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Abstract

Life history theory examines how characteristics of organisms, such as age and size at

maturity, may vary through natural selection as evolutionary responses that optimize fitness.

Here we ask how predictions of age and size at maturity differ for the three classical fitness

functions–intrinsic rate of natural increase r, net reproductive rate R0, and reproductive

value Vx−for semelparous species. We show that different choices of fitness functions can

lead to very different predictions of species behavior. In one’s efforts to understand an

organism’s behavior and to develop effective conservation and management policies, the

choice of fitness function matters. The central ingredient of our approach is the maturation

reaction norm (MRN), which describes how optimal age and size at maturation vary with

growth rate or mortality rate. We develop a practical geometric construction of MRNs that

allows us to include different growth functions (linear growth and nonlinear von Bertalanffy

growth in length) and develop two-dimensional MRNs useful for quantifying growth-mortality

trade-offs. We relate our approach to Beverton-Holt life history invariants and to the

Stearns-Koella categorization of MRNs. We conclude with a detailed discussion of life his-

tory parameters for Great Lakes Chinook Salmon and demonstrate that age and size at

maturity are consistent with predictions using R0 (but not r or Vx) as the underlying fitness

function.

Introduction

Life history theory concerns the type, timing, and duration of important events in an organ-

ism’s lifetime, including birth, weaning, dispersal, sexual maturity, mating, caring for young,
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and senescence [1,2]. Knowledge of these life history parameters is an indispensable ingredient

for understanding organism behavior and for designing policies on stocking, harvesting, and

conservation in general. This study was catalyzed by the observation that different populations

of salmonids in the Great Lakes have different life history patterns, especially age of smolting

(first leaving the river of their birth) and size and age of maturation (first returning to that

river to spawn). How do different environments, like river and lake characteristics and abun-

dance of predators and prey, lead to these different life histories? How do changing environ-

ments, like variations in temperature or in prey or predator abundance, affect life history

traits? What is the underlying fitness function that leads to these life history patterns?

Age and size at maturity are important life history traits that have implications for individ-

ual fitness as well as for population growth rate. Several models have been developed to

describe variation in age and size at maturity among or within taxa [1–11]. We compare our

results with the results in these papers in more detail in the discussion section below.

Here we develop a model of optimal age and size at first reproduction, with the goal of

developing a theory that uses accessible data, promotes understanding of diverse patterns, and

is relevant to management decisions. Unlike other theoretical life history models, our

approach uses individual-level formulations built from empirically based assumptions, rather

than mathematical convenience.

We assume that age and size in general are related via a “growth function,” that fertility and

size are related via a “fertility function,” and that survival and age are related via a “survival

function.” We assume that life history traits emerge from the maximization of some fitness

function. We examine how the choices of growth function, fertility function, survival function,

and fitness function affect the predicted age and size at maturity.

In this context, environmental effects are usually brought into play via “reaction norms” [3].

A key thrust of this paper is to show a geometric method of studying reaction norms, and to use

this method to see how reaction norms depend on the growth, survival, and fitness functions of

the model. We show that different fitness functions lead to radically different reaction norms.

We close by relating these geometric and analytical findings to actual Great Lakes salmonid data.

Biology background and fitness functions

The basic building blocks of life history theory are x, lx, and mx, where x is the age in years

since birth, lx is the probability of surviving from birth to age x, and mx is the average number

of female offspring of a female of age x.

We focus on Great Lakes salmonids, especially Chinook Salmon. S1 Appendix presents the

life history of the semelparous Chinook Salmon, along with a description of the parameter esti-

mates we use in our simulations for the transitions from any life stage to the next.

We take birth (x = 0) as the day that eggs are laid and fertilized. This choice is different than

the common choice of egg hatch to define the start of a generation; our choice facilitates analy-

sis of the optimal timing of first reproduction in species where it can take many weeks for eggs

to hatch. The survival probability lx to age x is well-defined whether one uses continuous or

discrete ages x. The age-specific fertility parameter mx can be tricky for continuous ages x, but

it is straightforward for salmon, which spawn at most once a year and on the same date

(roughly October 1 for Great Lakes Chinook Salmon). In fact, using a growth function (size as

a function of age) and a fertility function (number of eggs as a function of size), we will be able

to work with continuous x in mx when we need to.

