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Hundred-thousands of fungal species are present in our environment, including normal
colonizers that constitute part of the human microbiota. The homeostasis of host-fungus
interactions encompasses efficient fungal sensing, tolerance at mucosal surfaces, as well
as antifungal defenses. Decrease in host immune fitness or increase in fungal burden
may favor pathologies, ranging from superficial mucocutaneous diseases to invasive
life-threatening fungal infections. Toll-like receptors (TLRs) are essential players in this
balance, due to their ability to control both inflammatory and anti-inflammatory processes
upon recognition of fungal-specific pathogen-associated molecular patterns (PAMPs).
Certain members of the TLR family participate to the initial recognition of fungal PAMPs
on the cell surface, as well as inside phagosomes of innate immune cells. Active signaling
cascades in phagocytes ultimately enable fungus clearance and the release of cytokines
that shape and instruct other innate immune cells and the adaptive immune system.
Some TLRs cooperate with other pattern recognition receptors (PRRs) (e.g., C-type
lectins and Galectins), thus allowing for a tailored immune response. The spatio-temporal
and physiological contributions of individual TLRs in fungal infections remains ill-defined,
although in humans, TLR gene polymorphisms have been linked to increased susceptibility
to fungal infections. This review focuses entirely on the role of TLRs that control the host
susceptibility to environmental fungi (e.g., Aspergillus, Cryptoccocus, and Coccidoides),
as well as to the most frequent human fungal pathogens represented by the commensal
Candida species. The emerging roles of TLRs in modulating host tolerance to fungi, and
the strategies that evolved in some of these fungi to evade or use TLR recognition to their
advantage will also be discussed, as well as their potential suitability as targets in vaccine
therapies.
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INTRODUCTION
An estimated 1.5 million fungal species are present in the envi-
ronment (Hube, 2009). Some of them have evolved as commen-
sal colonizers of cutaneous and mucosal surfaces in humans.
While only a few fungal microbes are actually true pathogens for
healthy individuals, in Western societies opportunistic fungi can
cause life-threatening infections in immunosuppressed individu-
als, ranging from superficial mucocutaneous disease to invasive
deep-seated infections. In developing countries, fungal infec-
tions affect not only immunocompromised but also immuno-
competent healthy individuals in region of endemic mycoses
(Brown et al., 2012), with Cryptococcus species (spp.) repre-
senting the major human fungal pathogen (Del Poeta and
Chaturvedi, 2012). The main fungal pathogens affecting humans
comprise those ubiquitously present in the environmental fungi,
Aspergillus fumigatus, Cryptoccocus neoformans and more recently
Cryptoccocus gatii, Histoplasma capsulatum, Coccidoides posadasii,
Pneumocystis jirovecii and the commensal P. jiroveci or the
Candida spp. The rising incidence in fungal infections observed
in the last decades correlates with increases in invasive medical
interventions, long-term hospitalization and with large numbers

of immunosuppressed patients due to acquired- (e.g., HIV
infection) or treatment-induced immunodeficiency such as trans-
plantation or anticancer therapy (Pfaller and Diekema, 2007,
2010). No obvious clinical symptoms distinguish invasive fungal
infections from other microbial infections. Furthermore, clinical
diagnoses pose a huge challenge, since current methods are not
always reliable, speedy, accurate, or specific, in particular when
speciation is required for efficient antifungal therapy. Thus, anti-
fungal treatments are often delayed or inappropriately applied.
Consequently, fungi stand out as the fourth main cause of hospital
acquired infections in “at-risk” populations, despite availability
of efficient but costly antifungal therapies (Perlin, 2011; Pfaller,
2012).

Several particularities distinguish fungal from viral or bacte-
rial microbes in their interaction with host immune cells. For
instance, many fungal pathogens are dimorphic and able to
undergo morphogenesis upon environmental or host stimuli,
which facilitates immune evasion or dissemination and niche
occupancy in the host. Morphogenesis is hence considered a
major virulence trait (Gow et al., 2012). Further, all fungal
eukaryotes are protected by the cell wall, a highly complex and
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flexible meshwork of carbohydrate polymers such as mannans,
β-glucans, and chitin interwoven in a protein matrix (Gow and
Hube, 2012). Due to its physical properties and its plasticity, this
unique structure confers strong protection against all kinds of
environmental stresses, including immune cell attack. It also is
a major source of fungal pathogen-associated molecular patterns
(PAMPs) that mediate host-fungi interaction during recognition
by immune cells (Levitz, 2010).

The major class of pattern recognition receptors (PRRs)
known to be involved in sensing and recognition of fungal
PAMPs comprise the C-type lectin receptor family recognizing
glucan and mannan (such as Dectin-1, Dectin-2, Mincle, SIGNR,
and mannose receptor), the scavenger receptors (such as CD5
and CD36), Galectin-3, and the Toll-like receptor (TLR) family
(Romani, 2011). This review addresses TLRs recognizing fungal
pathogens on hematopoietic and non-hematopoietic cells, reca-
pitulating the most recent advances in the field. We shall reiterate
the emerging concept of TLRs in shaping host-fungal relation-
ships. Importantly, we will also discuss fundamental differences
of TLR function in mouse and humans, since there is increas-
ing evidence not only for cell-type specific responses, but also
for species-specific distinct roles of TLRs in fungal immunity or
tolerance.

