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Cardiovascular diseases (CVDs) have become a serious threat to human life and health.

Though many drugs acting via different mechanism of action are available in the

market as conventional formulations for the treatment of CVDs, they are still far from

satisfactory due to poor water solubility, low biological efficacy, non-targeting, and drug

resistance. Nano-drug delivery systems (NDDSs) provide a new drug delivery method

for the treatment of CVDs with the development of nanotechnology, demonstrating great

advantages in solving the above problems. Nevertheless, there are some problems about

NDDSs need to be addressed, such as cytotoxicity. In this review, the types and targeting

strategies of NDDSs were summarized, and the new research progress in the diagnosis

and therapy of CVDs in recent years was reviewed. Future prospective for nano-carriers

in drug delivery for CVDs includes gene therapy, in order to provide more ideas for

the improvement of cardiovascular drugs. In addition, its safety was also discussed in

the review.

Keywords: nano-drug delivery system, cardiovascular disease, targeting strategy, application progress, safety

INTRODUCTION

Cardiovascular diseases (CVDs) have become a serious worldwide public health problem, and the
morbidity and mortality rank first above other diseases in the world (Gaurav et al., 2015). Faced
with such a severe situation, developing drugs for the treatment of CVDs has become a top priority.
Owing to the rapid development of nanoscience and outstanding performance of nanomaterials,
nanotechnology has become a new solution to overcome the bottleneck of cardiovascular disease
treatment. Nano-drug delivery systems (NDDSs) are a class of nanomaterials that have abilities to
increase the stability andwater solubility of drugs, prolong the cycle time, increase the uptake rate of
target cells or tissues, and reduce enzyme degradation, thereby improve the safety and effectiveness
of drugs (Quan et al., 2015; Gupta et al., 2019). NDDSs can be administered by various routes
including inhalation, oral administration, or intravenous injection, remaining better bioavailability.
In recent years, more scholars have started to develop nano-drug carrier system for the diagnosis
and therapy of CVDs.

Additionally, as the application of nanomaterials increases, the exposure hazard of
nanomaterials in clinical application also raises, resulting in the consequence that nanomaterials
will have more opportunities to interact with blood vessels, blood, and their components, which
will have an important impact on the human health. Therefore, this article mainly introduced
the different types of NDDSs, their targeting strategies and application in CVDs, and the safety
of nanomaterials was discussed as well.
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TYPES OF THE NDDSs

NDDSs refer to material in which at least one dimension is in the
range of nanometer scale (1–100 nm) or composed of them as
basic units in three-dimensional space (Cooke and Atkins, 2016;
Zhou et al., 2018). As an effective means to optimize the drug
delivery, NDDSs have become a research hotspot in the field of
pharmacy and modern biomedicine (Matoba et al., 2017). The
investigation of NDDSs has been for more than 40 years, creating
a mass of nano-drug carriers. According to the composition of
the materials, the nanomaterials used in NDDSs can be divided
into organic, inorganic and composite materials. The following
is a description of several common NDDSs and their features
(Figure 1, Table 1).

Liposomes
In general, liposomes are lipid vesicles formed by ordered
phospholipid bilayer with cell-like structure (Landesman-Milo
et al., 2013). As a type of drug carrier, liposomes show
many advantages, such as non-toxic, non-immunogenicity,
sustained-release drugs, prolonging drug action time, changing
drug distribution in vivo, improving drug treatment index,
reducing drug side effects, and so on (Yingchoncharoen et al.,
2016). Liposomes can not only be easily developed for the
entrapment of hydrophilic and ionic molecules, but compatible
with hydrophobic drug (Chandrasekaran and King, 2014).
Hydrophobic drugs can be surrounded by the bimolecular
structure of phospholipids, and hydrophilic drugs, especially
those containing genes, can be attached to the hydrophilic
region of liposomes. The particle size, potential, and surface
chemistry can be adjusted by modification of different lipid
materials. Among various type of liposomes, cationic liposomes
are positively charged, indicating that they may result in dose-
dependent cytotoxicity and inflammatory responses, and as
a kind of complexes, they may interact non-specifically with
negatively charged serum proteins. Neutral lipids (Chapoy-
Villanueva et al., 2015) and pH sensitive liposomes (Fan et al.,
2017) are two ways to solve the above problems.

Polymer Micellar Co-delivery System
Polymer nanoparticles, another carriers for the delivery of
drug, can be classified into non-biodegradable materials and
biodegradable materials (Shi et al., 2019a,b). The synthetic
polymer materials mainly include poly(lactic-co-glycolic acid)
(PLGA), polyvinyl imine (PEI), polycaprolactone (PCL),
polyvinyl alcohol (PVA), and so on (Danhier et al., 2012;
Wei et al., 2018). These polymers exhibit biocompatibility,
non-toxicity and no teratogenicity. Its degradation products,
including oligomerization and final products, have no toxic
effect on cells, and can coexist stably with most drugs. Natural
polymers are mainly categorized into polysaccharides, peptides
(Li et al., 2012), Chol and cyclodextrin inclusion complexes.
Polymer nanoparticles usually formed by self-assembly of
Amphiphilic block copolymers, are stable in the core and can
be used to intercept insoluble drugs (Afsharzadeh et al., 2018).
The stable structure of polymer nanoparticles is beneficial to the
uniformity of particle size and the controlled release of drugs

(Wang et al., 2011), and can effectively overcome the influence
of gastrointestinal environment during oral administration.
Their nanoscale and large surface area are conducive to uptake
of drugs in cells and better bioavailability. Unfortunately, some
polymer nanoparticles, have some drawbacks. For example,
Chitosan, a natural polymer, is incompatible with biologic
fluids, which can lead to particle degradation and reduce the
working efficiency. Structural changes can be taken to solve
its deficiency. Combining chitosan with polyethylene glycol,
the conjugate has a unique endocytosis and macrophage
phagocytosis mechanism (Yang et al., 2017). In addition, the
modification of chitosan with a polypeptide can improve its
working efficiency (Ping et al., 2017).

Dendritic Macromolecules
Macromolecules are synthetic, various-shaped and usually
branched. Macromolecules shaped as sphere can be arranged
in monodisperse space and mostly used as nano-carriers to
be used for the administration and dissolution of insoluble
targeted drugs. Dendritic macromolecules with unique branch
structure, are also monodispersion and their molecular weight
can be controlled. Besides, a large number of ready-made surface
functional groups and hydrophobic environment are exist in
the packaging, which make them an excellent drug delivery
material (Kesharwani et al., 2012). Because of their excellent
biological properties, dendritic macromolecules are widely used
in biomedical and pharmaceutical fields, but the existence of
surface cationic charge also limits their clinical application.