Three classic fitness functions have been used to analyze life history characteristics: the

intrinsic rate of natural increase r, the net reproductive rate R0, and the reproductive value of a

female of age x, Vx.
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For discrete ages x, one can build a “life table” with columns for x, lx, and mx. One can also

construct a system of linear difference equations from this table that keeps track of the size of

each age group x over time. S2 Appendix presents such a system and its corresponding (Leslie)

matrix representation. The bottom line of this approach is that eventually the size of each age

group grows by the same factor λ each year, and therefore so does the total population. This

multiplier λ is the annual population growth multiplier. The equation for λ in terms of the lx
and mx is called the Euler Formula:

m1l1
l

1
þ

m2l2
l

2
þ⋯þ

mTlT
l
T ¼ 1 ð0:1Þ

where T is the maximum age attained. In mathematical terms, λ is the dominant eigenvalue of

the Leslie matrix, and (0.1) is the (characteristic) equation that determines λ.

We usually replace the annual growth multiplier λ by its instantaneous counterpart r, where

er = λ or r = ln λ. In this case, the Euler Formula (0.1) becomes:

m1l1
er
þ

m2l2
e2r
þ⋯þ

mTlT
eTr
¼ 1: ð0:2Þ

Ecologists call the r computed from (0.2) the intrinsic or instantaneous growth rate of the popu-

lation or the intrinsic rate of natural increase. It is one of the principal life history parameters

of a population. It is also a principal candidate for a fitness function of a population, given its

measure of how a population is growing over time. Note that r< 0 (or λ< 1) indicates a popu-

lation shrinking in size over time, while r> 0 (or λ> 1) indicates an increasing population

size.

A second candidate for the underlying fitness of a population is the net reproductive rate of

the population, R0, sometimes called expected lifetime fertility [12]. When applied to individ-

ual fitness rather than population fitness, some use the term lifetime reproductive success [13].

This is the expected number of (female) offspring a newborn female will have in the course of

her life. It measures the mean number of female offspring by which a female newborn will be

replaced by the end of her life, and thus the factor by which a population increases from one

generation to the next [14, p. 126]. Analytically, it is the probability lx of surviving to age x
times the expected number mx of female offspring at age x, summed over ages x:

R0 ¼ l1m1 þ l2m2 þ⋯þ lTmT ð0:3Þ

Comparing this expression with Euler’s Formula, we find: if λ = 1, R0 = 1. If λ> 1, then R0

> 1; and if λ< 1, R0 < 1. So, fitness measures r = ln λ and R0 are related. The parameter R0 is

often treated as the population multiplier from one generation to the next [14, p. 128] and

called the net reproductive ratio [15] or the basic reproduction number.

A third, more individual measure of fitness was introduced by R. A. Fisher [16] in answer

to the question: what is the “present value” of the current and future offspring of a female of

any age x? Fisher proposed the reproductive value of a female of age x:

Vx ¼
1

lx
ðlxmx þ lxþ1mxþ1e� r þ lxþ2mxþ2e� 2r þ⋯þ lTmTe� TrÞ ð0:4Þ

Fisher discounted the offspring in later years by the population growth r in those years, argu-

ing that the impact of one’s offspring on a population decreases as the population size

increases. In the formula for Vx, each lx+j/lx is simply the probability of surviving from current

age x to age x+j.
Notice that V0 = 1 by Euler’s Formula and the definition that l0 = 1.
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Comparing and contrasting fitness functions

Given the standard assumption that organisms’ life history traits arise from maximizing some

fitness function, we are interested in the timing of the first reproduction or “maturity”, specifi-

cally the age α and size Lα at maturity. We continue using Great Lakes salmonids as our focus

group of species, in which case α is the age (in years since spawning and fertilization) at which

a female first spawns. We compare and contrast the three fitness functions we have just

defined: instantaneous per capita rate of population growth (r), net reproductive rate (R0), and

reproductive value (Vx) at any age x.