FUNGAL SENSING BY TOLL-LIKE RECEPTORS
RECOGNITION OF FUNGAL PAMPs BY SURFACE AND PHAGOSOMAL
TLRs
The precise molecular nature of fungal PAMPs that active spe-
cific TLRs is difficult to pin down due to the often collaborative
mechanism of TLR recognition and the plasticity of the fungal cell
wall. Whereas fungal PAMPs are clearly recognized by a number
of TLRs (i.e., TLR2/1, TLR4, TLR3, TLR2/6, TLR7, and TLR9),
they are not the primary receptors driving pathogen engulfment.
Fungal PAMPs for cell-surface TLRs have been mainly charac-
terized for Candida albicans, but they remain mostly unknown
for other fungi. For C. albicans, mutants with specific cell wall
defects have facilitated the identification of PAMPs. Because cell-
wall mutations often attenuate virulence or induce compensatory
alteration of the cell wall composition (Murciano et al., 2011),
altered immune responses to such mutants should be interpreted
with caution. Nonetheless these studies have proven useful in
identifying cell wall components activating TLRs (Figure 1). For
example, TLR2 recognizes fungal β-glucans of several fungal
species (Viriyakosol et al., 2005; Netea et al., 2006; Sorgi et al.,
2009). In addition, it also specifically interacts with phospholipo-
mannans (PLMs), linear beta-1,2-oligomannoside structures that
are unique to C. albicans (Jouault et al., 2003). TLR2 is also stimu-
lated by as yet unidentified ligands present on conidia and hyphae
forms of A. fumigatus (Netea et al., 2003). TLR2/TLR1 and
TLR2/TLR6 heterodimers are receptors for the glucuronoxylo-
mannan (GXM) component of Cryptococcus neoformans (Fonseca
et al., 2010). Notably, A. fumigatus activates mouse but not human
TLR2/6 heterodimers, whereas TLR2/1 heterodimers recognize A.
fumigatus both in human and mice (Rubino et al., 2012). This
is a striking example of differences between human and mice in
fungal recognition. TLR4 is activated upon ligation of C. albicans
O-linked mannans (Netea et al., 2006), as well as C. neoformans

GXM (Shoham et al., 2001). Ligands for TLR4 are present as well
on A. fumigatus conidia but not hyphae (Netea et al., 2003).

In addition, to cell surface PAMPs, nucleic acids liberated
from fungi within the phagosome also stimulate or modulate the
dynamic host response during infection. TLR3 is activated by
double-stranded RNA from A. fumigatus conidia in lung epithe-
lial cells (Beisswenger et al., 2012). Single-stranded RNA from
Candida spp. are ligands for TLR7 in mouse bone-marrow den-
dritic cells (BM-DCs) (Biondo et al., 2011). TLR9-mediated sens-
ing of fungal genomic DNA (gDNA) appears conserved across
fungal species (Nakamura et al., 2008; Ramirez-Ortiz et al., 2008;
Miyazato et al., 2009; Biondo et al., 2011) and the recruitment
of TLR9 to fungi-containing phagosome is observed with sev-
eral fungal species (Kasperkovitz et al., 2011). Recognition of
gDNA from A. fumigatus and C. neoformans occurs at unmethy-
lated CpG motifs (Nakamura et al., 2008; Ramirez-Ortiz et al.,
2008; Tanaka et al., 2011). By contrast, TLR9 detection of Candida
gDNA does not seem to be restricted to these motifs (Miyazato
et al., 2009).

TLRs AND MODULATION OF IMMUNITY TO FUNGI
Hematopoietic stem cells
Recent advances in hematopoietic stem cell (HSC) research sug-
gest that commensal microbes, including fungi, “shape” the
steady-state hematopoiesis through their interaction with TLRs
(Boiko and Borghesi, 2012). Ligation of TLRs on mouse or
human HSCs by microbial PAMPs affects both proliferation and
differentiation (Baldridge et al., 2011; Boiko and Borghesi, 2012).
At steady state, bone marrow from mice lacking TLR4, TLR9, or
MyD88 exhibit enhanced reconstitution activity (Massberg and
Von Andrian, 2009). Furthermore, in Drosophila, mutations in
the Toll/cactus pathway cause a deregulated hematopoiesis (Qiu
et al., 1998). Thus, TLR signaling in HSCs may serve two pur-
poses: (1) it participates in the maintenance of basal hematopoi-
etic homeostasis in the absence of triggers, and (2) it activates
emergency hematopoiesis upon microbial infections. In a mouse
model of systemic infection, C. albicans stimulates both prolif-
eration and differentiation of HSCs and committed progenitors,
driving enhanced granulopoiesis independently of G-CSF (Basu
et al., 2000) but in a MyD88/TLR2-dependent fashion (Yanez
et al., 2009, 2010, 2011). Notably, TLR2 promotes the differentia-
tion of HSCs into macrophages and monocyte-derived DCs upon
interaction with Candida spp. (Yanez et al., 2010, 2011).

