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ABSTRACT
Macroalgal canopies are productive and diverse habitats that export material to other
marine ecosystems. Macroalgal canopy cover and composition are considered an
Essential Ocean Variable by the research community. Although several techniques
exist to both directly and remotely measure algal canopies, frequent measures of
biomass are challenging. Presented here is a technique of using the relative attenuation
of light inside and outside canopies to derive a proxy for algal biomass. If canopy
attenuation coefficients are known, the proxy can be converted to an area of algal
thallus per seabed area (thallus area index). An advantage of the approach is that light
loggers are widely available and relatively inexpensive. Deployment for a year in the
intertidal demonstrated that the method has the sensitivity to resolve summertime
peaks in macroalgal biomass, despite the inherent variation in light measurements.
Relative attenuation measurements can complement existing monitoring, providing
point proxies for biomass and adding seasonal information to surveys that sample
shores at less frequent intervals.

Subjects Ecology, Marine Biology, Plant Science
Keywords Sensor, Ratio, Logger, Seasonal, Point measurement, Fucus, Kelp

INTRODUCTION
Macroalgal canopies support adjacent coastal ecosystems by exporting detritus (Bustamante
& Branch, 1996; Vetter & Dayton, 1998; Renaud et al., 2015; Both et al., 2020) and supply
pools of carbon to sediments (Queirós et al., 2019). These ecosystem functions are linked
to the productivity and biomass of algal canopies (Binzer & Sand-Jensen, 2002), with loss
of canopy biomass disrupting coastal food webs (Byrnes et al., 2011; Duarte et al., 2015).
Canopy biomass is affected by a range of factors including grazing activity, harvests,
eutrophication and climate change (Davies, Johnson & Maggs, 2007; Strain et al., 2014;
Carnell & Keough, 2019; Filbee-Dexter et al., 2020; Gizzi et al., 2021; Bularz et al., 2022).
The sensitivity of macroalgal canopies to a number of stressors is reflected in the selection
of macroalgal canopy cover and composition as an essential ocean variable (EOV) in
the Global Ocean Observing System (GOOS, https://www.goosocean.org). Essential ocean
variables are meant to bring clarity and coherence to monitoring programmes, allowing
assessments of the state of marine environments and ecosystems. Monitoring macroalgal
canopy biomass also feeds into regional and national programmes, such as evaluations
of environmental status under the EU Marine Strategy Framework (OSPAR Commission,
2012).
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Various methods exist for monitoring macroalgal canopies, not all of which provide an
estimate of biomass. Duffy et al. (2019) reviewed the patchy global coverage of macroalgal
observation programmes, with 15 of the 59 reviewed programmes reported as measuring
biomass. Biomass is not necessarily equivalent to widely reported measures like percentage
cover. Where a quadrat is placed on a canopy, the maximum value of cover is 100%.
A particular challenge for intertidal canopies is that it is difficult for visual methods to
discriminate different amounts of biomass that might all be recorded as 100% cover. One
or several layers of algae could both be recorded as 100% cover despite wide differences
in biomass. Burrows, Harvey & Robb (2008) showed that abundance categories based on
visual estimates of percent cover have some predictive value in estimating macroalgal
biomass (4% <r2 <34%), but these relationships were not tested above 60% cover: where
potential layering of fronds becomes more important. Similarly, Guichard, Bourget &
Agnard (2000) were able to estimate algal biomass using camera-based measurements of
normalized difference vegetation index (NDVI), but the calibration range was less than
10% of the maximum algal biomass on the shore. When the canopy is floating, remotely
sensed biomass estimates may be easier (Cavanaugh et al., 2010; Hu, Hu & Ming-Xia,
2017), with satellite data also showing promise for monitoring thinner, more translucent
algae like Ulva spp. in estuaries (Karki et al., 2021). However, visual estimates of biomass
from multi-layered canopies of leathery algae like fucoids and kelps on rocky substrates
remain challenging.