Metal Nanomaterials
The most commonly used metal nanomaterials are gold and
silver nanomaterials, shaped in different structures that can
be divided into/like nanoparticles, nanorods, nanocapsules,
nanocuboid, and nanowire (Baeza et al., 2017). In addition
to being used as nano-contrast agent for CT and surface-
enhanced Raman spectroscopy, gold nanomaterials are also
used in photothermal treatment of tumors and rheumatoid
arthritis. As many studies shown, the application fields of silver
nanomaterials mainly involved antibacterial, anti-infection and
anti-tumor (Pietro et al., 2016). Moreover, some therapeutic
drugs can be physically loaded into hollow gold or silver
nanostructures (Liang et al., 2014), or chemically bonded to
the surface of nanoparticles to achieve targeted delivery of the
drugs. However, the removal of gold nanomaterials in human
body is too slow, and the toxicity of silver ions in vivo limits
the application of these metal nanomaterials in the treatment of
chronic diseases.

Inorganic Non-metallic Nanomaterials
Inorganic non-metallic nanomaterials mainly include quantum
dots, iron oxide, silicon, grapheme, and so on (Khafaji et al.,
2019). Quantum dots (QDs), that is, semiconductor nanocrystals,
are particularly focused on fluorescence imaging because of their
unique luminous properties, while iron oxide nanoparticles are
chiefly lay on the study of new MRI contrast agents (Jayagopal
et al., 2009; Hauser et al., 2016; Su et al., 2017; Wei H. et al.,
2017). Among them, mesoporous silicon nanomaterials have

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 January 2020 | Volume 7 | Article 489

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Deng et al. Application of the NDDSs

FIGURE 1 | Common types of nano-drug carriers.

TABLE 1 | Category and features of nano-drug carriers.

Category Structure Drug loading Advantages Limitations References

Liposomes Lipid bilayer Physical

encapsulation/Chemical

connection

Great biocompatibility, none

immunogenicity

Low stability, easy leakage of

hydrophilic drug

Jain and Jain,

2018; Yue and

Dai, 2018

Polymeric

nanoparticles

Nanospheres/

Nanocapsules/Polymer-based

nanoparticles with lipophilic core

Good stability, low leakage

of drugs

Intravenous toxicity Elsabahy and

Wooley, 2012; Hu

et al., 2018

Polymeric micelles Core/shell architecture formed

by self-assembly

Easily prepare, increase

stability of hydrophobic drug

Low stability, depolymerization

after dilution

Cagel et al., 2017

Metal nanomaterials Nanoparticles, nanorods,

nanocapsules, nanocuboid, and

nanowire

Antibacterial properties,

magneto-optical response

characteristics

Toxicity, hard to degrade Vimbela et al.,

2017

Inorganic

non-metallic

nanomaterials

The same size with a adjustable

pore size

Stable size, large surface

area and pore volume, high

drug loading

Extremely slow biodegradation

rate

Yu F. et al., 2018

attracted more and more attention in the therapy of diseases in
recent years due to its large surface area and porous structure
(Wang W. et al., 2016). Those Inorganic nanomaterials can be
used to improve the transport efficiency of drugs and genes in
mammal cells through the integration of different functional
groups.Meanwhile, they are suggested to be a kind of joint carrier
with development potential. However, the bio-safety of inorganic
non-metallic nanomaterials would be a considerable obstacle to
their application in clinic (Perioli et al., 2019).

Composite Nanomaterials
In addition to the above nanomaterials, the preparation of
composite nanomaterials with different properties is also under
exploration in many studies. For example, metal or inorganic
non-metallic nanomaterials are introduced into polymer or lipid

nanomaterials to prepare multifunctional NDDSs containing
both therapeutic drugs and contrast agents. Metal and inorganic
nanomaterials are decorated or modified by organic materials to
improve their physical and chemical properties, in vivo kinetic
behavior and biocompatibility; and some NDDSs with special
structure and diversified functions can be prepared by the
combination of different metals and inorganic materials.

TARGETING STRATEGY OF THE NDDSs

The targeted design of NDDSs focuses on the diagnosis and
therapy of cancer in the early stages of development, but recent
researches argued that lesion cells or tissues of CVDs can also
be targeted, even easier to targeted than tumor tissues with
multiple physiological barriers. Compared with conventional
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preparations, themetabolic time of nano-transporter drugs in the
blood circulationmay be prolonged. By regulating pH value (Gao
et al., 2018; Yi et al., 2018), temperature (Wei L. et al., 2017), light
(Ding et al., 2011), ultrasound or biological enzyme (Zhang et al.,
2019), the rate of those targeted nano-transporter drugs can be
controlled to function longer.

Passive Target Transfer
Enhanced Vascular Permeability
Passive targeted transport mainly utilizes high permeability and
high retention (EPR) effects (Figure 2) (Holback and Yeo, 2011).
EPR refers to the fact that some molecules or particles tend
to accumulate in tumor tissues (Dinarvand et al., 2011). The
microvascular endothelial cell space in normal tissue is dense
and intact, and NDDSs loaded with drug, generally in high
molecular weight, are not easy to pass through the vascular wall.
The tumor tissue is rich in blood vessels and poor in structural
integrity (Torchilin, 2011). Those drug-loaded NDDSs in high
molecular weight can selectively pass through the vascular wall
and remain in the tumor tissue. A large number of studies have
shown that nano-drug carriers with particle size <100 nm can be
located and targeted to solid tumor tissues by EPR. Compared
with the direct administrationmethod, the nano-drug carrier can
increase the accumulation of the drug in the tumor tissue by
more than 10 times, greatly improving the bioavailability (Maeda
et al., 2013). But it is discovered that EPR effect can also be
used in various CVDs, not only for tumors. In some course of
CVDs, for example, the occurrence and development of AS is
a chronic inflammatory process, where vascular permeability is
often increased, which is very similar to that of solid tumors.
Vascular endothelial permeability provides an effective means
for NDDSs to deliver from the lumen side to the interior of
the plaque. The nano-drug carriers entering the circulation are
also ingested by inflammatory cells (monocytes or macrophages),
and these drug-carrying cells migrate to plaque inflammation,
allowing drugs to be delivered in another way (Flogel et al., 2008).

Due to the size and surface characteristics of a portion of
nanomaterials, they are rapidly cleared in the blood during
intravenous injection, making nanomaterials unsuitable for
drugs that require long cycle times. In this case, nano-coating
technology can be applied to the nano-system for certain
concealment, and the rate of administration of the coating
agent can be also controlled and adjusted. This technology
is particularly suitable for NDDSs in the treatment of CVDs.
Developers on NDDSs have employed poly (ethylene glycol)
(PEG) in particle design. In fact, PEG is a flexible hydrophilic
polymer that can form a hydrated layer when grafted onto the
surface, effectively reducing the adsorption of proteins on the
surface (Jokerst et al., 2011). The tissue plasminogen activator
is encapsulated in the nanoparticles, making the nanosystem
concealed in some degree, thus protecting the tissue plasminogen
activator from inactivation by plasma inhibitors and prolonging
the half-life (Hemmati and Ghaemy, 2016).