Innate, adaptive and non-hematopoietic effector cells
Professional phagocytes such as neutrophils, mono-
cyte/macrophages, and dendritic cells, are rapidly recruited
at the site of infection upon fungal challenge (Lionakis et al.,
2010, 2012; Majer et al., 2012; Wuthrich et al., 2012b). Notably,
the lack of TLR2 impairs the early recruitment as well as killing
capacity of neutrophils against A. fumigatus (Meier et al., 2003;
Bellocchio et al., 2004a). Similarly, fewer neutrophil/monocytes
are recruited in TLR2−/− mice in comparison to wild-type ani-
mals at day 1 after post-peritoneal infection with live C. albicans
(Tessarolli et al., 2010). Interestingly, upon intraperitoneal chal-
lenge with heat-killed C. albicans, TLR2 defficiency has no effect
on early (4 h) phagocyte recruitment, but results in an enhanced
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FIGURE 1 | TLR signaling induced in host cells upon interaction with

fungal pathogens. Surface Toll-like receptors (TLRs), as well as endosomal
TLRs participate to the recognition of fungal PAMPs [e.g., O- and N-linked
mannans, phospholipo-mannan (PLM), glucuronoxylomannan (GXM),
α-mannosides, β-glucans, DNA, and RNA]. Activation of surface TLRs
involves their homo- (TLR4) or hetero-dimerisation (TLR2/TLR1 or TLR6).
The diversity of signaling pathways is increased by the involvement of
co-receptors of the C-type lectin family (e.g., SIGNR1 and Dectin-1)
or Galectin-3. Confirmed physical interactions between PRRs are
represented by double-head arrows. The integration of simultaneously

activated signaling pathways occurs at the level of intracellular adaptors
and transcription factors shared between overlapping pathways. The
resulting cytokine responses shape the activation of the adaptive
response and ultimately modulate the outcome for the host. This figure
was adapted from Bourgeois et al. (2010) by including newly published data
from Biondo et al. (2012) and Takahara et al. (2012), and as reviewed in
Romani (2011) and Leibundgut-Landmann et al. (2012). A. fumigatus,
Aspergillus fumigatus; C. albicans, Candida albicans; Candida spp, Candida
species; C. neoformans; Cryptococcus neoformans; M. furfur, Malassesia
furfur.

macrophage recruitment in mutant versus control mice at day 3
after infection (Netea et al., 2004). These results suggest that TLR2
differentially modulates phagocyte recruitment during the course
of candidiasis. Additionally, the use of live versus heat-killed
Candida cells may affect both kinetics and nature of recruited
phagocytes. Phagocytes emerging at day 1 of post-peritoneal
infection with live Candida exhibit impaired nitric-oxide release,
myeloperoxidase activity, chemokine, and cytokine production,
as well as neutrophil survival in the absence of TLR2 (Tessarolli
et al., 2010). Thyoglycolate-elicited TLR2−/− neutrophils
and macrophages show reduced phagocytic activity toward

C. albicans than their wild-type counterparts (Tessarolli et al.,
2010). Notably, no significant effects of TLR2 on phagocytosis by
similar cells has also been reported (Netea et al., 2004), perhaps
due to distinct experimental conditions used in the phagocyte
preparations.

By contrast, the absence of TLR4 diminishes neutrophil effec-
tor functions against both A. fumigatus and C. albicans (Meier
et al., 2003; Bellocchio et al., 2004b; Gasparoto et al., 2010),
whereas TLR9 deficiency enhances the fungicidal capacity of
neutrophils as well as macrophages (Bellocchio et al., 2004b;
Kasperkovitz et al., 2011). Lack of TLRs also modulates the
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cytokine response in macrophages and dendritic cells upon fungal
encounters (for review see, Romani, 2011) (Figure 1). In BM-
DCs, but not in bone-marrow derived-macrophages, both TLR7
and TLR9 trigger the release of IFN-β in response to Candida
(Biondo et al., 2011, 2012; Bourgeois et al., 2011). Notably, IL-
12 p70 release is also dependent on both TLR7 and TLR9 in these
cells (Biondo et al., 2012).

Th1 and Th17 are the principal Th subsets that contribute to
a protective adaptive response to fungal pathogens (for review
see, Hernandez-Santos and Gaffen, 2012; Leibundgut-Landmann
et al., 2012; Wuthrich et al., 2012a). However, IL-17 and Th17
cells have been reported to be detrimental in certain mouse
models of fungal infection (Zelante et al., 2009). In humans,
by contrast, a defect in IL-17 signaling is linked to increased
susceptibility to mucocutaneous Candida infection (Puel et al.,
2011). Regulatory T-cells (Tregs) modulate the Th1/Th17 bal-
ance either by preventing expansion of the Th17 subset or by
minimizing host damage (Loures et al., 2009). However, Tregs
may also enhance the Th17 response and promote fungal clear-
ance (Pandiyan et al., 2011). TLRs could influence the adaptive
response either indirectly via activation of antigen presenting cells
(APCs) or, by acting as co-receptors for TCRs directly on T-cells
(for review see Jin et al., 2012). It is generally accepted that TLRs
mediate the development of antifungal Th1 response. Notably,
MyD88 is dispensable for the CD4+ T-cell priming against and
trafficking during Aspergillus airway infections (Rivera et al.,
2006), but it is required for the differentiation of fungi-specific
CD4+ T-cells into IFN-γ-producing cells in lungs. TLR2, how-
ever, may promote T-reg differentiation. Indeed, TLR2−/− mice
have reduced levels of natural Tregs in comparison with wild-type
mice, suggesting that TLR2 also regulates Treg homeostasis. In
a Paracoccidoides brasiliensis intratracheal infection model, TLR2
promotes Treg expansion, thereby limiting Th17 cell differen-
tiation and tissue pathology (Loures et al., 2009). By contrast,
in a systemic infection model of candidiasis, TLR2-mediated
recognition of Candida triggers IL-10 production and decreases
Th1 polarisation (Netea et al., 2004). Recent studies suggest
that TLRs may also play a direct role in the induction of a
Th17 antifungal response: TLR6 exerts protective effects in a
model of chronic Aspergillus-induced asthma, by promoting IL-
23 release and a subsequent Th17 response (Moreira et al.,
2011). In a skin-resident DC subset, Langerhans cells, MyD88
is required for their full activation and function in response
to C. albicans infection, including the development of a Th17
response (Haley et al., 2012). Similarly, in a Blastomyces der-
matidis-specific TCR mouse model, MyD88 but not dectin-1 is
required for the development of a vaccine-induced Th17 sub-
set and resistance to infection, which is consistent with the
involvement of TLRs in DC activation (Wuthrich et al., 2011).
Furthermore, TLR3-defficient mice fail to activate protective
memory-CD8+ T cells following vaccination by A. fumigatus
(Carvalho et al., 2012b). Thus, some TLRs expressed in APCs
may be good candidates to stimulate DCs for antifungal vacci-
nation strategies both as danger signals and to condition profes-
sional APCs to induce the appropriate class of protective adaptive
immunity (for review see, Iannitti et al., 2012; Roy and Klein,
2012).