The most direct methods to estimate macroalgal biomass involve some sort of harvest,
most commonly by removing and weighing all fronds within a sample quadrat. This is a
destructive process that may impact the monitored habitat. Canopy removal experiments
have demonstrated a variety of recovery times, including permanent conversion to a
different dominant cover, influenced by factors like removal extent, recruitment variability
and location-specific processes (Jenkins, Norton & Hawkins, 2004; Methratta & Petraitis,
2008; Menge et al., 2017). Johnson (2020) estimated that between 5 and 36 0.25 m2

quadrats (depending on fucoid species) would be required to generate a site biomass
estimate with upper confidence intervals less than twice the mean. The potential impact
of harvests for biomass estimation suggests that monitoring using this approach should
be carefully evaluated. A technique to reduce the requirement for removal of canopy algae
when estimating biomass is to sacrifice a small number of individual fronds and then
estimate biomass by multiplication of frond size and estimated density (e.g., Attard et al.,
2019; Smale et al., 2020). This precision of this technique remains to be established as the
biomass estimates contain multiplied sampling error from density and biomass estimates,
along with any decisions about what the sampled individual fronds represent (e.g., estimates
based on canopy forming individuals only).

Monitoring programmes can be difficult to sustain (Satterthwaite et al., 2021), resulting
in trade-offs over features like spatial and temporal coverage. Over 80% of the macroalgal
monitoring programmes collated by Duffy et al. (2019) report annual or greater sampling
intervals. Monitoring of seasonal variation in canopy biomass is therefore rare. This lack of
seasonal information could be an issue as annual monitoring and climate means may not
reflect the mechanisms linking environmental variables to ecological responses, reducing
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the understanding and prediction of ecosystems affected by climate change (Helmuth et
al., 2014; Bates et al., 2018).

Although quadrat and transect surveys remain important for ground truthing (and
dominate the macroalgal monitoring programmes in Duffy et al. (2019), methods for
monitoring macroalgae are continually developing, including technologies like satellite
and drone sensing (Schroeder et al., 2019; Rossiter et al., 2020; Tait, Orchard & Schiel, 2021),
acoustics (Schimel, Brown & Ierodiaconou, 2020), LIDAR (Webster et al., 2020) and video
analysis (Katz et al., 2021). The strengths, weaknesses and challenges of various approaches
reflect various features of the available technology, see comments by Miloslavich, Johnson
& Benedetti-Cecchi (2018) and Bell et al. (2020). In particular, the remote sensing methods
tend to have limitations in expense and/or expertise required, alongside some specific
issues like working around tidal height variation and use in water of high turbidity for
some approaches (Miloslavich, Johnson & Benedetti-Cecchi, 2018).

There is a gap for a canopy biomass monitoring method which is simple to apply,
minimizes destructive harvests and can account for variations in water turbidity. By
considering the light that passes through the canopy, it is possible to go beyond the
limits of two-dimensional visual estimates of percentage cover. Furthermore, the use of
dataloggers allows an increased temporal resolution, demonstrating seasonal changes in
biomass and potentially providing insights about causes of variation in canopy biomass.
The method presented here uses low-cost light loggers inside and outside canopy algae to
estimate the attenuation associated with macroalgae. The extent of attenuation provides a
proxy for biomass that can be calibrated using a harvest or, ideally, converted to biomass
once reference canopy attenuation coefficients are defined. A potential drawback of using
relative attenuation is that underwater light is highly variable, and this ‘noise’ may obscure
any signal associated with changes in macroalgal biomass. This manuscript evaluates
whether datalogging can be a suitable source for estimates of macroalgal biomass.

MATERIALS & METHODS
Background to use of relative attenuation
The derivation of a proxy for algal biomass is based on the light intercepted by the canopy
before the seabed is reached. A Beer-Lambert law approximation for the light on the seabed
below a canopy is:

Ic = Is.e(−kw z−kaTAI ) (1)

where Ic is the light at the seabed, Is is the surface light, kw is the attenuation coefficient
of sea water (m−1), z is the depth of water above the seabed (m), and ka (TAI

−1) is the
attenuation from the area of algal canopy above the seabed (TAI is the thallus area index:
m2 algal frond m−2 seabed). The units for light depend on the sensor used. Low-cost
sensors often measure intensity as lux.