Shear-Induced Targeting
Studies have shown that as the intima grew outward (toward the
lumen) in CVDs, such as advanced AS or myocardial infarction,

thrombosis or microthrombus occurs, stenosis of the blood
vessels follows and blood flow rate through the plaque increases,
and thus the fluid shear force increases. The mean blood fluid
shear force in the normal vasculature is <70 dyne·cm−2, while
the blood fluid shear force in the AS plaque stenosis is up to 1,000
dyne·cm−2 (Korin et al., 2012). Therefore, the design of blood
fluid shear-sensitive nanoparticles can achieve physicochemical
targeting by utilizing the difference of blood fluid shear force
between AS plaque and normal blood vessels. Holme et al. (2012)
prepared a lenticular lipid nanoparticle vesicle with two sides
convex. The drug-loaded nanometer can maintain structural
stability in normal blood vessels, and the configuration change
can be utilized to release the drug under the action of high blood
fluid shear force through the blood circulation to the AS plaque.
Inspired by the activation of platelets under the action of local
high blood fluid shear forces in AS plaques and adhesion to
plaque blood vessels, the researchers constructed a nanoparticle
aggregate that can be assembled locally in plaques (Korin et al.,
2012). First, the authors prepared PLGA nanoparticles with a
particle size of about 180 nm and entrapped tissue plasminogen
activator, and then obtained a PLGA nanoparticle aggregate
with a particle size of 3.8 nm through spray drying. When
the nanoparticles were exposed to the local high fluid shear
stress of the AS plaque, they could be decomposed into 180 nm
PLGA nanoparticles, and relied on the strong penetrability of
the small particle size nanoparticles to enter the local thrombus
of the plaque. The thrombolytic effect maximized the efficacy,
significantly reduced the dose required for thrombolysis and the
side effects of thrombolysis. In ischemic cardiomyopathy, the
endothelial gap in ischemic myocardium widened, thus altering
the shear of blood flow, and the concentration of polysaccharide
from Ophiopogon japonicus in ischemic myocardium was twice
as high as that in normal rats (Lin et al., 2010). Tan et al. found
that both shear stress and blood flow shear rate of vascular wall
could affect the aggregation of nanoparticles (Tan et al., 2011).

Magnetically Guided
Magnetically guided nanoparticle is an interesting “pseudo-
passive” targeting method. Theoretically, the application of an
external magnetic field can direct magnetic nanoparticles to the
disease site (Prijic and Sersa, 2011). Recent evidence suggests
that this strategy is beneficial for CVDs (Chandramouli et al.,
2015). Alam et al. (2015) compared the effects of several
nano drug carriers on atherosclerotic plaque imaging. Those
Nanoparticles include iron oxide particles, superparamagnetic
iron oxide nanoparticles, ultra-small superparamagnetic iron
oxide nano-carrier, and very small superparamagnetic iron
oxide nanoparticles. The results showed that the ultra-small
superparamagnetic iron oxide nanoparticles have better vascular
wall penetration ability and plaque retention than other groups.
Some researchers have pointed out that the external magnetic
field helps to transport particles from the cell-free layer which
lacks red blood cells to the vessel wall (Freund and Shapiro, 2012).

Active Targeted Transhipment
On the basis of passive targeting, using the special pathological
features of CVDs to develop an active targeting strategy for
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FIGURE 2 | Schematic representation of passive targeting. The occurrence and development of CVDs are chronic inflammatory processes in which vascular

permeability is usually increased, and nanoparticles of appropriate size pass directly through the blood vessels and release the drug at the site of the disease.

CVDs can improve the targeted delivery efficiency of drugs to
the lesions of CVDs, which aroused researchers strong interest.
Active targeting is primarily directed to functional modification
of NDDSs with one or more targets to allow the drug to reach
a particular site (Figure 3) (Matoba and Egashira, 2014). That is
to say, introducing a functional group or active substance that
specifically interacts with diseased tissues or cells into the surface
of the nano-drug carrier will enhance carriers targeting (Lee et al.,
2006; Gullotti and Yeo, 2009). Some active targets are discussed
in detail below (Table 2).

Active Targeting of Vascular Endothelial Cells
At different stages of CVDs, vascular endothelial cells are
in an inflammatory activation state. Compared with normal
vascular endothelial cells, some small molecules including
intercellular adhesion molecule-1 (ICAM-1), vascular adhesion
molecule-1 (VCAM-1), integrins, selectins, and so on, are often
overexpressed, which provides the active target for NDDSs (Glass
and Witztum, 2001). It is showed that the conjugation of lung-
targeted single-stranded variable fragment/liposome together
with platelet endothelial cell adhesion molecule-1 (PECAM-
1) antibody increases liposome transport to the pulmonary
vascular system and strengthen its anti-inflammatory effects
(Hood et al., 2018). In 2013, Yang et al. decorated the surface
of silica nanoparticles with anti-VCAM-1 monoclonal antibody.
The nanoparticles were able to bind to sites of inflammation
before they were taken up by endothelial cells (Yang et al., 2013).

Based on the pathological features of high expression of
ICAM-1 in early vascular endothelial cells of AS, Paulis et al.
(2012) modified the antibody anti-ICAM-1 which actively targets
ICAM-1 on the surface of liposomes and used it to load contrast
agents (gadolinium). Studies have shown that the liposome could
achieve the activated targeting of vascular endothelial cells and

AS plaques through the specific action of anti-ICAM-1 and
ICAM-1. However, competitive binding of circulating white
blood cells to the ICAM-1 site and blood flow shearing could
reduce the targeting function of liposomes to AS plaques. The
authors optimized the binding degree of liposome to ICAM-1
by screening liposome particle size, antibody and lipid ratio, and
obtained higher active targeting efficiency.

E-selectin is a surface glycoprotein of endothelial cells, which
can promote the attachment of monocytes/macrophages and
lymphocytes to induce inflammatory response, and eventually
cause the occurrence and development of CVDs, such as AS (Ma
et al., 2016). E-selectin can also be used as a target for nano-
transport drugs. Functional liposomes carrying mouse H18/7
mAb (specific antibody to E-selectin) were used to act on
interleukin (IL)-1β-activated human umbilical vein endothelial
cells and non-interleukin (IL)-1β-activated human umbilical
cord Vein endothelial cells. It was found that the ability of
functional liposomes to target activated human umbilical vein
endothelial cells is 275 times that of the non-activated type
(Flaht-Zabost et al., 2014).

AT1 rises in myocardial when myocardial infarction or heart
failure happened. Dvir et al. (2011) designed a polyethylene glycol
liposomes (142 ± 8 nm), that could carry therapeutic payloads
(such as growth factors, cytokines, etc.) and released them in a
controlled manner. The ligand attached on these liposomes is a
string of amino chain sequenced Gly-Asp-Arg-Val-Tyr-Ile-His-
Pro-Phe (binding sequence of AT1 receptor), which could direct
the nanoparticles to the infarction heart.