Terminally differentiated epithelial cells also take an active part
in antifungal defense and immune surveillance (for review see,
Naglik and Moyes, 2011; Weindl et al., 2011). The TLR expres-
sion levels are altered in these cells upon fungal infection, and
their cytokine response is, at least in part, TLR-dependent. In
mice, TLR4 is required for protection of epithelial cells from
fungal invasion in the presence of polymorphonuclear leuco-
cytes (PMNs) (Weindl et al., 2007). Similarly, TRIF−/−epithelial
cells are more susceptible to A. fumigatus due to over activation
of Th17 cytokines and down-regulation of Th1-Tregs (De Luca
et al., 2010). Thus, TLR signaling in epithelial cells may modu-
late the inter-cellular communication and cooperation between
hematopoietic and non-hematopoietic cells. Deregulation of
underlying processes can enhance immunopathology and impair
clearance (De Luca et al., 2010). Notably, TLRs also modu-
late the ability of epithelial cells and innate immune cells to
sense and respond to danger signals others than established TLR
ligands, including host or fungal proteases or other host “damage-
associated molecular patterns” (DAMPs) (Moretti et al., 2008;
Sorci et al., 2011).

MECHANISMS MODULATING TOLL-LIKE RECEPTOR
SIGNALING DURING FUNGAL RECOGNITION
Because microbial pathogens usually carry multiple classes of
PAMPs, their recognition may involve the simultaneous or
sequential activation of several PRRs from different families.
Collaboration between PRRs and/or cross talk between their
signaling pathways can enhance the specificity and coverage of
PAMP recognition and enables a tailored host response (Van De
Veerdonk et al., 2008a) (Figure 1). TLR2 transduces signals as
a heterodimer recruiting either, TLR1 or TLR6 (Ozinsky et al.,
2000). However, the functional consequences of these TLR coop-
erations for fungal recognition remain ill-defined. In addition,
several molecules including C-type lectins or other carbohydrate-
binding proteins have been identified as TLR2 co-receptors (e.g.,
Dectin-1, SIGNR1, and Galectin-3). Interestingly, depending on
the co-receptor involved, co-ligation of TLR2 may either enhance
a TLR2-dependent response (Smeekens et al., 2010; Takahara
et al., 2012) or modulate its PAMPs specificity (Jouault et al.,
2006). Dectin-1 has also been shown to synergies with TLR4
signaling (Ferwerda et al., 2008).

The molecular basis of signaling pathway crosstalk is just
beginning to be investigated (reviewed in Hontelez et al., 2012).
Dectin-1 signaling requires its clustering and the formation of a
phagocytic synapse (Goodridge et al., 2011). No physical inter-
action between TLR2 and Dectin-1 have been reported so far,
but TLR2 co-immunoprecipitates with Galectin-3 following stim-
ulation with C. albicans (Jouault et al., 2006). Interestingly,
Galectin-3 also co-immunoprecipitates with Dectin-1 (Esteban
et al., 2011), suggesting that Galectin-3 may mediate the coop-
eration between TLR2 and Dectin-1 signaling. TLR2 also co-
immunoprecipitates with SIGNR1 (Takahara et al., 2012). Thus,
the dynamic clustering and/or exclusion of PRRs from the phago-
cytic synapse may control and modulate signaling cross talks dur-
ing the initial immune response to surface PAMPs. Subsequent
liberation of fungal PAMPs such as nucleic acids, through fun-
gal pathogen degradation in the course of phagosome maturation
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may promote further recruitment of PRRs (Stuart and Ezekowitz,
2005; Kasperkovitz et al., 2010).

In addition to microbial PAMPs, host DAMPs arising from
tissue damage such as S100B proteins are also released at the
site of inflammation during infection. In a TLR2-dependent fash-
ion, low doses of S100B proteins promote fungal clearance and
protect against inflammation-induced epithelial damage in lungs
of mice with A. fumigatus intranasal infections. By contrast, the
TLR3/TRIF axis may reduce over-production of S100B proteins,
thereby preventing exacerbation of the inflammation reaction to
promote its resolution (Sorci et al., 2011). Thus, host DAMPs may
collaborate with PAMP-activated TLRs to control the outcome of
the inflammatory response.