In this paper we focus on the semelparous case, where the fitness functions are especially

simple. Recall that semelparous species, like Chinook and Coho Salmon (O. kisutch), die right

after their first reproduction. Only one mx is non-zero, the age of maturity x, which we denote

by α. Thus, the three fitness functions for a semelparous species are simplified as:

Intrinsic population growth rate r : r ¼
lnðlamaÞ

a
ð0:5Þ

Net reproductive rate R0 : R0 ¼ lama ð0:6Þ

Reproductive value Vx for x � a : Vx ¼
lamae� rða� xÞ

lx
: ð0:7Þ

We modify the notation to emphasize that these three fitness functions are functions of α: r(α),

R0(α), and Vx(α). Combining (0.5) and (0.7) yields:

VxðaÞ ¼
erðaÞx

lx
ð0:8Þ

From (0.8) it is clear that any maturation age α that maximizes r(α) also maximizes Vx(α).

These two fitness functions give the same optimal age at maturity, as we show I n S3 Appendix

for the more general case [17,18]. From now on we will only work with r(α) and R0(α).

We first compare r(α) and R0(α). Combining (0.5) and (0.6) yields:

rðaÞa ¼ lnR0ðaÞ:

Assuming, for a moment, differentiability of r(α) and R0(α),

rðaÞ þ r0ðaÞa ¼
R0
0ðaÞ

R0ðaÞ

At the maximizer of r(α), r’(α) = 0 and so:

When r0ðaÞ ¼ 0; rðaÞ ¼
R0
0ðaÞ

R0ðaÞ
: ð0:9Þ

If r(α)> 0, then R0’(α) > 0 and R0(α) is increasing; the maximizer of R0(α) is greater than

the maximizer of r(α) when the population growth rate r(α) is positive. In other words, the age

of maturation that maximizes R0 will be greater than the age of maturity that maximizes r
when r> 0. Similarly, when population size is decreasing (r < 0), the age of maturation that

maximizes R0 will be less than the age of maturity that maximizes r. This is a general result that

follows from the definitions of r and R0 for semelparous populations and does not really

require the differentiability assumption. We will show a graphical version of this result below.

PLOS ONE Geometry of maturation reaction norms

PLOS ONE | https://doi.org/10.1371/journal.pone.0228990 March 16, 2020 4 / 35

https://doi.org/10.1371/journal.pone.0228990


Finding optimal age and size at first reproduction

We take an analytical approach to deriving the optimal size and age at maturation, using r and

R0 as the underlying fitness functions. We then display the results geometrically. We use sur-

vival and fertility functions to write our objective functions r and R0 as functions of size and

age at maturity and then draw their level sets (or isopleths) in age-size space, curves on which

the fitness function takes on the same value, like the iso-temperature curves on a weather map

or the indifference curves in consumer theory. One draws these iso-fitness curves in age-size

space along with the growth curve for the population under study. To find the point of highest
fitness on the growth curve, one looks for the highest fitness level curve that touches the

growth curve. At this optimal fitness point, the iso-fitness curve will, in general, be tangent to

the growth curve. This process is analogous to the way microeconomics students find the level

set (“indifference curve”) of highest utility that intersects a given budget line.

This geometric approach allows us to see how varying background ecological parameters,

like food supply and predation, that alter the population growth curve lead to different optimal

points of age/size at maturity and thus generate the classic reaction norms.

Survival as a function of age

We assume that age-specific survivorship lx is a product of three factors: the probability ly of

surviving the early life history period in the stream (from fertilization to reaching the lake as a

juvenile (smolt) at age y), the probability of survival from entering the lake as a smolt at age y
to first reproduction at age α, and the probability q of surviving the journey upstream to the

egg-laying site. For simplicity we make the standard assumption that annual survival in the

lake from smolt age y to maturation age α is a constant s. We express annual survival probabil-

ity s as an instantaneous mortality rate z: s = e−z, or z = −ln s. Therefore, the probability at fertil-

ization of surviving to first reproduction at age α is:

la ¼ lye� zða� yÞq ð0:10Þ

In the numerical computations behind our figures, we use ly = 0.00953, s = 0.70, so that

z = 0.357 yr-1, y = 0.701 yr, and q = 0.667. See S1 Appendix for details.