Active Targeting of Macrophages or Foam Cells
Macrophages or foam cells play a key role in the development
of AS. In the early stage of AS, mononuclear/macrophages
were recruited to activate vascular endothelial cells, and
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FIGURE 3 | Diagrammatic sketch of active targeting. The surface of the nano-carrier is grafted with a targeting ligand, which is strongly bound to the selective cell

surface by ligand-receptor binding.

overexpressed some inflammation-related receptor molecules in
an inflammatory environment, such as CD44 and interleukin-4
(IL-4) receptors, etc. Imaging and drug delivery for macrophages
or foam cells using NDDSs will facilitate monitoring of disease
progression and drug treatment in AS.

For example, Lee et al. (2015) linked 5β-cholic acid and
fluorescent dye Cy5.5 to the carboxyl group of the HA skeleton
by chemical bonding and formed nanoparticles (HA-NPs) by self-
assembly. Compared with nanoparticles (HGC-NPs) constructed
with chitosan backbones that did not target CD44 receptors,
HA-NP could significantly increase the uptake of activated
macrophages, and the plaque site of ApoE−/− mouse (AS model)
was more targeted. Fluorescence co-localization studies indicated
HA -NP was mainly distributed in macrophages in plaques.

Park et al. (2008) used phage library screening technology to
optimize the amphiphilicity of the target IL-4 receptor peptide
(CRKRLDRNC) which was modified on amphiphilic chitosan
(with ethylene glycol chitosan as the backbone and 5β-cholate
bonded) by chemical bond. Then nanoparticles with the function

of targeted macrophages in AS plaque are obtained in a self-
assembled method.

Targeting Vascular Basement Membrane Collagen
It has been reported that the vascular basement membrane
of damaged blood vessels and inflammation sites is rich in
collagen IV (Col IV) (Duner et al., 2015). In 2013, Kamaly
et al. (2013) ligated the 7 amino acid oligopeptide molecule
KLWVLPK (PLEA-β-PEG-Col IV) targeting collagen IV at the
PEG end of the PLGA-β-PEG block copolymer and used it
to package Act-26 (With anti-inflammatory and inhibition of
leukocyte extravasation), thus nanoparticles (Ac2-26 Col IV
NPs) targeting damaged blood vessels and collagen sites of
inflammation sites were prepared. The results showed that Act-26
Col IV NPs reduced the migration and adhesion of neutrophils
to the inflammation site and inhibited the development of
inflammation. Further, in 2016, some researchers prepared
nanoparticles (Col-IV IL-10 NPs) containing anti-inflammatory
factor IL-10 by self-assembly using PLGA-p-PEG-Col IV and
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TABLE 2 | Some molecules which can provide the active target for NDDSs.

Superfamily Lectin adhesion molecules Ig-superfamily cell adhesion molecules Hyaluronic acid

receptor

Cell adhesion

molecule

P-selectin E-selectin VCAM-1 ICAM-1 PECAM-1

CD classification CD62P CD62E CD106 CD54 CD31 CD44

Surface

expression

Inducible Inducible Inducible Constitutive and

up-regulated

upon induction

Constitutive Widely distributed,

cell surface,

transmembrane

Temporal

expression

Expression is fast and

transient; internalized

within 20min

Peak expression at 4 h

(in vitro); declines to

baseline within 24 h

during inflammation

Very low copies/cell;

increases to 104-105

copies/cell

104-105 copies/cell in

normal tissue d; 3- to

5-fold increase in

inflammation

106 copies/cell –

Ligands Leukocyte expressing

sialyl-Lewis X

Leukocyte expressing

sialyl-Lewis X

Leukocyte with β1

integrin VLA-4 (α4β1)

and α4β7

Leukocyte with β2

integrins

(e.g., LFA-1 and Mac-1)

Leukocyte with β1 and

β3 integrins Heparin

proteoglycans

Hyaluronic acid

Function Leukocyte tethering and rolling Leukocyte firm adhesion Leukocytes

transmigration;

angiogenesis

Participation in

heterogeneous

adhesion

PDLA-PEG-OMe targeting collagen LV (Kamaly et al., 2016).
After intravenous administration of Ldlr−/− mice, it was found
that Col-IV IL-10 NP significantly increased the content of IL-10
in the plaque, and had better AS treatment effect than free IL-10.

In addition, multi-target nano-carriers with multiple
inflammatory cell characteristics have been studied. PLNs
incorporated these often ignored biophysical design criteria
of platelet-mimetic discoid morphology and flexibility, then
integrated these design parameters with the platelet-mimetic
biochemical heteromultivalent interactive functions by dendritic
presentation of multiple peptides that bind simultaneously to
both activated natural platelets and injured endothelial sites
(Anselmo et al., 2014).

Whether it is passive targeting or active targeting, the
final targeting efficiency depends on the biological and
physical properties of nanoparticles. The biological and physical
properties includes particle size and distribution, targeting unit
types, surface chemistry, morphology and density (Morachis
et al., 2012). For the body, the development stage, type as well
as location of CVDs and tumor, vascular wall shear rate, blood
composition and its fluid type, together with other factors will
greatly affect the targeting efficiency (Charoenphol et al., 2011).
Although the application of active targeting NDDSs in clinical
diagnosis and therapy is extremely attractive, its development is
still facing great challenges. Those challenges are mainly reflected
in two aspects: one is the limitation of the discovery of ideal
target; the other is that there are still many bottleneck problems
in the design and preparation of effective targeting nanosystem.

Multifunctional Responsiveness NDDSs
Multifunctional responsive NDDSs is a kind of drug carrier with
better targeting ability, which is developed on the basis of the
above two targeting modes of nano-drug carrier. In addition
to having the previous targeting ability, this kind of carrier is
generally composed of stimulating responsive materials, which
can be released under the stimulation of the special environment

of the focus site, thus reducing the release in the normal
tissue and increasing the drug accumulation of the lesion tissue.
At the same time, diagnostic molecules can be assembled or
labeled on nano-carriers to compose an integrated diagnosis and
therapy system.

APPLICATION OF THE NDDSs IN THE
DIAGNOSIS OF CVDs

Early, rapid and accurate detection is important for effective
prevention and treatment of CVDs. The application of molecular
imaging in the diagnosis of CVDs has been paid more and
more attention in recent years. In addition to the constant
innovation of various imaging technologies, new contrast agents
are the key to real-time, fast, high sensitivity and high resolution
diagnostics. Compared with conventional contrast agents, nano-
contrast agents have the following advantages: (1) in vivo
stabilization, regulable distribution, and prolonging the half-life
of contrast agents or drugs; (2) controllable physical and chemical
properties (such as chemical composition, size) and imaging
performance; (3) specific identification of certain biomolecules;
(4) ability of multimodal imaging realization; (5) values in
individualized diagnosis and therapy are expected to be realized
(Attia et al., 2016). By designing specific nano-probes with the
unique chemical signal molecules of diseased tissues determined
by pathological studies, the contrast agent can be directed to
the lesion area in the early stage of the disease for magnetic
resonance imaging (MRI), X-ray imaging, fluorescence imaging,
and contrast-enhanced ultrasound (US) imaging (Figure 4).