C. albicans is uniquely recognized by TLR2 after antifungal
treatment that targets and alters the cell wall (Roeder et al., 2004).
Similarly, pretreatment of C. albicans or A. fumigatus with anti-
fungal drugs enhance their ability to stimulate TLR expression
in human PMNs (Salvenmoser et al., 2010). These results sug-
gest that beside their direct fungicidal properties, antimycotics
may also facilitate pathogen detection by the host and thereby,
facilitate clearance.

FUNGAL STRATEGIES TO ESCAPE OR SUBVERT DETECTION
BY TOLL-LIKE RECEPTORS
Many fungal pathogens have developed strategies to escape or
subvert host immune recognition systems, including sensing by
TLRs or other PRRs (for review see, Collette and Lorenz, 2011).
Cell wall remodeling upon environmental stress or during hyphae
formation may change PAMP composition and alter accessibil-
ity for TLRs as observed for many species (Hohl et al., 2005;
Collette and Lorenz, 2011). Furthermore, formation of large
cellular structures either by germination and filamentation in
dimorphic fungi, or by nuclear replication without fission in
Cryptococcus, can hamper phagocytosis (Okagaki et al., 2010;
Zaragoza et al., 2010) and thereby, is likely to prevent activation
of the intra-phagosomal recognition processes.

Cryptococcus spp. and several other fungi secrete polysac-
charides and protein cargos through dedicated exosomes upon
host interaction. Supernatant of C. neoformans cultures inhibit
TLR9 activation by C. neoformans DNA (Yamamoto et al., 2011).
Similarly, A. fumigatus cell wall components differentially modu-
late TLR2 and TLR4 signaling (Chai et al., 2011).

Activation of endosomal TLR7-9 is controlled by their timely
recruitment to the phagosome and proteolytic processing upon
ligand binding (Ewald and Barton, 2011). Thus, modulation of
intracellular protein trafficking and phagosome maturation, are
likely to influence the recognition of fungal pathogens by endo-
somal TLRs. Candida spp. as well as H. capsulatum prevent
phagosomal maturation and acidification (Eissenberg et al., 1993;
Marcil et al., 2008; Fernandez-Arenas et al., 2009; Garcia-Rodas
et al., 2011; Seider et al., 2011). C. neoformans and C. albicans
share the ability to escape the phagosome, although using entirely
distinct mechanisms (Collette and Lorenz, 2011). Paradoxically,
the rapid recruitment of TLR9 to the fungus-containing phago-
somes favors persistence, suggesting that this receptor may be
exploited as an immune evasion strategy by several fungal species
(Kasperkovitz et al., 2010, 2011).

TLR-SIGNALING AND INBORN SUSCEPTIBILITY TO FUNGAL
INFECTIONS
MOUSE MODELS OF FUNGAL INFECTIONS
Mice lacking MyD88, the signaling adaptor shared by several sur-
face and endosomal receptors, but also by the IL-1, IL-18, and
IL-33 receptors, are hypersensitive to systemic C. albicans infec-
tions (Bellocchio et al., 2004a; Villamon et al., 2004), as well as
to intraperitoneal and intranasal C. neoformans infections (Yauch
et al., 2004; Biondo et al., 2005). Fungal clearance is impaired in
MyD88−/− mice during systemic and intra-gastric candidiasis,
pulmonary, as well as corneal aspergillosis, and during C. neo-
formans infections (Bellocchio et al., 2004a; Yauch et al., 2004;
Biondo et al., 2005; De Luca, 2007; Leal et al., 2010). Consistently,
expression of Th1 and inflammatory cytokines during C. neofor-
mans infections is lower in mice lacking MyD88 when compared
to wild-type mice (Biondo et al., 2005).

In corneal aspergillosis, TRIF-deficient mice do not exhibit a
fungal killing defect (Leal et al., 2010). However, in intra-gastric
infection models, TRIF−/− mice fail to prevent spreading of
C. albicans to peripheral organs (De Luca, 2007). In pulmonary
aspergillosis, TRIF−/− mice as well as TLR3−/− mice are highly
susceptible to infection and develop pathogen-induced inflam-
mation (De Luca et al., 2010; Carvalho et al., 2012b). Thus, these
data suggest that TLR signaling adaptors drive pathways with dis-
tinct effector functions in fungal pathogenesis. TRIF pathways
appear to promote tolerance, whereas MyD88 is required for
fungicidal activity (Romani, 2011).

Mice lacking TLR2 exhibit an intrinsic defect in the number
of CD4+CD25+Treg subset that maintains peripheral tolerance,
but may also dampen the immune response to infection (Netea
et al., 2004). Upon intravenous Candida infection, absence of
Tregs results in improved fungal clearance 7 days after infec-
tion and better survival of TLR2−/− mice when compared to
wild-type mice (Bellocchio et al., 2004a; Netea et al., 2004). By
contrast, in an intraperitoneal model of candidiasis, clearance is
impaired 1 day afterinfection in the absence of TLR2 (Tessarolli
et al., 2010). TLR2-deficient mice infected with P. jirovecii display
intenser severity in symptoms, as well as increased fungal burden
and decreased TNFα and nitric oxide release in the lungs (Wang
et al., 2008).