Although TAI is based on a ratio of areas, it is considered in the current study to be a
measure of biomass per unit area (as total thallus area is considered to be linearly related
to biomass, (Johnson et al., 1998; Mauffrey, Cappelatti & Griffin, 2020)). This allows TAI
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to be distinguished from terms like ‘cover’ or ‘areal coverage’, which, without further
qualification, are ambiguous about how the biomasses of multilayered canopies are
described.

For seabed not overshadowed by algal canopy, the light falling on the seabed (Io) can be
approximated by:

Io= Is.e(−kw z). (2)

The effect of the canopy on light interception can be estimated by comparing Ic and
Io. A larger difference between the two implies more canopy attenuation, reflecting higher
canopy biomass. If two light sensors are at the same depth and in the same body of water,
the kwz terms will be equivalent in the two equations. Taking natural logarithms of Eqs.
(1) and (2) and subtracting (2) from (1) removes the Is, z and kw terms, resulting in:

ln
(
I0
Ic

)
= kaTAI . (3)

The derivation of Eq. (3) therefore provides an index of algal biomass based on the ratio of
canopy and non-canopy sensors. If ka is known, then the ratio can be interpreted in terms
of the thallus area. If ka is not known, then the quantity ln (Io/ Ic) can be considered as an
index of biomass (‘TAI index’).

The underwater light climate is known for variability. The attenuation coefficient of
water can change (for example with plankton concentration), along with transient peaks of
light associated with wave lensing (e.g., Schubert, Sagert & Forster , 2001). Under canopies,
the degree of light interception will vary with frond overlap, including sun flecks as algae
are moved by waves (Wing & Patterson, 1993). Light at the seafloor will vary with the depth
of the water column. Furthermore, attenuation will be affected by the balance between
direct and diffuse light, and changes in attenuation associated with different wavelengths.

Some of the effects of light climate variability on Io/ Ic will be minimized by placing
sensors at the same depth in relative proximity. Under these constraints, sensors will
record under the same water depth regardless of tidal or other depth fluctuations and local
variations in attenuation coefficient are likely to be minor. Other sources of variability are
likely to be amplified, particularly those associated with a moving canopy. The benefit of
using data logging sensors in the field is that a high recording rate may allow the signal of
algal biomass to be identified amongst the noise. This manuscript presents details of the
signal from one year of light measurements recorded by sensors in the intertidal.

Field observations
Irradiance was logged from 8 HOBO MX2202 temperature/light sensors deployed in the
low to mid intertidal at Furbo in Galway (53.246◦N, 9.221◦W). The tidal range in Galway
Bay is approximately 1.2 m on neaps and 5 m on springs and the site at Furbo is moderately
exposed to waves. The HOBO loggers were fixed horizontally to the shore using marine
putty. The average depth of loggers was estimated to be 1.8 m above chart datum, resulting
in them being underwater approximately 80% of the time, with an average of 1.4 m of water
depth, maximum 4 m. This location contains a patchy canopy of Fucus vesiculosus and
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Figure 1 The lower shore at Furbo where sensors were placed. Patches of dense algal cover occur adja-
cent to areas of open, barnacle-covered, rock.

Full-size DOI: 10.7717/peerj.14368/fig-1

Fucus serratus (Fig. 1). Half the loggers were placed in areas of 100% canopy cover with the
rest placed in open areas without large fucoids. Loggers were interspersed, with two separate
canopy patches (>25m2) and two similar sized non-canopy areas used, with approximately
10 m between each patch. This arrangement nested two loggers separated by 2–3 m in each
patch or open area. Average within patch correlations between logger measurements were
similar to between patch correlations, so the hierarchical spatial structure was not explored
further in subsequent analyses.

Average late summer wet weights of algae on this shore were 2,570 g m−2 and 781 g
m−2 for F. vesiculosus and F. serratus respectively (Johnson, 2020). Canopy-forming fronds
are typically between 0.5 and 1 m in length. Using a water content of 78.4% (Stagnol et al.,
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2016), dry weight to area estimates from Johnson et al. (1998), and only counting quadrats
with a full canopy (TAI >1), the wet weights in Johnson (2000) suggest mean TAI of 4.55
(F. vesiculosus) and 3.07 (F. serratus) for the shore at Furbo.