Magnetic Resonance Imaging
In many imaging methods, magnetic resonance imaging is non-
invasive, safe, and high resolution, and it is good for soft tissue
imaging. However, the sensitivity of MRI is not high (10−3-10−9

M). The complexes of gadolinium commonly used in clinical
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FIGURE 4 | Abridged general view map of targeted nanoparticles engineered for imaging and drug delivery. The components of a multifunctional nanocarrier include a

ligand for cellular targeting, and an encapsulated payload for delivery of the therapeutic agents. The imaging components can be incorporated in the interior payload,

on the targeting ligand or associated with the nanoparticle shell.

practice are used as T1-weighted imaging contrast agents, and
gadolinium has certain nephrotoxicity. Fe3O4 nanoparticles are
considered to be non-toxic T2-weighted imaging contrast agents
(Corot et al., 2006). Compared with tinctures, they have high
sensitivity, good tissue compatibility and superparamagnetism
(Kim et al., 2007). Targeted contrast agents are used to
accumulate MRI probes at a sufficiently high concentration (in
micrograms to milligrams) in the target tissue to achieve a high
signal to noise ratio.

It is discovered that vascular imaging can be performed
in the early stage of cardiovascular disease formation, and
drugs can be administered for treatment after the magnetic
nanoparticles are injected into the body. Yoo et al. (2016) loaded
the hydrophilic lipid (amphiphilic) gadolinium chelating agent
diethylenetriamine pentaacetic acid (DTPA) into a dendritic
polymer and then wrapped it in the kernel of amphiphilic
micelles and connected with fibrin binding agent. Thus, its
targeting to atherosclerotic plaque was enhance, and can be
used for early detection of thrombus. Winter et al. chose
paramagnetic nanoparticles targeting integrin αvβ3 to inject
intravenously into high fat fed New Zealand white rabbits to
detect neovascularization in plaques in the early stage of AS
(Winter et al., 2008).

X-Ray Imaging
Imaging with radionuclides plays a crucial role in the field
of nuclear medicine (Mottu et al., 1999, 2002). Radionuclides
are not only sensitive but also quantifiable. Positron emission
tomography (PET) and single photon emission computed
tomography (SPECT) are the most common types (Alie et al.,
2015). At present, radionuclide-labeled nanomaterials can be
used to monitor the embolization process and the distribution
of nanomedicine to achieve targeted imaging (Mottu et al.,
2002; Okamura et al., 2002; Torchilin, 2002; James et al.,
2006). For example, the researchers used 186Re-BMEDA (Bao

et al., 2003) and 99mTc-PEGylate-labeled (Bao et al., 2004)
doxorubicin liposomes to perform SPECT, which can trace
the distribution of drugs in the body, and also promote drug
release. The nanoparticles can be used to detect the formation
of atherosclerotic plaques by CT and to judge the prognosis
as well. Galperin et al. injected iodine nanoparticles contrast
agent (N1177) into mice via vein. It was found that the
contrast agent gathered in macrophage rich tissue, and the
signal of atheromatous plaques could be significantly enhanced,
and the enhancement time could last for more than 30min
(Galperin et al., 2007). In 2016, Chhour et al. (2016), used
11 mercaptoundecanoic acid (11-MUDA) to encapsulate gold
nanoparticles, found that gold nanoparticles could accumulate
in foam cells of atherosclerotic plaques and increase the contrast
of imaging.

Fluorescence Imaging
Optical imaging is a powerful imaging method with the
advantages of no radiation, no invasion, high resolution and
good controllability, but its penetration is poor. Fluorescence
imaging is usually performed by using fluorescein to generate
fluorescence signals. Near-infrared fluorescence (NIRF) probes
are widely used because of their strong penetrating power and
safety. They have been used in small animal living imaging
systems and clinical tumor transformation. At present, a large
number of nano-drug carriers, such as liposomes, metal, or
non-metallic nanoparticles can enclose NIRF to achieve optical
imaging of blood vessels (Weissleder and Ntziachristos, 2003;
Setua et al., 2010; Sevick-Muraca, 2012). Its application in
cardiovascular disease imaging has been paid more and more
attention. McCarthy et al. bound the group of near infrared
light activated therapeutic (NILAT) with macrophage-targeted
magnetic nanoparticles(MNP) and prepared a kind of diagnostic
and therapeutic nanoparticles (McCarthy et al., 2006). The
experiment results shown that within 24 h of administration,
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the nanoparticles were reached in area. Wang Y. et al. (2016)
injected profilin-1 magnetic iron oxide nanoparticles (PF1-
Cy5.5-DMSA-Fe3O4-NPs) focusing on profilin-1 into the vein of
atherosclerotic mice. It was found that the magnetic iron oxide
nanoparticles were aggregated in carotid atherosclerotic plaques.
There was a good correlation between the MRI signal of the
animals injected with PC-NPs and the fluorescence intensity of
NIRF imaging in vitro.

Ultrasound Imaging
Compared with fluorescence imaging, ultrasound imaging
has natural advantages in medical imaging including safe,
convenient, and real-time. Nano-ultrasound imaging materials
that can be targeted to vascular-related markers have been
developed. For example, vascular ultrasound nanoparticles that
can be targeted to high expression of the vascular endothelial
growth factor receptor 2 (VEGFR2) not only provide amore clear
ultrasound imaging of tumor blood vessels, but also promote
drug localization in blood vessels (Rojas et al., 2018). Marsh
et al. had developed perfluorocarbon nanoparticles targeting
blood fibrin, carrying the thrombus drug streptokinase for the
diagnosis and therapy in thrombus (Marsh et al., 2007). The
drug-loaded particles are synthesized by evaporation/dispersion
technique with a diameter of about 250 nm and can be used for
ultrasonic imaging.

Multi-Modal Bioimaging
At present, multi-modal imaging technology using a
combination of different types of imaging methods can
integrate different imaging methods to produce synergistic
effects, providing more comprehensive and accurate image
information for accurate diagnosis and precise treatment of
CVDs. For instance, it was found that 64Cu-labeled SPIO-loaded
doxorubicin nanoparticles could be used for MRI and PET (Yang
et al., 2011). It has been reported that Cy5, sputum, and folic
acid can be embedded in gold nanoparticles to achieve trimodal
optical imaging, MRI and CT imaging in mice (Chen et al.,
2016). This multimodal imaging and integration of diagnosis
and treatment will be a new direction for the development of
cardiovascular nanomedicine in the future.