Immunosuppressed TLR2−/− mice (neutropenic and treated
with antibiotics) have an increased susceptibility to A. fumiga-
tus following intratracheal infection and increased fungal burden
in the lung in comparison to wild-type immunosuppressed ani-
mals (Balloy et al., 2005). By contrast, cyclophosphamide-treated
TLR2−/−mice are equally susceptible to intranasal Aspergillus
infections than control mice, although untreated mutant mice
have higher lung fungal burden (Bellocchio et al., 2004a). In a
model of chronic fungal asthma, TLR2−/− mice show impaired
airway hyper-responsiveness to A. fumigatus and reduced fungal
clearance at early infection stages. As a result of fungal persis-
tence, but also perhaps due to the deficiency in the Treg subset,
airway hyper-responsiveness increases during the adaptive phase
of this disease model (Buckland et al., 2008). In a model of mouse
corneal inflammation, TLR2-deficiency does not affect immune
cell infiltration or fungal clearance (Leal et al., 2010). Conversely,
Aspergillus-induced corneal inflammation in rats is decreased

Frontiers in Cellular and Infection Microbiology www.frontiersin.org November 2012 | Volume 2 | Article 142 | 5

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Bourgeois and Kuchler Fungal pathogens and toll-like receptors

following application of TLR2 siRNA when compared to non-
specific siRNA and fungal clearance, as well as the outcome of
fungal disease, are improved (Guo et al., 2012).

TLR2−/− mice are also more susceptible to intranasal or
intraperitoneal cryptococcal infections and exhibit higher fun-
gal burden (Yauch et al., 2004; Biondo et al., 2005), as well
as decreased inflammatory cytokines (Biondo et al., 2005). By
contrast, in a model of Cryptococcus intratracheal infections,
TLR2−/− mice show no changes in survival in comparison to
control mice (Nakamura et al., 2006). Thus, in most mouse mod-
els of fungal airway infection, TLR2 appears to contribute to
fungal clearance, perhaps by modulating the induction of inflam-
matory cytokines. However, depending on the airway infection
model, the disease outcome itself may vary from unaffected to
increased susceptibility. Conversely, in systemic or corneal infec-
tion models, T-regs may hinder fungal clearance and worsen the
outcome of fungal disease.

Mice lacking TLR4 are either hyperresistant, hypersensitive
or equally susceptible to fungal challenges than wild-type mice,
depending on the C. albicans or the mouse strains used or the
infection route. The recently described variable recognition of dif-
ferent C. albicans strains by TLR4 may account for some of these
apparent discrepancies (Netea et al., 2010). TLR4 recognition
may be required to elicit host defense only against strains induc-
ing proinflammatory cytokines in a TLR4-dependent fashion.
Interestingly, C. albicans mutants lacking particular glycosylation
patterns such as O-glycosylation, are specifically recognized by
TLR4, and lead to enhanced activation of macrophages (Lewis
et al., 2012). Hence, intraspecies variability in cell wall glycosy-
lation can determine the nature of the interaction between TLR4
and C. albicans strains, and thereby the type and intensity of the
host immune response. A similar mechanism may be operating
in flies, since Toll-signaling in Drosophila can distinguish virulent
from avirulent Candida strains (Glittenberg et al., 2011).

Lack of TLR4 exacerbates the host inflammatory response
to P. jirovecii in mice, though without affecting pathogen clear-
ance (Ding et al., 2005). However, the course of intranasal,
tracheal, intravenous, or intraperitoneal infections with C. neo-
formans remains unaffected in these mutant mice in compari-
son with control mice (Yauch et al., 2004; Biondo et al., 2005;
Nakamura et al., 2006). In a model of pulmonary fungal infec-
tion with C. posadasii, lack of TLR4 improved fungal clearance
(Awasthi, 2010). By contrast, Aspergillus killing is impaired in
TLR4−/− mice in a model of corneal inflammation, although
immune cell infiltration is unaffected (Leal et al., 2010). Whether
intraspecies variabilities in cell wall composition can determine
the nature of interactions between TLR4 and other fungal species
than Candida remains open.

TLR3-defficient mice fail to activate protective memory-
CD8+ T cells following Aspergillus vaccination (Carvalho et al.,
2012b). Mice deficient in TLR7 are more susceptible to systemic
infections by low doses of C. albicans than their WT wild-type
littermates. However, when challenged with higher doses, the
mutant mice are equally susceptible to infection than the control
mice (Biondo et al., 2012).

A lack of TLR9 impairs clearance and decreases survival
to C. neoformans challenge in an intranasal infection model

(Nakamura et al., 2008; Wang et al., 2011). In this model,
TLR9 contributes to the early induction of CCL7 and IFN-
γ, thereby promoting recruitment and activation of DCs and
other effector cells. Similarly, a lack of TLR9 during intratracheal
C. neoformans infections results in impaired clearance during
the adaptive phase, decreased recruitment of lymphocyte and
macrophages, as well as alternative activation of macrophages
(Zhang et al., 2010). By contrast, TLR9−/− mice depleted from
neutrophils/inflammatory monocytes prior to tracheal infec-
tion with A. fumigatus, exhibit delayed mortality in comparison
to depleted control mice (Ramaprakash et al., 2009). Notably,
although TLR9-deficiency in immunosuppressed mice has no
effect on survival to A. fumigatus after intranasal infections, it
improves clearance (Bellocchio et al., 2004a).

