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Abstract

Introduction

Stereotactic radiosurgery (SRS) plans created using synthetic computed tomography (CT)
images derived from magnetic resonance imaging (MRI) data may offer the advantage of
inhomogeneity correction by convolution algorithms, as is done for CT-based plans. We sought
to determine and validate the clinical significance and accuracy of synthetic CT images for
inhomogeneity correction in MRI-only stereotactic radiosurgery plans for treatment of brain
tumors.

Methods

In this retrospective study, data from two patients with brain metastases and one with
meningioma who underwent imaging with multiple modalities and received frameless SRS
treatment were analyzed. The SRS plans were generated using a convolution algorithm to
account for brain inhomogeneity using CT and synthetic CT images and compared with the
original clinical TMR10 plans created using MRI images.

Results

Synthetic CT-derived SRS plans are comparable with CT-based plans using convolution
algorithm, and for some targets, based on location, they provided better coverage and a lower
maximum dose.

Conclusions

The results suggest similar dose delivery results for CT and synthetic CT-based treatment plans.
Synthetic CT plans offered a noticeable improvement in target dose coverage and a more
gradual dose fall-off relative to TMR10 MRI-based plans. The major disadvantage is a slightly
increased dose (by 0.37%) to nearby healthy tissue (brainstem) for synthetic CT-based plans
relative to those created using clinical MRI images, which may be a problem for patients
undergoing high-dose treatment.
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Introduction

Magnetic resonance imaging (MRI) is rapidly becoming one of the most important imaging
modalities used in stereotactic radiosurgery (SRS) treatment planning for intracranial tumors.
SRS is used to correct functional abnormalities and address small tumors of the brain. It can
deliver precisely targeted radiation in fewer high-dose treatments than traditional therapy, an
approach which can help preserve healthy tissue [1]. During the planning process, MRI and
computed tomography (CT) images, and recently, cone beam computed tomography (CBCT)
images, are acquired for delineation of tumor and organs at risk (OAR).

The convolution algorithm has recently been introduced as an optimized radiation planning
tool in the Gamma Knife planning system. Its use allows correction for brain tissue
inhomogeneity and provides more accurate dose calculation. CT images can be used with these
algorithms; they provide electron density maps for convolution-based dose calculation and can
be co-registered with MR images as a primary dataset to correct for geometric distortion

[2]. The use of CT images alone for planning is not ideal due to their lack of quality soft tissue
contrast; however, the process of registration with MRI images is associated with some
significant uncertainties. CBCT reference images can be used for geometrical distortion
correction and pre-treatment positioning on a Gamma Knife Icon machine (Leksell Gamma
Knife Icon, Stockholm, Sweden) |2, 3].

Precise target definition is essential for successful SRS treatment. MRI provides superior soft-
tissue contrast, physiological information, and multiplanar imaging capabilities, making it an
ideal modality for target localization. Therefore, in general, the contours from MRI images are
transferred to CT or CBCT images for treatment planning after fusion [4, 5]. However, multi-
modality imaging is time-consuming for patients and can introduce systematic positioning
errors of up to 2 mm during scanning and fusion, both reducing treatment accuracy and
increasing patients’ exposure to imaging radiation [5].

The use of MRI images alone for radiation treatment planning (RTP), and especially SRS
planning, has some limitations, including a lack of electron density information for accurate
dose calculation, geometrical distortion of MRI images which affect the accuracy of target
definition, and finally, patient localization as a result of lack of bony structure verification
during patient setup on the machine [6]. Thus, CT is still the standard imaging modality of
choice for treatment planning, and in SRS planning, if convolution is used for correction of
tissue inhomogeneity rather than a tissue maximum ratio (TMR) algorithm [7-9].

Many groups are currently working on generating synthetic CT images derived from MRI images
to address the first two limitations of RTP based on MRI images alone. This new process will
potentially reduce workload, cost, geometrical mismatch associated with the co-registration
process, and finally, the patient’s radiation exposure [7, 10-12].

There are different approaches to generate synthetic CT images. One of the simplest and most
straightforward is a segmentation-based approach, which involves manual segmentation of
each region-of-interest (ROI) over bony anatomy, soft tissue (fat and water), and air on MR
images, with assignment of a bulk density to each region [13-15]. The accuracy of this
technique has been evaluated for simple 3D conformal, intensity-modulated radiation therapy
(IMRT) and SRS plans and has shown good dosimetric agreement for simple 3D conformal
plans. However, dose deviations of up to 5% have been reported for IMRT head and neck cancer
plans, as well as unacceptable values for SRS brain metastasis plans [16, 17].
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The second approach uses an MRI atlas created from paired, co-registered MR-CT datasets to
generate a conjugate electron density atlas. One common drawback in this technique is errors
arising from mis-registration of atlas data with patient data; this issue is especially common in
patients with surgical implants and/or other anatomical abnormalities, which are very common
in post-operation radiotherapy patients [18, 19].