APPLICATION OF THE NDDSs IN THE
TREATMENT OF CVDs

The NDDSs in AS
AS is the most common type of CVDs, often leading to
a stroke or heart attack. The formation of AS begins with
endothelial dysfunction. Plaque-induced coronary artery stenosis
can cause ischemic cardiomyopathy, while plaque rupture
can cause acute myocardial infarction (Nabel and Braunwald,
2012; Wall, 2013). Mechanisms of plaque instability include
enhanced vascular permeability, Platelet endothelial cell adhesion
molecules (PECAM) expression, macrophage aggregation, and
expression of proteases, which can be targets for intervention.
The drug can be delivered to atherosclerotic plaques by nano-
drug carrier, to effectively prolong the half-life of drug plasma,
increase the concentration of lesions and reduce side effects.

The treatment strategies of these nano-drug carriers including
regulating lipoprotein level, reducing the degree of inflammation,
inhibiting of neovascularization, preventing coagulation, and so
on (Table 3). These treatment strategies are used as interventions
to development of AS, reduce plaque area or stabilize vulnerable
plaques (Chetprayoon et al., 2015; Bejarano et al., 2018).

The NDDSs in Hypertension
At present, many kinds of drugs are applied for the treatment
of hypertension, including angiotensin converting enzyme
inhibitors, vascular angiotensin antagonists, central sympathetic
nerve drugs, adrenergic receptor blockers, diuretics and
vasodilators (Sharma et al., 2016). However, all these
antihypertensive therapeutic drugs have obvious defects,
including short plasma half-life, low bioavailability, toxic and side
effects (upper respiratory tract abstraction, angioedema, reflex
tachycardia, extreme hypotensive effect, and so on) (Alam et al.,
2017; Martin et al., 2017; Niaz et al., 2017). Conversely, nano-
drug carriers can provide prominent advantages mentioned
above (Table 4) (Kimura et al., 2009). Some researchers have
made olmesartan into a nanoemulsion system. Compared with
the conventional dose, the nanoemulsion group has better
blood pressure lowering effect, longer maintenance time, and can
produce nearly three times the dose reduction (Alam et al., 2017).

The NDDSs in Pulmonary Hypertension
Pulmonary hypertension, a progressive highly dangerous disease,
is characterized by increased pulmonary vascular resistance and
elevated pulmonary artery pressure. Prostaglandin I, Endothelin
receptor antagonist, type 5 phosphodiesterase inhibitor, etc.
are common vasodilators for pulmonary hypertension. These
vasodilators have shown some effects, but the overall therapeutic
ability is limited. For solving this problem, nano-mediated
drug delivery system has gradually become an important
alternative strategy (Table 5). Bosentan is a selective and
competitive Endothelin receptor antagonist, which is loaded into
nanoparticles and has a solubility of seven times as much as that
of unprocessed bosentan (Ghasemian et al., 2016).

The NDDSs in Myocardial Infarction
Reperfusion is mainly used in the early stage of myocardial
infarction, but it can cause apoptosis, calcium overload and
reactive oxygen species. These factors cause the opening
of the mitochondrial membrane permeability transition pore
(MPTP) and the increase of mitochondrial outer membrane
permeability, thereby promoting cardiomyocyte apoptosis and
necrosis (Hausenloy and Yellon, 2013). Clinically, the drug
therapy for myocardial ischemia mainly depends on growth
factors, cytokines and some small molecular compounds. These
drugs have the same disadvantages of the above traditional
drugs. The high permeability of blood vessels and enrichment of
monocytes in ischemic myocardium can be harnessed to deliver
drugs by targeting ability of nano-drug carriers (Table 6).

The NDDSs in Other CVDs
As a new drug delivery platform, nano-drug delivery system
also performs well in other CVDs. Coronary artery allogeneic
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TABLE 3 | Application of the NDDSs in the AS.

Carrier Ligand Drug Intervention mode Model References

Liposome – Glucocorticoids (PLP) Intravenous injection (I.V.) Rabbit Lobatto et al., 2010

Dendrimeric nanoparticles Mannose Liver-x-receptor

ligands(LXR-L)T091317

Intravenous injection (I.V.) LDLR−/− mouse He et al., 2018

Acetylated β-CD materials

(Ac-bCDs)

– Rapamycin (RAP) Subcutaneous injection ApoE−/− mouse Dou et al., 2016

Polylactic acid-glycolic acid

(PLGA)

Hyaluronan (HA),

apolipoproteins A-1 (apoA-1)

Simvastatin In vitro Dynamic system of

Endothelial macrophage

Co-culture

Zhang et al., 2017

Peptide amphiphilic nanofiber A1 apolipoprotein Drug liver X receptor

agonist GW 3965(LXR)

Intravenous injection (I.V.) Mouse Mansukhani et al.,

2019

Acetal-CD (Ac-bCD) and

ROS-sensitive CD-CD (Ox-bCD)

Acetaldehyde, sensitive to

ROS

Rapamycin Intraperitoneal injection (I.P.) Mouse Dou et al., 2017

TABLE 4 | Application of the NDDSs in the treatment of hypertension.

Carrier Drug Intervention mode Model References

Poly (D, L-lactide) (PLA) Aliskiren Gavage Male spontaneously

hypertensive rats (SHR)

Pechanova et al., 2019

Niosomes Lacidipine (LAC) Oral Hypertensive rats Qumbar et al., 2017

Lliposome Valsartan Cutaneous penetration Experimental hypertensive rats Ahad et al., 2016

Chitosan (CS) polymer Captopril, amlodipine and

valsartan

Oral – Niaz et al., 2016

Chitosan and polyethylene

glycol composite sol.

Nitric oxide, NO precursor

(nitrite)

Oral – Cabrales et al., 2010

angiopathy is an inflammatory proliferation process that
undermines the long-term success of heart transplantation.
Lipid nanoparticles coated with methotrexate or paclitaxel were
injected intravenously into rabbits which fed cholesterol-rich
diet and received an ectopic heart transplant, both of which
reduced macrophage infiltration in the graft (Barbieri et al.,
2017). Myocardial ischemia is mainly due to the decrease of
aortic perfusion in the heart, resulting in insufficient oxygen
supply and unstablemyocardial energymetabolism, thus forming
a pathological state that cannot support the normal work of
the heart. Liposomes coated with phenytoin (PHT, a non-
selective VGSC inhibitor) were prepared by thin film dispersion.
The results showed that PHT-encapsulated liposomes partially
inhibited I/R injury-induced CD43+ inflammatory monocyte
expansion and reduced infarct size and left ventricular fibrosis
after intravenous injection of the rat myocardial I/R injury model
(Zhou et al., 2013).