Sensors recorded light (lux) and temperature (◦C) at 30-minute intervals from March
2019 to February 2020. The response of the sensor tracks the standard sensitivity curve for
human perception of light, with a Gaussian-type curve peaking at 550 nm and falling to no
response for wavelengths outside of the 400 to 700 nm range. This peaked response contrasts
with the idealized uniform response of PAR sensors in the same range. Engineering an ideal
quantum yield between 400 and 700 nm partially explains the greater cost of PAR sensors.
The HOBO sensors are factory calibrated to account for the plastic enclosure. The response
to light at an angle is reported not to match the ideal cosine response: underestimating light
landing on the sensor when the incident angle is between 30 and 80◦. Potential sensor drift
was investigated by examining the residual variance from a regression of average irradiance
sensed in exposed loggers against daily global radiation from the Met Eireann station at
Athenry (29 km from field location, http://www.met.ie).

The site was visited at approximately quarterly intervals and any organisms fouling the
loggers were removed. In general, the loggers under canopies were clean, whereas exposed
loggers were occasionally fouled by settling barnacles. Where the fouling occurred, it was
more often around the rim of the logger than over the area where the sensor is located. The
exposed conditions outside the canopy seemed to be more challenging for the loggers, with
some failures during the year. The estimates of light without a canopy (Io) were therefore
based on the mean of measurements from open areas. Each logger under a canopy was
treated as an individual timeseries of Ic values. During the night, light measurements of
zero cause the ratio ln(Io/ Ic) to be undefined, so TAI index values were treated as missing
values in these cases. Logger data are available at https://doi.org/10.5281/zenodo.6797949.

Many algal canopies, such as those formed by Fucus spp., are relatively persistent.
Growth is likely to be limited by processes like shading (Middelboe, Sand-Jensen & Binzer,
2006) with losses from senescence and seasonal storms not generally causing rapid loss of
the entire canopy. Even species like Sargassum muticum, which have more pronounced
senescence, have relatively gradual changes in biomass from month to month (e.g., Baer
& Stengel, 2010). The signal of canopy change was therefore estimated using a LOESS
smoother. Using a LOESS smoother avoids the need to choose a date range to bin samples
into. The span of the smoother sets the size of the moving window used for the smoother,
with values between 0 (no smoothing) and 1 (all points). A span of 0.4 was chosen
empirically as this proportion of the dataset gave curves that matched the assumed gradual
build up and decline of biomass.

RESULTS
Intertidal light intensity and temperature had seasonal cycles, along with considerable
variability at shorter time scales (Fig. 2). Light peaked at an earlier date (day 164, June 13)
than temperature (day 209, 28 July). Comparison of the smoothed values in successive
winters suggests that 2020 had lower light intensity and cooler temperatures than 2019 at
the start of the March.
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Figure 2 Average logged light (A) and temperature (B) from the sensors placed outside areas of algal
canopy at Furbo. Lines are fitted LOESS smoothers.

Full-size DOI: 10.7717/peerj.14368/fig-2

The higher frequency variation of light partly reflects the interaction of the times of tides
with the day-night cycle (Fig. 3). Light both outside and under the canopy peaks in the
middle of the day. Tidal fluctuations in water height also affect the light measured, with
attenuation by the water column potentially causing flatter daytime peaks in light or even
reducing light on the shore (e.g., seen in exposed sensor light records between day 160 and
day 164, Fig. 3)

Despite the differences in light measurement methods between the exposed HOBO
sensors and meteorological data, there was a good relationship between the datasets
(Fig. 4A). The lack of a significant slope in the residuals against date (r2 0.2%) suggests that
the performance of the loggers did not drift over time (Fig. 4B).