Fertility as a function of size

The number of eggs per female increases with female body size in a wide variety of taxa,

including fish [1, p. 126]. We assume that fertility at age x is a power function of female length

Lx at age x:

mx ¼ AðLxÞ
b

ð0:11Þ

for some constants A and b. This assumption is well supported for fish [19,20]. The parameter

A includes the assumption that half the eggs produced are female. The parameter b includes

the fact that weight and volume are related.

In the numerical computations behind our figures, we use A = 0.5�e−4.190� 0.00757 and

b = 1.891. See S1 Appendix for details.

R0 as a function of age and length at maturity

If we substitute the functions for survivorship (0.10) and fertility (0.11) into the definition

(0.6) for R0, the result is R0 as a function of age α and size Lα at maturity:

R0 ¼ ½qly ezyA�ðe� zÞ
a
ðLaÞ

b
ð0:12Þ
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It is helpful to work with the level sets of ln(R0) in terms of age and log(length). Taking the nat-

ural logs of both sides of (0.12) and solving for ln Lα in terms of α, we find

lnLa ¼
1

b
½lnR0 � lnðqlyezyAÞ� þ a

z
b

ð0:13Þ

As illustrated in Fig 1, the level sets of ln R0 in age-log(length) space are straight lines with a

common slope z/b and with an intercept that depends on R0. When R0 = 1, the α = 0 intercept

is:

lnLa0 ¼ �
1

b
½lnðqlyAÞ þ zy� ð0:14Þ

We write Lα0 for the α = 0 intercept of the R0 = 1 level set, an expression that plays a central

role in our geometric analysis (even though maturation will never occur at α = 0):

La0 ¼ ðqlyezyAÞ
� 1
b ð0:15Þ

In age-length space, we observe that, by exponentiating both sides of (0.13), the level curves of

R0 are positively-sloped exponential curves, as shown in Fig 1.

r as a function of age and length at maturity

We next substitute the functions for survivorship (0.10) and fertility Eq (0.11) into the defini-

tion (0.5) for r to write r as a function of age α and size Lα:

r ¼ � z þ
b
a
½� lnðLa0Þ þ lnðLaÞ�; ð0:16Þ

where ln(Lα0) is given by (0.14). We can describe the level sets of r in age-log(length) space by

solving (0.16) for ln(Lα):

lnðLaÞ ¼ a
r þ z

b

� �
þ lnðLa0Þ ð0:17Þ

On each level set of r, ln(Lα) is a linear function in α with slope (r+z)/b and intercept ln(Lα0),

as illustrated in Fig 1. These “concurrent” lines all emanate from their common horizontal

intercept, ln(Lα0). They are positively sloped as long as r> −z, that is, as long as the growth

rate exceeds the death rate.

If we exponentiate both sides of (0.17), we find that for each value of r, the Lα versus α
curves form a family of exponential curves (Fig 1). Note that these curves emanate from a com-

mon horizontal intercept, Lα0.

La ¼ La0 exp
ðr þ zÞa

b

� �

ð0:18Þ

The level curve for r = -z is a horizontal line at Lα = Lα0; for r < -z, the level curves of r slope

downward with age.

Two reference points for level sets of R0 and r
The level sets of r and of R0 as a function of age α and length Lα at maturity play a key role in

our construction and analysis of reaction norm curves in (α, L) space. We have just seen that–

in (α, ln L) space–the level sets of R0 are parallel lines with common slope z/b, and the level sets

of r are rays emanating from the point (0, ln Lα0), where Lα0 is given by (0.14).
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For reference, we note that the line R0 = 1 coincides with line r = 0, with equation

lnðLaÞ ¼ lnðLa0Þ þ a
z
b

� �
:

This is a good reference line for our geometric analysis. In particular, this line emanates from

(0, ln Lα0). To find another reference point on this common line, let’s work with age α = y, the

age of smolt (highly improbable biologically, but handy geometrically). On R0 = 1, 1 = ly my.