Vascular restenosis is the process of stenosis and obstruction
after the interventional treatment of the blood vessels, such as
angioplasty, arteriotomy, implantation of an endovascular stent,
and so on (Wang et al., 2018). Some scientists (Banai et al., 2005;
Kamath et al., 2006; Nakano et al., 2009; Schröder et al., 2018; Xi
et al., 2018) have proposed that in the site of angioplasty, catheter-
intervention techniques are used to infuse the drug-loaded
nanoparticles into the injury site, enabling angioplasty, and
topical administration in one step. The nanoparticles can enter
the arterial wall through the damaged endothelium, localize,
reside in and between cells, and then slowly release the drug (Wu

et al., 2019). Therefore, the lesion vessel can be maintained at a
relatively high concentration for a long period of time, which is
beneficial to fully exerting the drug effect, and finally effectively
prevents and treats vascular restenosis.

APPLICATION OF THE CO-LOADED
NANO-SYSTEM IN THE CVDs

Drug combination therapy (including genes) is the treatment
of two or more drugs to patients at the same time. In clinical
practice, this therapy has been widely used for disease treatment.
The purpose of this combination therapy is often due to
the synergistic effect between drugs, or the therapeutic effect
of multiple drugs is greater than that of a single drug. In
recent years, many co-loaded nano-systems have been developed
to carry common drugs and/or genes, especially siRNA to
treat CVDs.

Application of RNAi in the Treatment of
CVDs
RNA interference (RNAi) is a gene-specific silencing mechanism
present in eukaryotic cells and an important measure for resisting
foreign genes and infections during biological evolution. RNAi
was first discovered in Caenorhabditis elegans (Braukmann
et al., 2017), then in 2001, it was demonstrated to occur in
mammalian cells (Lendeckel et al., 2001). RNA interference
includes micro RNA (miRNA), small interfering RNA (siRNA),
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TABLE 5 | Application of the NDDSs in pulmonary hypertension.

Carrier Ligand Drug Intervention mode Model References

Nanostructured lipid carriers

(NLCs)

– Sildenafil (SC) Endotracheal administration A549 cells, rat Nafee et al., 2018

Polymeric nanoparticles Vitamin A Nitric oxide(NO) – Hepatic stellate cells

(HSCs)

Duong et al., 2015

Nanocomposite particle (nCmP) – Tacrolimus (TAC) Direct intervention A549 cells Wang Z. et al.,

2016

Liposome Peptide

CARSKNKDC (CAR)

Fasudil and superoxide

dismutase (SOD)

Direct intervention,

endotracheal administration

Pulmonary endothelial

and smooth muscle

cells, rat

Gupta et al., 2015

Poly(D,L-lactide-co-glycolide)

nanoparticles

– Silaenafil Endotracheal administration – Beck-Broichsitter

et al., 2012

Liposome – Cerivastatin Endotracheal administration Rat Lee et al., 2018

TABLE 6 | Application of the NDDSs in myocardial infarction.

Carrier Ligand Drug Intervention mode Model References

Poly(D,L-lactide-co-glycolide)

(PLGA)

– Insulin-like growth factor (IGF)-1 Injection in the heart Mouse Chang et al., 2013

Low molecular weight

polyethyleneimine

Deoxycholic acid

(PEI1.8-DA)

siRNA against Src homology

region 2 domain-containing

tyrosine phosphatase-1 (SHP-1)

Cardiac administration Myocardial infarction

(MI) rats

Dongkyu et al., 2013

Liposome P-selectin Vascular endothelial growth factor

(VEGF)

– Myocardial infarction

(MI) rats

Scott et al., 2009

Distearyl

phosphatidylethanolamine

polyethylene glycol

Atrial natriuretic

peptide (ANP)

Oleate adenosine prodrug

(Ade-OA)

Intravenous injection (I.V.) Acute myocardial

infarction (AMI) rats

Yu J. et al., 2018

Polylactic co-glycolic acid

nanoparticles

– Vascular endothelial growth factor

(VEGF)

Injection into the

peri-infarct region

Infarcted mouse Oduk et al., 2018

Lipid core nanoparticles (LDE) – Methotrexate (MTX) Intraperitoneal injection(I.V.) Myocardial infarction

(MI) rats

Maranhao et al.,

2017

Piwi-interacting RNA, and long non-coding (lncRNA). RNAi
technology, also known as gene silencing, introduces double-
stranded RNA (dsRNA) consisting of sense and antisense RNAs
corresponding to a certain mRNA sequence into cells, degrading
mRNA homologously complementary thereto, and inhibiting
the expression of cell-specific genes. The rapid development of
RNAi research has driven it from experimental technology to
therapeutic development tools (Katyayani et al., 2017), and RNAi
has potential value in the treatment of CVDs (Kwekkeboom
et al., 2014; Tadin-Strapps et al., 2015; Hoelscher et al.,
2017). At the same time, RNA interference therapy also has
challenges in the treatment of CVDs, including the toxicity,
targeting, time-effect, and effective delivery system of RNA,
which limits its widespread use in the clinic and is urgently
needed to be solved and improved (Cotten et al., 1992; Sioud,
2015; Kasner et al., 2016; Navickas et al., 2016; Zhou et al.,
2016). Table 7 indicated the future direction of cardiovascular
RNA interference.

Co-loaded Gene and Drug Nano-System
For overcoming the problems in the delivery process and
realizing the broad potential of RNAi-based therapeutics,
safe and efficient nano delivery systems are needed. The

apolipoprotein B (ApoB) siRNA was encapsulated into the
liposome vector. After 48 h, the ApoB mRNA of the macaque
liver decreased, and the maximum silencing rate exceeded 90%.
ApoB protein, serum cholesterol, and low-density lipoprotein
levels began to decrease 24 h after treatment and continued
until day 11 (Zimmermann et al., 2006). Some researchers have
used chitosan nanoparticles to construct and package small
interfering RNA (siRNA) against PDGF-B mRNA expression
vector, and then transfected into vascular smooth muscle cells
(vSMC) of rabbit arterial wall damaged by balloon catheter, using
therapeutic ultrasound for gene delivery. The results showed
that the nanoparticles significantly inhibited the expressions of
PCNA and PDGF-B mRNA in intimal vSMCs while the local
intimal thickness and area were also reduced remarkably (Xia
et al., 2013). Nox2-NADPH expression is significantly increased
in the infarcted myocardium. Somasuntharam et al. (2013)
demonstrated acid-degradable polyketal particles for Nox2-
siRNA to the post-MI heart, which not only reduced siRNA
degradation, but also inflammation.

Some pharmaceutical companies have developed new nano-
dosages that deliver siRNA to the right cells at the right time
(Hayden, 2014). Healthy volunteers (serum LDL levels of 3
mmol/L or higher) were injected intravenously with ALN-PCS or
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TABLE 7 | Future directions in cardiovascular RNA interference.