Finally, the third approach is the classification-based approach used in this study. This
technique aims to classify or cluster different tissue types (i.e., muscle, adipose tissue, and
bone) based on pixel intensities from multiple MR pulse sequences. One common problem with
this technique is that in order to allow absolute comparison between two patients undergoing
the same treatment, the same scanner and parameters (i.e. magnet strength, radiofrequency
(RF) coil setup, and MRI pulse sequence) must be used because of the dependency of voxel
signal intensity on these factors. Nonetheless, promising results using this technique have
been reported for head, neck, and brain tumors [20, 21].

In current practice, during SRS planning using MRI images as a primary dataset, any tissue
heterogeneity within the skull is ignored when using the TMR10 algorithm, even though the
convolution algorithm is available for such correction. One of the drawbacks of using this
algorithm is its speed and potential delay in patient treatment time. While the change in dose
distribution when comparing the convolution and TMR10 algorithms is known to an extent, the
specific changes that may lead to clinically significant differences are not well understood [22,
23].

Therefore, in this paper, we propose a method for MRI-only SRS planning using synthetic CT
images using a classification-based approach, derived directly from MRI images. We
investigated the accuracy and dosimetric differences between synthetic CT and CT-based plans
created using a convolution-based algorithm, chosen to account for brain tissue
inhomogeneity. The SRS treatment plans created in this way were compared with clinical MRI-
based plans created using the TMR10 algorithm.

Materials And Methods

The study was approved by the University of Mississippi Medical Center institutional review
board. In this retrospective study, we analyzed data from four patients (two with brain
metastases and one with meningioma), who had undergone MRI, CT and CBCT scans and
received frameless SRS treatment. As part of our clinical workflow for each patient we planned
on MRI images co-registered with CT, and in some cases CBCT, for geometric distortion
correction. Each plan may include multiple target brain metastases, and some patients had
multiple plans with different isocenters. We used all plans in this analysis: eight plans from
four patients, for a total of 11 brain metastasis, brainstem, and meningioma target tumors. The
specific lesion sites varied from patient to patient.

Synthetic CT images were generated from MR images using syngo.via RT Image Suite (Siemens
Healthineers, Erlangen, Germany) using a fuzzy c-means method. Note that the patient setup
in MRI was different from that for CT and treatment. Experienced physicians rigidly registered
the CT and MRI image datasets and defined the target volume on MRI images, and a medical
physicist created SRS treatment plans using the TMR10 algorithm on MRI images. SRS doses
were prescribed in the range of 13 to 20 Gray (Gy) to 50% to 75% isodose lines according to the
lesion sizes. SRS plans were prepared using Leksell GammaPlan Elekta. In the next step, the
volumes were transferred to synthetic CT and CT images. This information was used for
planning on both synthetic CT and CT datasets using the convolution algorithm, with the same
dose prescription as on primary MRI images. Dose maps were calculated on the synthetic CT
and on the original CT, using the same plan parameters.
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CT images were acquired using a Siemens SOMATOM Definition AS CT scanner (Siemens
Healthineers, Erlangen, Germany) at 120 kVp and 220 mA with the patient in treatment
position; each 0.6-mm-thick slice had a resolution of 512x512 pixels, with pixel spacing of
0.586 mm.

MR images were acquired using a Siemens Aera 1.5T diagnostic magnet (Siemens

Healthineers, Erlangen, Germany). High-resolution magnitude and phase images were acquired
for field mapping after automated shimming over the entire head volume, distortion correction
filter on for system inherited gradient non-linearity correction and (Time of Echo 1 (TE1) /Time
of Echo 2 (TE2)/Time of Repetition (TR) = 2.46/7.38/12 ms, 550 Hz/pixels, 1 mm? isotropic
sagittal 3D acquisition, standard 20-channel head coil).

Phase images were subtracted and unwrapped to produce field maps (in-house software, IDL
8.2, Boulder, CO, USA and Mathworks, Natick, MA, USA). We derived the final displacement
map to correct for residual geometrical distortion using a machine-related distortion map
created using a QUASAR MRID3P phantom (Modus Medical Devices Inc., London, Ontario,
Canada) (Figure ) and a By-derived map. The final displacement map was applied to all MRI

images after rescaling using the open-source Analysis of Functional Neuroimaging (AFNT)
software package for brain imaging.