So, the fertility at age y must be my = 1/ly. Using the fertility function (0.11) that relates length

and fertility, we find that the length at age y that would result if R0 = 1 is given by:

lnðLy
�Þ ¼ �

1

b
lnðqAlyÞ for age ¼ y and R0 ¼ 1; ð0:19Þ

Fig 1. Level sets of fitness functions R0 and r are straight lines in age/log-length space. Level sets of fitness function

R0 are parallel lines in maturation age/log-length space (A) and concave-up curves in maturation age/linear-length

space (B). Level sets of fitness function r are linear rays emanating from a common point in maturation age/log-length

space (C) and concave-up curves emanating from a common point in maturation age/linear-length space (D). That

common point, colored blue in all four panels, is the y-intercept Lα0 of the level set R0 = 1, or equivalently of level set

r = 0 (the blue line). The red point in all four panels is the point on R0 = 1 or r = 0 that corresponds to maturation age α
equal to smolt age, a point that plays a key role in our analysis.

https://doi.org/10.1371/journal.pone.0228990.g001
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so that this point, along with the slope z/b and age y, determines the age-0 intercept ln Lα0:

lnðLa0Þ ¼ lnðLy
�Þ � y

z
b

� �
ð0:20Þ

Level sets for R0 = 1 (and r = 0) must go through the point (y, Ly
�) in age-length space. This

reference point is indicated in red in our figures.

Effects of changing mortality rate z
In our geometric analyses, we want to understand how the level sets of r and R0 change as the

instantaneous mortality rate z changes. For the parallel level sets of R0 with slope z/b, as z
increases, so does the slope of all the level lines. For the concurrent level sets of r, their com-

mon intercept ln(Lα0) decreases as z increases. Within each concurrent “spray” of lines, as z
increases, the slope (r+z)/b of an r-level line increases. Alternatively, as z increases, a line with

a given slope will have a lower r-value.

Optimal age and size of maturation using growth functions

General formula for optimal age and size at maturation

Our goal has been to compute optimal age and size of maturation for semelparous species

given various choices of fertility, survival, growth and fitness functions. We ask for the age and

size that maximize a given fitness function subject to an underlying growth relationship. In the

last section we began to describe the geometry underlying this process; in this section we carry

out the analysis. The straightforward way of accomplishing this is to substitute the selected

growth function L = L(α) into the fitness function and then maximize the resulting function of

the one variable α. (Alternately, one can use a Lagrange multiplier approach [21].)

For maximizing net reproductive rate R0, use (0.12) to write R0(α,L(α)) as a function only

of α, take the derivative with respect to α, set it equal to 0 and solve. We show in S4 Appendix

that one finds the relationship:

L0ðaÞ
LðaÞ

¼
dðlnLðaÞÞ

da
¼

z
b

ð0:21Þ

This shows that the age and length that maximize R0 occurs at the point (α�, ln L�) in age-log

length space where the growth trajectory has slope z/b. This represents the highest R0 level line

that meets any given growth trajectory. This general formula (0.21) can be used with any

growth function L(α) to determine the optimal age and length at maturation that maximizes

R0.

Multiply Eq (0.21) through by the fertility parameter b. Then, (0.21) implies that the opti-

mal size and age of maturity occur where the marginal fertility from a little more growth bal-

ances with the marginal mortality due to the delay incurred by that additional growth.

For maximizing population growth rate r, do the same with (0.16). We show in S5 Appen-

dix that one finds the relationship:

L0ðaÞ
LðaÞ

¼
dðlnLðaÞÞ

da
¼

lnL � lnLa0
a

ð0:22Þ

This shows that the age and length that maximize r occurs at the point (α�, ln L�) in age-log

length space where the growth trajectory has slope (ln L–ln Lα0)/α. This represents the highest

r level line that originates as a ray from the point (0, ln Lα0) and meets any given growth
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trajectory. This general formula (0.22) can be used with any growth function L(α) to determine

the optimal length at maturation that maximizes r.

Next, we examine two specific functions for growth in the lake (length as a function of age):

linear growth in length and nonlinear asymptotic growth in length. Fish growth is indetermi-

nate. The most commonly used growth function is the von Bertalanffy growth curve [22],

where length increases as age increases but at a decreasing rate and eventually levels off to a

limiting size.