Investigation Novel strategies Future perspectives References

RNAi imaging in vivo Prolyl hydroxylase domain protein 2 (PHD2)- short

interfering RNA (shRNA) sequence followed by a

hypoxia response element-containing promoter

driving a firefly luciferase reporter gene

Imaging of RNAi distribution in space and

time in experimental animal models

Huang and Wu,

2011

Cardiac-targeted RNAi Cardiotropic adeno-associated virus 9

(AAV9)-based silencing of Ca2+ cycle regulator

phospholamban for the treatment of severe heart

failure via intravenous route

Cardiac-specific gene knockout for

therapeutic purposes, and as an alternative

for cardiac-specific inducible knockout

models

Suckau et al., 2009

Induction of alloimmune tolerance by RNAI In heart transplantation models, RNAi induced

alloimmune tolerance through silencing of toll-like

receptor (TLR) adaptors My D88 and

TIR-domain-containing adapter-inducing

interferon-β (TRIF)

In vivo treatment of recipients with siRNAs

to My D88 and TRIF prolonged allograft

survival

Zhang et al., 2012

Plaque stabilization by RNAI Lentivirus-based RNAi to silence chymase

increased plaque stability in in vivo

Chymase as a target for plaque stabilization

in vasculature as an RNAi target

Guo et al., 2013

Monocyte-targeted RNAi Nanoparticle-encapsulated synthetic siRNA for

silencing of monocytic chemokine receptor C-C

chemokine receptor type 2 (CCR2) in myocardial

infarction

Non-viral RNAi delivery system targeting

monocytes in vivo, with high translational

potential

Majmudar et al.,

2013

placebo developed by Alnylam Pharmaceuticals (Fitzgerald et al.,
2014). ALN-PCS is a siRNA that inhibits the synthesis of PCSK9
and is assembled in lipid nanoparticles. PCSK9 protein in the
human body cycle was reduced 70%, and LDL was reduced by
40% after intravenous injection of ALN-PCS.

The co-loaded gene and drug nano-system combined with
nanotechnology and gene interference technology, the packaged
substances have a synergistic effect, and the therapeutic
effect is much better than the single treatment (Figure 5).
Carvedilol, a kind of anti-hypertrophic drug that simultaneously
blocks β-adrenergic receptors non-specifically in various organs,
is widely used and effective. The non-specific genome-
wide downregulation of p53 expression by specific siRNA
efficiently abrogates cardiac hypertrophy. However, it can cause
extensive tumorigenesis affecting bystander organs. Rana et al.
(2015) encapsulated these bioactive molecules with stearic
acid modified carboxymethyl chitosan (CMC) nanopolymers
conjugated to a homing peptide for delivery in vivo to
hypertrophied cardiomyocytes, resulted in effective regression of
cardiac hypertrophy.

SAFETY OF THE NDDSs

As the researches of nanomaterials go further, an increasing
number of nanomaterials are prepared as NDDSs, but the
unclear toxicity and the lack of systematically study of materials
themselves restrict their further application. When the particle
size enters the nanometer scale, it will show strong surface effect,
small scale effect, quantum scale effect andmacroscopic quantum
tunneling effect (Gatoo et al., 2014).

Relatively few studies discuss about toxicity of NDDSs,
particular in cardiovascular toxicity. But the tissue of
cardiovascular system is considered to be the key site of NDDSs
induced toxicity, which can produce great impact on the disease

FIGURE 5 | Schematic diagram of nanoparticles-mediated gene and drug

delivery. Nano-carrier system (NCS) encapsulates or adsorbs a drug, a

therapeutic foreign gene molecule on its surface, and also couples a specific

targeting molecule to the surface of the nano-carrier and then binds to a cell

surface-specific receptor through a targeting molecule. This enables safe and

effective targeted genes and drug treatment.

prognosis. Studies have revealed that nanomaterials could enter
the blood circulation through respiratory tract, digestive tract,
skin and other mucous membranes, and inevitably interacted
with the blood system, immune system and other organs or
tissues including plasma proteins and immune proteins, blood
cells and immune cells, and so on.

The safety evaluation of the NDDSs is mainly focused on
the toxicological study of the health effect. At present, the
cardiovascular toxicity of nanomaterials based on animal and cell
level shown that the toxicity was closely related to a series of
undesirable effects induced by nanomaterials, including oxidative

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 12 January 2020 | Volume 7 | Article 489

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Deng et al. Application of the NDDSs

stress, inflammation apoptosis, blood aggregation and cardiac
signal transduction (Donnini et al., 2000; Savic et al., 2003;
Chen and Von, 2005; Qinghua et al., 2005). Among them,
inflammatory reaction and oxidative stress are recognized as the
main mechanisms of cardiovascular toxicity of nanomaterials.

Inflammatory response can affect the occurrence
and development of CVDs including hypertension,
myocarditis, AS, acute myocardial infarction and heart
failure. Some researchers have found that if nano-carriers
have not been removed in time, they could reach all
organs through blood, stimulate the body to produce
a series of inflammatory cytokines, and eventually lead
to cytotoxicity, which increases the risk of cardiovascular
events (Suwa et al., 2002).

Nanomaterials have a large number of surface atoms and are
highly reactive, which can generate free radicals and stimulate
the formation of ROS, thereby interfering with antioxidant
systems (Chen and Von, 2005). Oxidative stress can induce
oxidative damage to macromolecular substances, such as DNA
and proteins, which leads to cell growth inhibition, cell cycle
abnormalities, and cell death.

The study on the toxic mechanism of cardiovascular
system damage caused by nanomaterials in global is still
in its infancy. There is very few relevant research evidence
on the biological endpoints to determine the relationship
between the physicochemical parameters (shape, size, size
distribution, surface structure, electrochemical properties, etc.)
of the nanoparticles and the toxic effects of the cardiovascular
system. Therefore, scientists need to carry out more researches
on the cardiovascular system toxic effects and mechanisms
of typical nanomaterial exposure, which can make better use
of the positive effects of nanomaterials to prevent, reduce or
eliminate the possible adverse effects on health. Furthermore,
it would provide theoretical and technical basis for the
establishment of nanomaterial safety evaluation technology
and standards.

SUMMARY AND PERSPECTIVE

In conclusion, the nano-carrier, as an efficient, specific and
controllable intracellular drug delivery method, has shown
unique advantages in the diagnosis and therapy of CVDs.
It can effectively solve the problems of targeting, local drug
delivery, controlled release, sustained release, and reducing
toxicity while it is developing toward the multifunctional
and integrated direction of diagnosis and therapy. With the
innovation of nanotechnology and the deepening studies on
molecular pathological mechanism of CVDs, the application of
NDDSs will be promoted, and new techniques and methods
will be provided for clinical diagnosis and therapy. In addition,
since the study on these nano-carriers is in its infancy,
many problems still remain unclear. The main challenge
is how to solve the biocompatibility of nano-drug-loaded
particles themselves or their degradation products, which
is need to be solved in the field of nano-biomedicine in
the future.
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