FIGURE 1: The QUASAR MRID3D phantom used to create
machine-specific distortion maps

All patients were scanned, post-contrast, with a three-dimensional, T1-weighted, gradient-

echo sequence (T1-MPRAGE), 1 mm?> isotropic axial 3D acquisition, bandwidth = 160 Hz/pixel,
TR= 2200 ms, TE = 3.74 ms, T1 Vibe Dixon, voxel size: 1.0 x 1.3 X 1.3 mm (to generate images of
fat and water), TR = 4.10 ms, TE1/TE2 = 1.23 ms/2.46 ms, Flip Angel (FA) = 9 degrees, bandwidth
= 1090 Hz/pixel. T2 SPACE, voxel size 1 mm isotropic (anatomical scan appropriate for
contouring), TR = 3200 ms, TE = 410 ms, bandwidth = 751 Hz/pixel PETRA, isotropic 1 mm, TR
=3.32 ms, TE = 0.07 ms, FA = 6 degree, sagittal, bandwidth = 403 Hz/pixel (identification of air
for the purpose of defining an air mask to exclude such voxels from calcification), voxel size 1
mm isotropic, vascular imaging (T2-weighted gradient echo, appropriate to create a threshold-
based intensity mask to separate flowing blood), voxel size 3 mm, matrix: 256 x 230, TR = 8.6
ms, TE = 4 ms, FA = 20 degree, bandwidth = 320 Hz/pixel.

To study the accuracy and differences of synthetic CT plans created using the convolution
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algorithm, we initially visually checked the similarity of dose distribution calculated from both
CT and synthetic CT images and compared it qualitatively with dose distribution for TMR10-
based MRI plans. Then, by quantitively examining clinically relevant metrics, such as D100 (Gy),
D95 (Gy), maximum, minimum, and mean dose were extracted for comparison of dose to target
(brain metastasis or meningioma tumor) and OAR (brainstem).

Results

We demonstrate the 2D dose distribution for one of the brain metastases on three planes as an
example (Figure 2). Dose distributions appeared similar for both CT and synthetic CT plans and
were more conformal for both compared with TMR10-derived plans. Overall, the quantitative
data (Table I) show a 1.84% decrease in maximum point dose inside the targets for synthetic
CT and a 1.77% decrease in CT plans compared with TMR10-MRI. The average D100 and D95
for synthetic CT showed a 0.11% increase and 0.19% decrease compared with a 0.67% increase
and 0.71% increase in CT-based compared to MRI plans. Overall, synthetic CT plans provided
better coverage and a lower maximum dose.
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FIGURE 2: Representation of SRS plans for single metastasis

2019 Fatemi et al. Cureus 11(4): e4404. DOI 10.7759/cureus.4404 6 of 11


https://assets.cureus.com/uploads/figure/file/61740/lightbox_439430a04d9211e9b14d23aa625ac257-image.png

Cureus

Patient 1

Lt Temporal
Rt Frontal

Brain stem

Lt Temporal
Rt Frontal

Brain stem

Lt Temporal
Rt Frontal
Brain stem

Patient 2

Lt Temporal
Rt Frontal 1
Rt Partial 1
Rt Partial 2
Rt Frontal 2

Rt Frontal 3

brain tumor (orange color) at multiple planes (axial, sagittal,
and coronal) in MRI images (top) using TMR (10) algorithm and
synthetic CT (middle) and CT (bottom) using convolution
algorithm. The 50% isodose line (cyan), 20% isodose line
(purple) and 12% isodose line (green) has been demonstrated
for all images and plans.

Gy = Gray; TMR = Tissue Max Ratio; CT = Computed Tomography; MRI = Magnetic Resonance

Imaging ; SRS = Stereotactic Radiosurgury

TMR10

Max dose (Gy)
30.88

30.9

5

CT Convolution
Max dose (Gy)
29.96

30.83

4.3

Synthetic CT Convolution

Max dose (Gy)
30.53

30.71

5.37

MRI TMR10
Max dose (Gy)
21.2

225

26.6

21.3

21.2

224

Min dose (Gy)
15.46
14.61

0.56

Min dose (Gy)
13.13
30.83

0.57

Min dose (Gy)
11.77
18.19

0.55

Min dose (Gy)
16.1
17.2
17.5
18.8
18.1

18.5
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24.25

1.41

Mean dose (Gy)
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19.08

1.42

Mean dose (Gy)
21.74
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Mean dose (Gy)
19.2
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20.5

