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Abstract
A label-free electrochemical strategy is proposed combining equivalent substitution effect with AuNPs-assisted signal amplifi-
cation. According to the differences of S1 protein in various infectious bronchitis virus (IBV) strains, a target DNA sequence that
can specifically recognize H120 RNA forming a DNA-RNA hybridized double-strand structure has been designed. Then, the
residual single-stranded target DNA is hydrolyzed by S1 nuclease. Therefore, the content of target DNA becomes equal to the
content of virus RNA. After equivalent coronavirus, the target DNA is separated from DNA-RNA hybridized double strand by
heating, which can partly hybridize with probe 2 modified on the electrode surface and probe 1 on AuNPs’ surface. Thus, AuNPs
are pulled to the surface of the electrode and the abundant DNA on AuNPs’ surface could adsorb a large amount of
hexaammineruthenium (III) chloride (RuHex) molecules, which produce a remarkably amplified electrochemical response.
The voltammetric signal of RuHex with a peak near − 0.28 V vs. Ag/AgCl is used as the signal output. The proposed method
shows a detection range of 1.56e−9 to 1.56e−6 μM with the detection limit of 2.96e−10 μM for IBV H120 strain selective
quantification detection, exhibiting good accuracy, stability, and simplicity, which shows a great potential for IBV detection
in vaccine research and avian infectious bronchitis diagnosis.
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Introduction

In the last few decades, viruses are a real menace to safety.
The pandemic dimension spread of coronavirus disease poses
a severe threat to the health and lives of seven billion people
worldwide [1]. Rapid identification of viruses should be one
of the best ways to prevent disease outbreaks and is of great
significance to medical healthcare [1]. IBV, one kind of
coronaviruses, is a positive-sense single-stranded enveloped
RNA virus with a length of 27–32 kb. One IBV strain, H120
strain, usually needs to be identified from other strains for
immunoprophylaxis and vaccine production, for example,
NNA strain. Both of them are composed of structural and
nonstructural proteins [2, 3]. The spike (S) glycoprotein is
one of the major structural proteins which can be post-
translationally cleaved into S1 and S2 subunits [4]. S1 subunit
determines the genotype, serotype, and phenotype of IBV,
which is the most significant protein for virus identification
[5]. It is known that gene sequences of H120 and NNA strains
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are highly similar [6–8]; as a result, an obstacle in
immunoprophylaxis presents because of the lack of accurate
identification method. Therefore, developing a rapid and sen-
sitive method for identification and quantification of different
IBV strains based on hypervariable region of S1 gene can
effectively solve the problem, which plays important roles in
IB early diagnosis and control, especially for vaccine
production.

Up to now, a number of methods have been fabricated to
diagnose acute IBV infections based on IBV virus RNA de-
tection and antibody response. These common methods in-
clude immunofluorescence assay (IFA) [9], agar gel precipi-
tation test (AGPT) [10], virus isolation (VI) [11],
immunoperoxidase assay (IPA) [12], reverse transcriptase po-
lymerase chain reaction (RT-PCR) [13], and enzyme-linked
immunosorbent assay (ELISA) [4]. Among the above
methods, the sensitivity is generally unsatisfactory and those
methods are relatively expensive and laborious. Meanwhile,
one of present challenges in the virus detection field is the
need for further non cross-reactive, stable, and sensitive bio-
sensors [14]. Thus, the development of ultrasensitive and fast
methods to detect IBV is still a great challenge and absolutely
necessary. To improve the sensitivity, the signal amplification
strategy should be utilized [15, 16].

Recently, some studies have shown that nanomaterials play
an essential role in nanotechnology and biomedical applica-
tions [17, 18]. Among different nanomaterials, gold nanopar-
ticles (AuNPs) have attracted tremendous interests [19, 20],
due to its characteristics including easy synthesis manipula-
tion, precise control over the physicochemical properties,
strong binding affinity for thiols, and distinct electronic prop-
erties [21]. AuNPs have been used as efficient sensors for the
detection of DNA and RNA based on different sensing strat-
egies [22, 23]. Among the electrochemical methods, it has
attracted great attention due to its properties [24, 25], includ-
ing convenient operability, simple instrumentation, low cost,
and on-site detection [26, 27]. Thus, the development of label-
free electrochemical biosensor for the assay of IBV detection
based on the AuNPs amplification is very promising.

