions, reflection of spins
at the boundaries or by no conditions at all. However, we ob-
served that tests with such penetrable boundaries (also called
“free boundary conditions”) lead to slightly false results.

Let us summarize an important, specific finding revealed
in Figure 4 of Section 3. At high field strength (9.4 T), spin-

echo imaging is especially sensitive at about 3 μm radii. The
maximum of the spin-echo decay is shifted to lower radii
than with lower field strengths. This makes spin-echo imag-
ing especially sensitive to small vessels and capillaries.

The computation with 18 angles revealed a source of dis-
cretization error. The 6 angles used regularly in our compu-
tations essentially yield only an approximate result. However,
since the effort to compute with 18 angles is 3 times greater,
we have restricted our analysis to 6 angles. One should bear
in mind that this leads to a (somehow limited and therefore
minor) error in R2/R2∗. Moreover, we found that placing
vessels in the next 6 or 9 neighbor volumes does not change
the result. Vessels with orientations different from the orien-
tation of the central vessel in the next neighbor volumes have
not been investigated and are left for future work.

From 243 protons on, the result does not change sig-
nificantly with increasing numbers of protons. However,
to obtain smoother curves (less numerical noise due to a
limited number of protons), computations might be re-
peated using different random initializations for the MC step
procedure. Computing time largely depends on the hard-
ware resources available. For the computations with TE =
40 milliseconds in steps of 10 microseconds, computing the
complete parameter-space for one random series initializa-
tion value with 243 protons took approximately 8 days on a
Pentium machine with a clock rate of 1.8 GHz.

The model might be further improved by introducing
Bloch’s equations instead of considering a constant trans-
verse magnetization. Pulses and gradients can then be simu-
lated to model a real pulse sequence with all its implications
regarding magnetization. The diffusion constant might also
be replaced by a diffusion tensor, making the treatment of
problems based on diffusion anisotropy possible.
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