Linear growth

We start by working with the simpler linear growth curves, which have a constant rate of

increase in length. Some fish species have approximately linear growth in length as juveniles

[4,23–28]:

Lx ¼ cþ k x; ð0:23Þ

where Lx is length [mm] at age x [years], c is the length [mm] at age 0, and k is the growth rate

[mm/year].

R0 with linear growth. To study semelparous species with linear growth and fitness func-

tion R0, we combine (0.21) and (0.23) to find:

L ¼
b
z

k ð0:24Þ

a ¼
b
z
�

c
k

ð0:25Þ

The optimal length at maturity, bk/z, is proportional to the linear growth rate k and to the

exponent b relating length to fecundity, and inversely proportional to the instantaneous mor-

tality rate z, and—surprisingly—is independent of initial length c. For the special case of c = 0

in the linear growth function, the optimal age α of maturity is simply b/z, independent of the

growth rate k. It is not surprising that optimal age of maturity is inversely proportional to the

mortality rate z. It is a general tenet of evolutionary biology that the more dangerous life is,

that is, the higher the probability of an earlier death, the more it makes sense to speed up the

timetable of reproduction.

At least as important as computing the optimal α and Lα for any growth and mortality rate

is ascertaining how these optimal values change as the underlying environment changes. In

Fig 2 we put our fitness graphs and growth graphs together to see how the optimal age and size

at maturation depend on the parameters of the problem.

Fig 2A shows the parallel linear level sets of R0 as function of age and log-length, as in Fig

1A. We superimpose on these the graphs of linear growth functions (0.23) for different values

of k for c = 0. These growth curves–linear in age/length space–are non-linear logarithmic

curves in age/log-length space. For any particular growth function (dotted line), the solid dot

indicates the age/log-length point where the growth line meets the highest level set of R0 and is

therefore tangent to it. We see in Fig 2A that for different values of k, that is, for different linear

growth rates, the optimal age α of maturity is constant–as we saw analytically in the last para-

graph, independent of the slope k of the growth curve. Think of k as depending on something

like food availability that has an impact on growth. For a semelparous fish with linear growth

in length and fitness function R0, optimal age of maturity does not change as food availability

changes; but the optimal length at maturity changes dramatically.
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These curves that trace out the optimal values of age and length (or log-length) at maturity

as an environmental parameter changes are called “reaction norms,” in our case, “maturation

reaction norms” (MRNs). We denote the maturation reaction norms that maximize R0 or r as

MRN(R0) and MRN(r), respectively. A key thrust of this paper is to show a geometric method

of studying reaction norms, and to use this method to see how reaction norms depend on

underlying components of the model.

Fig 2B shows the corresponding result in age vs. length, as we did in Fig 2A; in this plot the

level curves of R0 are exponential curves and the growth curves are rays from the origin.

What do the corresponding maturation reaction norms look like for c > 0? Geometrically,

we are shifting up the array of growth curves emanating from the origin in Fig 2A and 2B to

an array of growth curves emanating from (0, c) as in Fig 2C and 2D. Analytically, for a fixed

Fig 2. These panels illustrate the construction of the maturation reaction norm MRN(R0) for linear growth. For

linear growth: L = c + k x, where L is length, x is age in years, k is the growth rate, and c the size at age 0. The

underlying fitness function is R0 for all four panels. (A, C) The y-axis represents log-length so that the iso-fitness curves

(solid grey lines) are straight lines. (B, D) The y-axis represents linear length so that the linear growth curves (black

dotted lines) are straight lines. Size c at x = 0 is set to 0 in the first row; c> 0 in the second row (purple: 20 mm; violet:

40 mm; pink: 80 mm). (The analysis is much simpler for c = 0.) Higher growth curves correspond to higher values of

the growth rate k. For each growth curve, one finds the highest iso-fitness curve that intersects it. The locus of such

points as k varies traces out the reaction norm (solid black curve for c = 0, colored lines for c> 0). The reaction norm

is mostly vertical when R0 is the fitness function (versus perfectly horizontal when r is the fitness function; Fig 3). Fig 4

summarizes and consolidates this information.

https://doi.org/10.1371/journal.pone.0228990.g002
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c> 0, we think of the Eqs (0.24) and (0.25) as defining a curve parameterized by k. To get the

equation of this MRN(R0) curve, eliminate k from these equations:

Lc
�ðaÞ ¼

bc
b � az

for 0 � a �
b
z

ð0:26Þ

We write L = L�(α) to describe the MRN curve, reserving the unstarred L = L(α) for the under-

lying growth curve. We note that L�c(0) = c, that L�c’(0) = zc/b, and that L�c(α) has a vertical

asymptote at α = b/z and is increasing from α = 0 to α = b/z. Reaction norm curves for three

positive values of c are drawn in Fig 2C and 2D. Note that these curves are still mostly vertical

since they are asymptotic to the line α = b/z, the MRN(R0) curve for the c = 0 case.

Compare Fig 2D (c> 0, R0) with Fig 2 in Perrin and Rubin [4], derived from simulations in

which the authors are treating the iteroparous case and hold b = 3.

r with linear growth. For maximizing population growth rate r subject to linear growth,

we combine the equation defining optimal length (0.22) and the linear growth function (0.23)

to find:

lnLa ¼
ak

cþ ak
þ lnLa0 ð0:27Þ

For the special case c = 0, in which the growth curves are rays from the origin with slope k, the

expression (0.27) is simplified:

La ¼ e � La0 for c ¼ 0 ð0:28Þ

The optimal length at maturity to maximize r is independent of α and independent of growth

rate k. The MRN(r) is a horizontal line in age-length space, in contrast to the vertical line for

MRN(R0) when R0 is the fitness measure.

When c > 0, eliminating k in expression (0.27) becomes:

lnðLaÞ ¼ 1 �
c

La
þ lnðLa0Þ for c > 0 ð0:29Þ

where L α0 is given by (0.15). Note that expression (0.29) is also independent of α. Knowing

the optimal length at maturity Lα, the corresponding age at maturity α is found using the linear

growth rate (0.23):

a ¼
La � c

k
ð0:30Þ

The geometry behind these calculations for fitness measure r and linear growth (0.23) is

shown for various levels of c in age-log length space (Fig 3A and 3C) and in age-length space

(Fig 3B and 3D). For c = 0, the graphs of the growth curves for different values of the growth

constant k are rays from the origin, designated by the dotted black lines in Fig 3A. The level

sets of r in age-length space (Fig 3B) are the exponential curves (the long-dash curves) emanat-

ing from the same point on the horizontal axis, as we saw in Fig 1D. The constrained maxima

occur at the tangencies, all of which lie on the MRN(r), the solid horizontal line in Fig 3A and

3B. As growth rate k increases, for example via increased food supply, optimal age of matura-

tion decreases but the optimal length at maturation remains constant. The MRN(r) lines

remain straight lines even for c> 0 (Fig 3C and 3D). In contrast, recall that the MRN(R0) lines

become curved for c> 0 (Fig 2C and 2D).

Note that, for fitness function r, mortality z enters the expressions for optimal size (0.27)

and age (0.30) only in the ln(Lα0) term. Furthermore, z appears in the expression (0.15) for ln

(Lα0) only in the product zy. So, if one assumes y = 0, then z does not enter at all. Some authors
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[1,29] work with y = 0 as a simplifying assumption for the hypothesis that early mortality

occurs in a small time interval close to age 0. Our analysis shows that such an assumption leads

to the (perhaps counter-intuitive) conclusion that optimal size and age at maturity are inde-

pendent of the juvenile mortality parameter z, but they are dependent on the proportion (p =

ly) surviving the early mortality period.

Comparing maturation reaction norms for R0 and r for linear growth. Fig 4 shows

both MRN(R0) and MRN(r) on the same age/log-length graph and age/length graph for the

case of semelparous species and linear growth in length (with c = 0). The solid, black, horizon-

tal line is MRN(r); the solid, black, vertical line is MRN(R0). The short-dash black lines arising

from the origin represent different growth trajectories. Following along a single growth trajec-

tory, one can see that the maturation age that maximizes r (red point) is less than the

Fig 3. These panels illustrate the construction of the maturation reaction norm MRN(r) for linear growth. For

linear growth: L = c + k x, where L is length, x is age in years, k is the growth rate, and c the size at age 0. r is the

underlying fitness function for all four panels. (A, C) The y-axis represents log-length so that the iso-fitness curves