Experimental section

Materials and apparatus

AL2000 DNA marker and 1 kb DNA Ladder marker were
obtained from Nanjing Zhongding Biotechnology Co. Ltd.
Prime Script II 1st Strand cDNA Synthesis Kit, SYBR
Premix Ex Taq II (Tli RNaseH Plus) Bulk, pMD19-T
Vector Cloning Kit, and EcoRI were purchased from Dalian
Bao Biological Engineering Co. Ltd. The AxyPrep DNA Gel
ExtractionKit was obtained fromAxygen (USA). Chloroauric
acid, sodium citrate, and tris(2-carboxyethyl)-phosphine

(TCEP) were purchased from Sigma-Aldrich Chemical Co.
Ltd. (USA). Other reagents in the method were of analytical
grade. All solutions in the study were prepared with ultrapure
water, which was obtained from Milli Q water purification
system (USA).

The DNA immobilization buffers are 10 mM Tris-HCl,
1 mM EDTA, 0.1 M NaCl, and 10 μM TCEP (pH 7.4). The
reaction buffer is phosphate-buffered saline (10 mM
Na2HPO4, 2 mM NaH2PO4, pH 7.4) with 140 mM NaCl
and 5 mM MgCl2. DNA oligonucleotides (HPLC purified)
were synthesized by Sangon Biotechnology Co. Ltd.
(Shanghai, China). All the electrochemical measurements
were performed on CHI 660D electrochemical workstation
(Shanghai, China). DNA sequences used in this electrochem-
ical assay were shown in Table 1.

IBV RNA extraction and S1 gene amplification

The AxyPrep Body Fluid Viral DNA/RNAMiniprep Kit was
used to extract viral RNA. The Prime Script II 1st Strand
cDNA Synthesis Kit and Roche’s PCR enzyme FastStart
Universal SYBR Green Master (ROX) were for RNA inver-
sion and S1 gene amplification, respectively. The S1 gene
amplification reaction system (total volume 25 μL) contained
12.5 μL of 2 × PCR Master Mix, 1 μL of cDNA products,
9.5 μL of ddH2O, and 1 μL of 10 pmol of S1 forward and S1
reverse primer (Table S1). Amplification procedures were as
follows: 95 °C for 5 min, then 33 cycles of 95 °C for 30 s,
52 °C for 30 s, 72 °C for 1 min, and finally 10 min at 72 °C.
The products were electrophoresed on a 2% agarose gel and
stained with ethidium bromide.

Construction of standard plasmid

After purification, PCR product was connected with pMD19-
T. Then, it was transformed into susceptible E. coli by con-
ventional method and coated on plates with ampicillin and
LB. White colonies were selected and inoculated in LB me-
dium containing ampicillin. Finally, the plasmids were ex-
tracted for sequencing and identification by enzyme digestion.
The concentration of standard plasmids was measured by ul-
traviolet spectrophotometer and copy number was calculated
through the equation: copies/mL = plasmid concentration ×
6.02 × 1023 × 10−9 / (p lasmid length × 660) . Af ter

Table 1 List of DNA sequences used in this experiment

Name Sequence (5′-3′)

SH-H120-Probe1 TTT TTT TCA GGT GAG TTA

H120-Probe 2-SH GAT CAT AAT ATA TAT ATA T

H120-Target ATT ATG ATC TAA CTC ACC TGA
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determination of copy number, a series of standard plasmids at
different copies were prepared for real-time fluorescence
quantitative PCR to obtain the standard linear curve, which
was used to calculate the concentration of real virus samples.

Preparation of probe 1-functionalized AuNPs

The synthesis of AuNPs was according to our previous report
[28]. Then, 100 μL of AuNPs colloid was incubated with
40 μL of 10 μM probe 1 and 360 μL of PBS buffer. The
mixed solution was oscillated slowly in 37 °C for 12 h.
After that, 2 M NaCl was added slowly at room temperature
for 4 times. The final concentration of NaCl was 0.3 M. The
salt was used to block the negative charges on DNA strands to
allow high density loading and rearrangement of DNA on
AuNPs’ surface. After incubation at room temperature for
another 8 h, the solution was centrifuged at 12,000 rpm for
20 min. Then, the solution was purified through three times of
centrifugation at 12,000 rpm for 20 min. Finally, the AuNPs
were resuspended in 20 mM Tris-HCl (pH 8.0) solution and
stored at 4 °C. The characterizations of probe 1 DNA-
modified AuNPs were investigated by ultraviolet visible ab-
sorption spectroscopy (Fig. S1).