Water depth did not affect the calculated TAI index from different canopy sensors. The
range of values at water depths of 0 m (loggers exposed by tide and above water level)
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Figure 3 Variability in light recorded from exposed sensors and sensors under the canopy, with tidal
fluctuations in water depth above the sensors. A 7-day period is shown, with midpoints indicating noon.
The horizontal axis is centered on day 163.5: 12:00 on June 12 2019.

Full-size DOI: 10.7717/peerj.14368/fig-3

spanned the ranges of values seen when the loggers were submerged (Fig. 5A). When the
time was expressed as a fraction of daylength, TAI index values showed a clear fall at times
close to dawn and dusk (Fig. 5B). Subsequent TAI index measurements were therefore
filtered to exclude records from the first tenth or last tenth of daylight.

The TAI index calculated from light measurements underneath and outside of canopies
showed seasonal fluctuations (Fig. 6). Each under canopy sensor therefore described the
expected seasonal variation in macroalgal biomass. Peak index values (TAI mean 6.0 SE
0.32) in the smoothed trend occurred around July 13th (day 194.5 SE 14.78). The lowest
smoothed canopy index values were measured in February (mean day 51.0, February 20,
SE 2.92) and averaged TAI 3.00 (SE 0.24). Consistent with the 2019 to 2020 light and
temperature comparisons, all the smoothed trends in TAI index suggested higher and/or
increasing biomass in March 2019, compared to lower and declining biomass at the end of
February 2020.

DISCUSSION
The seasonal changes in algal biomass observed using loggers match trends estimated for
fucoids using harvests (e.g., higher F. vesiculosus biomass in summer; Attard et al., 2019).
These patterns are driven by higher growth rates in late spring/early summer (e.g., Stengel
& Dring, 1997) and periods of the highest net canopy production (Bordeyne et al., 2020).
The timing and size of the seasonal peak in biomass are potentially driven by interactions
between light availability, temperature, grazers, competition with epiphytes, reproductive
allocation, frond erosion/breakage, and the dynamics of internal nutrient and carbon
pools. Graiff et al. (2020) parameterize a model that includes most of these processes for a
set of mesocosms: reproducing the observed seasonal growth variation.

A key issue for translating the TAI index into a biomass value are appropriate values
for ka, the attenuation by the algal canopy. Attenuation is likely to vary with species
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Figure 4 Light sensor intercomparison. (A) Comparison between the average light intensity (lux) mea-
surement for exposed sensors each day and the daily global radiation recorded at the Athenry meteorolog-
ical station. The fitted line is a linear regression r2 88%. (B) Residuals from the regression in plot 4a as a
function of date.

Full-size DOI: 10.7717/peerj.14368/fig-4

and wavelengths measured. For optically dark fronds like fucoids, there may be less
wavelength dependence (Dring, 1992). However, there may be some seasonal variation in
pigment content and morphology that could potentially affect ka. Seasonal variation in
the chlorophyll content of fucoids generally results in higher values during winter (e.g.,
Ruokolahti & Rönnberg, 1988; Stengel & Dring, 1998). Thismight be expected to increase ka,
causing an overestimation of thallus area index in winter if a constant value of attenuation
is used.

In general, there are few measurements of canopy attenuation. (Johnson et al., 1998)
suggested amid-range value of 0.7 (TAI

−1). Applying a value of 0.7 as the canopy attenuation
coefficient suggests seasonal variation in TAI values between 4.3 and 8.5: these values are
broadly consistent withmean values for the canopy at Furbo based on wet weights (Johnson,
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Figure 5 Environmental effects on the TAI index. (A) All measurements of TAI index (ln(I o/I c )) as a
function of estimated water depth above the sensor. Values at a depth of 0 m are from sensors exposed to
the air. (B) TAI index values at different times during daylight. The daylight duration was estimated for
each day, with dawn scaled to 0 and dusk to 1.

Full-size DOI: 10.7717/peerj.14368/fig-5

2020). Clearly there is a significant gap in knowledge of macroalgal values of ka, which
requires a collaborative effort to define the scale of variability and important predictor
variables for the extinction coefficient.