Using high dose challenges, TLR9−/− mice show no signif-
icant alterations in survival to clinical isolates of C. albicans
(Van De Veerdonk et al., 2008b; Miyazato et al., 2009; Biondo
et al., 2012), and even enhanced clearance when infected with an
avirulent strain (Bellocchio et al., 2004a). However, a lower fun-
gal dose leads to increased susceptibility to systemic candidiasis
and impaired fungal clearance in TLR9−/− mice (Biondo et al.,
2012), indicating that the fungal load may determine the role
of TLR9 during infection. In summary, TLR9 signaling appears
to mediate clearance of Cryptococcus and low doses of C. albi-
cans. However, TLR9 may be exploited for immune evasion by
C. albicans at higher doses or A. fumigatus. Interestingly, endo-
somal TLR7, TLR8, and TLR9 show inhibitory cooperations or
interactions (Wang et al., 2006). Notably, autoimmune models
have been instrumental for a better understanding of regulatory
interactions between endosomal TLRs, indicating a modulatory
role of TLR9 on TLR7 signaling (Ewald and Barton, 2011). Thus,
the improved clearance observed in TLR9−/− phagocytes may
result from hyperactivated TLR7 signaling in absence of TLR9
(Nickerson et al., 2010).

Thus, contrary to the strong impact of MyD88 deficiency
on fungal clearance and disease susceptibility, data from animal
models with single TLR defects are more difficult to interpret
or often even conflicting. This may result, at least in part, from
the central role of MyD88 as adapter protein not only for most
TLRs but also for cytokine receptors recognizing IL-1, IL-18, and
IL33. IL-1R signaling for instance has an essential function in the
defense against C. albicans but not all fungal species (Bellocchio
et al., 2004a; Leal et al., 2010; Wang et al., 2011). Hence, the
contribution of individual TLRs to protection against infection
appears to greatly vary depending on the fungal strain and/or
species, infection model, infection dose as well as the genetics of
mouse strains.

Furthermore, unchanged susceptibility of some TLR-deficient
mouse strains may be due to a possible dual role of TLRs on
pathogen clearance but also host tolerance (Ayres and Schneider,
2008; Carvalho et al., 2012a; Medzhitov et al., 2012). In this sce-
nario, lack of a given TLR may impair fungicidal mechanisms,
but also improve host tolerance to infection such that the final
outcome of disease appears unaffected by the TLR absence. The
notion that tolerance to infections is as crucial for resolution
of infections as it is for resistance to the pathogen is a rela-
tively recent conceptual idea in mammalian infection biology
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(Schneider and Ayres, 2008; Carvalho et al., 2012a; Medzhitov
et al., 2012). Consequently, experimental approaches that enable
identification and quantification of trade-offs between tolerance
and resistance may help to better characterize and understand the
roles and contributions of TLRs to microbial infections in general.

IN HUMANS
By sharp contrast to mice, humans with MyD88 signaling defects
do not have increased incidence of fungal infections (Von Bernuth
et al., 2008). This may relate to the fact that Candida spp. are com-
mensal colonizers of humans but not of mice (Savage and Dubos,
1967), but also that significant differences exist between human
and mouse TLR signaling (Rehli, 2002). However, some TLR
single nucleotide polymorphisms (SNPs) in TLR genes signifi-
cantly augment the risk of contracting fungal infection in humans
(summarized in Table 1). TLR1 SNPs are associated with higher
susceptibility to candidemia in humans. In agreement, cytokine
release by blood monocytes in response to C. albicans is impaired
in these patients (Plantinga et al., 2012). Invasive aspergillosis is
one of the most important nosocomial infections after HSC trans-
plantations (Cunha et al., 2011; Lamoth et al., 2011). Recipients of
allogeneic HSC transplants carrying the TLR1 Arg80Thr or both
TLR1 Asn248Ser and TLR6 Ser249Pro SNPs are more prone to
Aspergillus infections (Kesh et al., 2005). Increased susceptibility
to aspergillosis is also observed in this “at-risk” group in patients
carrying a TLR3 +95C/A, but not a TLR3 L412F, SNP (Carvalho
et al., 2012b). As a result of the TLR3 +95C/A SNP, activation of
a memory-protective CD8+ T-cell responses against Aspergillus is
impaired (Carvalho et al., 2012b). By contrast, TLR3 L412F SNP
is associated with increased prevalence of cutaneous candidiasis
and impaired TLR3 signaling (Nahum et al., 2011, 2012).

An enhanced risk of chronic pulmonary aspergillosis has been
linked to allele G on TLR4 Asp299Gly (Carvalho et al., 2008). The
prevalence of this SNP in association with TLR4 Thr399Ile was
also higher in a patient cohort suffering from Candida blood-
stream infection in comparison to the control group (Van Der
Graaf et al., 2006). Peripheral blood mononuclear cells (PBMCs)
from patients carrying both polymorphisms exhibited enhanced

IL-10 release upon C. albicans challenge (Van Der Graaf et al.,
2006) but not PBMCs from patients carrying only the TLR4
Asp299Gly (Van Der Graaf et al., 2005). Finally, allele C on TLR9
T-1237C has been linked to a higher susceptibility to allergic
bronchopulmonary aspergillosis (Carvalho et al., 2008). Hence,
a growing body of evidence indicates that TLRs are actively
involved in Candida and Aspergillus recognition in humans and
most likely in recognition of other fungal pathogens as well. The
challenges associated with such studies are the low number of
patients/groups and the relative low risk of infection in people
carrying these SNPs, perhaps due to genetic redundancy in cer-
tain components (Netea et al., 2012) or because of TLR dual roles
in shaping both resistance and tolerance to fungi. The conse-
quences of SNPs may become more obvious in individuals with
a weakened immune system. The continuous identification of
new SNPs and the characterization of their effects at the molecu-
lar and cellular level will help a further uncovering of TLR roles
in the antifungal immune response in humans. The identifica-
tion of functional SNPs may also serve to detect “at-risk” patients
and design efficient prophilaxy when necessary. Interestingly, age-
related alterations in the host response to fungi may also occur,
as recent data indicate that neutrophils from elderly individuals
express lower levels of TLR2 than younger patients (Gasparoto
et al., 2012).