Electrode treatment

Pretreatment of gold electrode was according to our previous
report [29]. The electrode was electrochemically activated in
0.5 M H2SO4. Probe 2 of 0.5 μM was incubated with gold
electrode for 12 h at room temperature. Then, the modified
electrode was immersed into an aqueous solution of 1 mM
mercaptohexanol (MCH) for 60 min to inhibit nonspecific
DNA adsorption [30].

Electrochemical measurements

The target DNA was incubated with viral RNA at 90 °C for
5 min and dropped to room temperature slowly. After that, the
reaction mixture was incubated with 1 μL of 80 U/μL nucle-
ase at 37 °C for 30 min. Then, the reaction mixture was placed
at 90 °C for 15 min and annealed at 4 °C. Then, the final
reaction mixture was incubated with probe 2-modified elec-
trode. Finally, probe 1-functionalized AuNPs was incubated
with the modified electrode for 2 h. In this work, a three-
electrode cell was used with an Ag/AgCl as the reference
electrode, a platinum wire as the counter electrode, and a gold
electrode as the working electrode. Two electrochemical tech-
niques, linear sweep voltammetry and chronocoulometry,
were conducted in the experiment. A Tris-HCl solution
(pH 7.4) of 10 mM containing 50 μM RuHex and 10 mM
PBS buffer was used. The peak current at − 0.28 V was re-
corded and used to quantify the concentration of IBV H120
strain.

Results and discussion

Working principle

The detailed working principle is illustrated in Scheme 1.
Herein, a label-free electrochemical assay based on equivalent
substitution effect and AuNPs-assisted signal amplification is
developed for identification and quantification detection of
IBV H120 strain. We firstly design the H120 target DNA
which can recognize RNA of H120 strain specifically, and
the residual single-stranded H120 target DNA can be hydro-
lyzed by S1 nuclease. Then, the H120 target DNA is separated
from the DNA-RNA hybridized double strand by heating.
Thus, the concentration of virus RNA of H120 strain is equiv-
alently substituted by the target DNA. The target DNA can
partly hybridize with the probe 2 modified on the electrode
surface and probe 1 on the surface of AuNPs. Due to an
electrostatic interaction, positively charged signal molecules,
hexaammineruthenium (III) chloride (RuHex), can be
adsorbed onto the probe 1 modified on AuNPs which is pulled
on the electrode surface through the target DNA, causing an
intense electrochemical response. By analyzing the electro-
chemical response, a sensitive identification and quantifica-
tion assay for IBV H120 strain is thus established and the
method proposed in this work has a great potential for IBV
detection in medical research and early IB diagnosis.

Establishment and identification of standard plasmids

As shown in Fig. 1a and b, electrophoresis results indicate
PCR products of S1 gene are successfully amplified.
Electrophoresis results of standard plasmids are shown in
Fig. 1c. After being completely cleaved by EcoRI enzyme,
two bands can be seen in the electrophoretic diagram that
demonstrate the successful construction of plasmid.

Determination of H120 strain concentration in real
virus sample

After construction of the standard plasmid containing charac-
teristic sequence in S1 gene of H120 strain, virus copy num-
bers in plasmids are measured by real-time fluorescence quan-
titative PCR. Amplification and melting curve of plasmid in
Fig. 2a and b indicate that there is no nonspecific amplifica-
tion. A linear relationship between Ct value and the logarithm
of the initial copy number of the standard plasmid (Fig. 2c) is
obtained, and the linear regression equation is Y = −
3.3191x + 33.0203 (R2 = 0.99951). Thus, a series of H120
standard samples at different concentrations is successfully
prepared for the following electrochemical detection.
Meanwhile, according to calculation, the concentration of
H120 virus sample is 1.56e−6 μM (RSD= 0.67%, n = 3).
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Optimization of the experimental conditions

In this work, the experimental conditions have been optimized
to achieve the best signal-to-noise level. First, the annealing
condition of target DNA and IBV H120 strain has been inves-
tigated. In this assay, we have adopted two kinds of annealing
(Fig. S2a). One is 90 °C water bath for 5 min and then natural
cooling to room temperature, and the other is metal bath
cooling by means of gradient temperature (90 °C for 5 min,
70 °C for 10 min, 50 °C for 10 min, 30 °C for 10 min, 10 °C
for 25 min). As shown in Fig. 3a, the former performance is
better. Thus, 90 °C water bath for 5 min with natural cooling
to room temperature is chosen for the following experiments.

Second, the concentration of RuHex is investigated (Fig.
S2b). In this assay, we have applied 5 μM and 50 μMRuHex
for the detection of IBV H120 strain. As shown in Fig. 3b, the
electrochemical signal with 50 μM RuHex is better. Thus,
50 μM is chosen as the optimized concentration.