The loggers appeared to provide consistent measurements of light over the period
of deployment, with measurements correlating with daily light measurements from a
meteorological station. While water depth over the loggers did not have a clear impact on
the TAI index, there was a crepuscular depression in index values. The deficiencies in cosine
response of the sensors do not immediately explain this. Exposed sensors and those under
the canopy might be expected to receive direct light at similar angles, so would both be
subject to the underestimation effect. Possibly the scattering of light by the canopy altered
the proportion of diffuse light (less affected by cosine issues) compared to exposed sensors.
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Figure 6 Values of the TAI index (ln(I o/I c)) calculated for 4 different under-canopy sensors (A–D).
Solid lines are LOESS smoothers. Dotted lines reference the smoother value at the start of March 2019.

Full-size DOI: 10.7717/peerj.14368/fig-6

Alternatively, a decline in relative sensitivity of the sensors during the low light of dawn
and dusk may reduce the ability to discriminate between shaded and exposed conditions,
resulting in a decline in the TAI index.

If an appropriate canopy attenuation coefficient (ka) can be defined, relative light
attenuation seems to offer a practical, low cost means of monitoring algal biomass. In
the absence of a suitable value for ka, the method still supplies a proxy measurement
of canopy biomass. Seasonal variations in biomass may indicate productivity, with the
possibility to estimate interannual trends if sensors are maintained for longer periods. For
example, the differences in canopy index values between March 2019 and February 2020
may indicate interannual variation and the pattern is consistent with the likely influence
on photosynthesis of colder and darker weather in early 2020 compared to 2019 (Fig. 2).

More field measurements and comparisons will be needed to define the degree of inter
species, intra species, and temporal variation in ka. Different sensor types (e.g., PAR)
will work as the method is based on a ratio rather than any particular units, however
values of ka may vary with sensor type. The sensitivity of the method seems likely to
decline at very high and low values of canopy biomass, for example if light is mostly not
impeded by a canopy at low biomass. Sensors will also need a cleaning regime appropriate
to local conditions if artefacts associated with fouling are to be avoided. The barnacle
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fouling mentioned for Furbo was by settling cyprids in spring and early summer. If this
affected the estimated biomass, the anticipated effect would be lower biomass: as I 0 was
disproportionally reduced. No suppression of biomass or light recorded was apparent in
spring and early summer (Figs. 4 and 6).

Relative light attenuation provides point estimates of canopy biomass (as TAI or
TAI index). Further detailed modelling and observation may be needed to establish an
appropriate spatial unit for the biomass estimate, assumed here to be 1 m2. There may
be underestimates of canopy biomass for light sensors on the edge of a patch, such that a
proportion of the incident light reaches the sensor without canopy shading. Conversely,
sensors in deeper water with larger algal species may be shaded by fronds several metres
away.

CONCLUSIONS
Relative light attenuation was used to derive seasonal cycles of biomass consistent with the
expected seasonal fluctuations of fucoid algae. Despite the noisy signal, the approach offers
a low cost means of monitoring algal biomass without the disadvantages of destructive
harvests.

The light attenuation method can complement existing programmes for a low cost.
Different types of waterproof light sensors are suitable, with additional possibilities for
scheduling monitoring or sensor maintenance if data are sent continuously by modem
or satellite. The major benefits of the method are that a direct proxy for biomass is non-
destructively measured at time intervals sufficient to follow seasonal processes. Longer time
series can be established at relatively low cost, given the constraints of needing to replace
or clean sensors periodically. Light loggers are widely available and established technology,
it is possible that many existing datasets could be reanalysed to provide biomass proxies in
cases where loggers have been placed under canopies.

As loggers provide point estimates of canopy biomass, the relative light attenuation
method would be most informative when used alongside methods which complement this.
For example, other techniques, like remote sensing, are more suitable for estimating the
spatial extent of canopy cover. Destructive surveys provide unambiguous canopy biomass
estimates but using relative light attenuation methods can reduce the frequency of harvests
and provide information on canopy biomass between harvests. While remote sensing can
provide estimates of biomass, different images may need seasonal corrections and there
may be a need for image-by-image adjustments. Relative light attenuation can provide an
independent means to constrain or cross check remote sensing methods.
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