CONCLUSIONS AND PERSPECTIVES
Historically, TLRs were the first described specific PRRs for
fungal pathogens. The past 12 years of research on host
immune response to fungi have delineated the roles of sev-
eral TLRs in mediating cytokine response upon fungal inter-
action. Importantly, mouse survival studies have uncovered
somewhat contradictory (protective or detrimental) or even
non-conclusive (without effect) data on the role of TLRs
in the murine antifungal response. Similarly, humans lack-
ing MyD88, an ubiquitous signaling adaptor for TLRs, fail to
show increased incidences of fungal infections. To date, no
genetic defects in human TLRs have been associated with a
primary immune deficiency conferring increased susceptibility

Table 1 | TLR polymorphisms associated with increased susceptibility to fungal diseases.

Gene SNPs or haplotypes Effect Disease Outcome References

TLR1 R80T, N248S, I602S Reduced cytokine production by
PBMCs in vitro

Invasive aspergillosis, C.
albicans systemic infections

Susceptibility Kesh et al., 2005;
Plantinga et al., 2012

TLR3 +95C/A Failure to activate CD8+ T-cell
response

Invasive aspergillosis Susceptibility Carvalho et al., 2012b

L412F Decreased TLR3 functionality Chronic mucocutaneous
candidiasis

Susceptibility Nahum et al., 2011

TLR4 D299G/T399I Predicted to impair ligand binding Invasive aspergillosis, A.
fumigatus, CCPA, C.
albicans systemic infections

Susceptibility Van Der Graaf et al., 2006;
Bochud et al., 2008;
Carvalho et al., 2008; De
Boer et al., 2011

TLR6 S249P Unknown Invasive aspergillosis Susceptibility Kesh et al., 2005

TLR9 T-1237C Increased NF-κB binding affinity ABPA Susceptibility Carvalho et al., 2008

ABPA, allergic bronchopulmonaryaspergillosis; CCPA, chronic cavitary pulmonary aspergillosis; C. albicans, Candida albicans; A. fumigatus, Aspergillus fumigatus.

Modified from Romani (2011).
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to either mucocutaneous or invasive fungal infections (reviewed
in Lilic, 2012). However, certain TLR SNPs are clearly associ-
ated with increased susceptibility to fungal disease in specific
“at-risk” populations, suggesting that TLRs are involved in fine-
tuning the outcome of various host-fungus interactions (e.g.,
commensalism, symbiosis, latency, infection, and dissemination).
In agreement, at the cellular levels, most TLRs appear not to
be required for the primary step of sensing and engulfment of
fungal microbes by innate immune cells. However, TLRs are
recruited to sites of host cell-microbe recognition and modu-
late the subsequent host-fungi interplay in maturing phagosomes.
Furthermore, certain TLRs mediate specific protective adaptive
responses. Thus, such TLRs may be suitable targets for activating
DCs in efforts to generate fungal vaccines (Iannitti et al., 2012;
Roy and Klein, 2012).

The outcome of a host response is determined by several
phases, including activation of inflammatory defenses aimed
at eliminating pathogens. However, uncontrolled host inflam-
matory responses promote sepsis and can be fatal for the
host (Lionakis et al., 2012; Majer et al., 2012). Thus, the
ability of the host to (1) control the inflammatory response
in a timely manner and (2) to activate tissue repair mech-
anisms to resolve organ damages are critical components of
a proper host immune response (Medzhitov et al., 2012). In
this prospect, new findings suggest that TLRs and other PRRs
may be involved in epithelial resistance to fungi (Weindl et al.,
2011; Iliev et al., 2012). Whether TLR signaling also mod-
ulates the activity of professional phagocytes that promote
the resolution of inflammation and repair processes during

fungal infection (Sica and Mantovani, 2012), remains to be
established.

Finally, exciting recent advances in the molecular mechanisms
driving an immune memory of innate origin (Netea et al., 2011),
open new fields concerning possible roles of TLRs in host-fungus
interactions. Indeed, fungal β-glucans acting through Dectin-1
are clearly able to prime mouse and human monocytes to elicit
a stronger inflammatory response upon restimulation with C.
albicans or other PAMPs, and this by inducing chromatin remod-
eling (Quintin et al., 2012). The effect of β-glucans, reminiscent of
the LPS-mediated priming of some TLR4-induced genes through
chromatin modifications (Foster and Medzhitov, 2009), raises
the question whether other fungal PAMPs, such as nucleic acids,
may also induce monocyte priming in a TLR-dependent fash-
ion. These data also suggest new ways by which PRRs in innate
cells, including TLRs, exploit host chromatin remodeling to shape
the host immune response to fungi at steady-state and during
dynamics of infections (Tierney et al., 2012).
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