Finally, the electrolyte of this assay is studied (Fig. S2c).
We have respectively used 10 mM Tris-HCl (pH 7.0) and
10 mM PBS (pH 7.0) as the electrolytes. As shown in Fig.

3c, the Tris-HCl buffer is better than PBS buffer. Therefore,
the Tris-HCl buffer is chosen as the electrolyte.

Electrochemical detection of IBV H120 strain

The sensitivity of the sensing system is evaluated under the
optimized experimental conditions. Firstly, we detect different
concentrations of IBV H120 strain; a gradual increase of
RuHex peak current corresponding with the elevated concen-
tration of H120 strain from 1.56e−9 to 1.56e−6 μM is obtained
(Fig. 4a and b). And the peak current is linear with the loga-
rithm of IBVH120 strain. The linear range of IBVH120 strain
from 1.56e−9 to 1.56e−6 μM with the detection limit at
2.96e−10 μM is obtained (S/N = 3, RSD = 1.65%, n = 3). The
linear regression equation is Y = 7.9821 + 0.6406x (R2 =
0.99837), where Y is the peak current and x is the logarithm
of IBV H120 strain concentration. To further evaluate the
specificity of our proposed method, the chronocoulometry is
used. We have detected H120 and NNA strain using H120
target DNA. As shown in Fig. 4c, NNA strain does not pro-
duce significant electrochemical signal and H120 strain could

Scheme 1 Schematic illustration
of the electrochemical method for
IBV H120 strain detection

Fig. 1 Agarose gel
electrophoresis diagrams. a Lane
M: 2000 bp DNA marker, Lane 1
negative control, Lane 2: H120
S1 gene sample. b Lane M:
2000 bp DNA marker, Lane 1:
negative control, Lane 2: NNA
sample. c Lane M: 1 kb DNA
Ladder marker, Lane 1: H120
plasmid, Lane 2: H120 plasmid is
cleaved by EcoRI enzyme
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produce significant electrochemical signal, which signifies the
excellent specificity of this method.

In order to evaluate the performance of the present sensor
system, a comparable table for IBV analysis methods has been
listed in the electronic supplementary material (Table S2).
Though the construction of AuNPs is time-consuming and
the introduction of the signal amplification makes the detec-
tion system a little bit complicated, it still can be seen from the
table that our analysis method is more excellent than others
due to the following attractive advantages. First, the IBV
H120 strain RNA detection process is transformed into
DNA detection which can effectively avoid RNAdegradation.

Second, the use of gold nanoparticles greatly increases the
electron transfer efficiency of electrode surface. Third,
AuNPs-assisted electrochemical signal amplification highly
enhances the sensitivity of IBV detection.

Conclusions

In this work, we designed the sequence of the target DNA
based on the hypervariable region in the S1 gene between
different IBV strains, then, constructed the standard plasmid
containing characteristic sequence of S1 gene in H120 strain,

Fig. 2 Real-time fluorescence
quantitative PCR plot. a
Amplification plots. b Melting
curves of H120 standard samples
at 102, 103, 104, 105, 106, 107,
108, and 109 copy numbers. c The
linear relationship between Ct
value and the logarithm of the
initial copy numbers

Fig. 3 Chronocoulometric-int numerical bar graph. a The annealing condition of target DNA and virus RNA. b The chronocoulometric response of
RuHex. c The pH 7.0 electrolyte
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and at last, proposed a label-free ultrasensitive electrochemical
assay applicable for the detection of IBV H120 strain in real
sample, which can distinguish between H120 and NNA. In
this electrochemical method, H120 strain detection is based on
equivalent substitution effect and AuNPs-assisted signal am-
plification with a detection range from 1.56e−9 to 1.56e−6 μM.
Compared with previously reported IBV detection methods
that may focus on the portable and simplified analysis, our
electrochemical assay still has some advantages. For example,
converting RNA detection to DNA detection effectively avoid
RNA degradation. The use of gold nanoparticles and AuNPs-
assisted electrochemical signal amplification greatly increases
the electron transfer efficiency and the sensitivity of IBV de-
tection. Furthermore, by analyzing the hypervariable region of
S1 gene and replacing the target and probe DNA sequence by
other customized sequences, the developed sensing strategy
can be easily used to detect other virus. Therefore, the method
might hold a great potential for further applications in virus
bioanalysis, early clinical diagnosis, and biomedical research.
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