20.5
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D100 (Gy)
15.43

14.61

D100 (Gy)
13.1
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11.73

18.17

D100 (Gy)
16.7

18

18

18

18.9

18

D95 (Gy)
17.1

18.7

D95 (Gy)
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20.6

D95 (Gy)
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D95 (Gy)
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19.7
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Rt Post-Frontal
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Lt Temporal
Rt Frontal 1
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Rt Frontal 2

Rt Frontal 3

Lt Frontal 1
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Lt Frontal 2

Lt Temporal

Rt Frontal 1

Rt Partial 1
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Rt Frontal 2

Rt Frontal 3

Lt Frontal 1

Rt Post-Frontal
Lt Frontal 2

Patient 3

Meningioma Rt

Meningioma Rt

21.9

35

21.2

CT Convolution
Max dose (Gy)
21.2

225

26.4

21.1

21.1

225

21.9

34.7

21.1

Synthetic CT Convolution

Max dose (Gy)
21.2

225

26.4

21.1

21.1

225

21.9

34.7

21.1

MRI TMR10
Max dose (Gy)
62.3

CT Convolution
Max dose (Gy)

42.8

18.8
14.9

18.1

Min dose (Gy)
16.1

17.5

17.8

19

18.8

19

18.9

14.4

18.4

Min dose (Gy)
16.2

174

17.9

18.9

18.9

19

18.9

14.2

18.4

Min dose (Gy)

24

Min dose (Gy)

141
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Synthetic CT Convolution
Max dose (Gy) Min dose (Gy) Mean dose (Gy) D100 (Gy) D95 (Gy)
Meningioma Rt 62.5 24 42 26.2 321

TABLE 1: Dosimetric comparison of synthetic CT- and CT-based plans using
convolution and regular clinical MRI with the TMR10 algorithm

Lt = Left; Rt = Right; D100 = Dose covering 100% of target volume; D95 = Dose covering 95% of tumor volume; Min = Minimum; Max
= Maximum; TMR = Tissue Maximum Ratio; MRI = Magnetic Resonance Imaging

Discussion

For MRI-only radiotherapy, especially SRS planning, the use of synthetic CT images could
potentially involve the application of automatic segmentation, the use of functional MR
images, and even of computational texture analysis techniques such as radiomics. Very soon,
larger MRI vendors, e.g. GE and Siemens, will offer FDA-approved MRI-only treatment planning
platforms [24]. Generation of synthetic CT images and patient-specific distortion correction
will be more accessible and streamlined, compatible with busy clinical workflow.

Thus, it is necessary to validate the accuracy of synthetic CT images and to ensure these
images’ geometric and dosimetric accuracy is comparable with that of current CT images. Of
necessity, this will involve the use of these images for RTP at different sites and both qualitative
and quantitative evaluation of the accuracy of dose distribution. This procedure will be more
accessible as more MRI-Linac machines become available. In this project, we looked at the
application of synthetic CT images during SRS planning, a procedure in which MRI images are
frequently used as a primary planning dataset.

Current SRS planning procedures involve the use of MR images without heterogeneity
correction. Dose calculation on standard CT scans requires separate registration to MR for
delineation of the target and normal tissue [1]. Synthetic CT images generated directly from MR
have the potential to take advantage of the improved delineation clarity of MR while
maintaining heterogeneity-corrected dose calculation within the treatment planning system.
The use of synthetic CT has immediate applications for SRS planning, as well as future
implications for developing real-time MR image guidance and plan adaptation for external
beam radiotherapy. The incorporation of a convolution algorithm in newer SRS planning
systems will improve dose calculation even in the face of tissue inhomogeneity, and especially
in regions with air-tissue interfaces and sharp tissue changes.

Conclusions

The results of this study show similarity between CT and synthetic CT-based SRS plans.
Synthetic CT offered a noticeable improvement in target dose coverage and a more gradual
dose fall off. The disadvantage is an increased dose (by 0.37%) to brainstem, an OAR, relative to
plans created using clinical MRI images, which could be significant at higher doses. Future
directions for this work will involve 1) further modification of the synthetic CT algorithm to
improve its performance; 2) generation of a custom electron density curve to integrate
synthetic CT images into the treatment planning system; and 3) study of the use of synthetic
CT as the primary calculation image set for different types of treatment plan.
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