(red-dashed lines) are straight lines. (B, D) The y-axis represents linear length so that the growth curves (black dotted

lines) are straight lines. Size c at x = 0 is set to 0 in the first row; c> 0 in the second row (purple: 20 mm; violet: 40 mm;

pink: 80 mm). Higher growth curves correspond to higher values of the growth rate k. For each growth curve, one

finds the highest iso-fitness curve that intersects it. The locus of such points as k varies traces out the reaction norm

(solid black line for c = 0, colored horizontal lines for c > 0). The reaction norm is perfectly horizontal when r is the

fitness function (versus mostly vertical when R0 is the fitness function; Fig 2). Fig 4 summarizes and consolidates this

information.

https://doi.org/10.1371/journal.pone.0228990.g003
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maturation age that maximizes R0 (black point) when r > 0 and R0 > 1 (above and to the left

of the blue line). But when r < 0 and R0 < 1 (below and to the right of the blue line), this

reverses, and the maturation age that maximizes R0 is less than the maturation age that maxi-

mizes r. The maturation ages are identical when r = 0 and R0 = 1 (on the blue line). This is a

geometric example of the analytical result concluding section 3.

von Bertalanffy growth

The most common growth function used in models of fish life history is the von Bertalanffy

growth curve, which assumes that early growth is rapid but tapers off to an asymptotic size L1
[30]. Although von Bertalanffy growth has been criticized by some researchers [25,26,27,31], it

has become a standard for describing annual growth of fishes [3,22,32,33]. Beyond fish, Kooij-

man [34] fitted the von Bertalanffy equation to 250 species in nine phyla.

We will work with a post-smolt von Bertalanffy curve, with growth rate k in the lake until

spawning and death.

Lx ¼ L1ð1 � Ce� kðx� yÞÞ for ages x � smolt age y: ð0:31Þ

Here C = 1 –Ly/L1, where Ly is the length at smolting, when the female enters the lake at age y,

and k is the von Bertalanffy growth coefficient [units: year-1], analogous to the k [units: mm/

yr] in the linear growth curve (0.23). A semelparous salmon that matures at age α after (α - y)

years in the lake, will have length

La ¼ L1ð1 � Ce� kða� yÞÞ ð0:32Þ

In the numerical calculations behind our figures, we take y = 0.701 yr, Ly = 80 mm, L1 =

1019 mm, and so C = 0.921 (see S1 Appendix for details).

Fig 4. Growth trajectories with maturation reaction norms for maximizing r (horizontal line) and R0 (vertical

line). Growth trajectories (dotted lines) show the linear growth function L = c + k x, with c = 0; red dots show where r
is maximized; black dots show where R0 is maximized along the growth trajectory. (A) With log-length on the vertical

axis, the growth trajectories are curved, and the underlying iso-fitness lines are straight lines (shown only as the blue

line corresponding to R0 = 1 or r = 0; see Fig 2A and Fig 3A). (B) With linear-length on the vertical axis, the growth

trajectories are straight lines, and the underlying iso-fitness lines are curved lines (blue line corresponds to R0 = 1 or

r = 0; see Fig 2B and Fig 3B). In both panels, the MRN for fitness function r is horizontal (optimal maturation size does

not change as growth rate k varies), while the MRN for fitness function R0 is vertical (optimal maturation age does not

change as growth rate k varies).

https://doi.org/10.1371/journal.pone.0228990.g004
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R0 with von Bertalanffy growth. To find the optimal α and L for semelparous species

with von Bertalanffy growth using fitness function R0, we combine the R0 optimality Eq (0.21)

and the von Bertalanffy Eq (0.32). The results (S6 Appendix) are values that depend on growth

rate k.

a ¼ yþ
1

k
ln C

bkþ z
z

� �� �� �

La ¼ L1 1 �
z

bkþ z

� �

¼ L1
bk

bkþ z

� � ð0:33Þ

For the special case where C = 1, b = 3, and y = 0, the top equation in (0.33) is identical to the

equation derived by Roff [1], his equation (4.81), and by Morita et al. [11] for maximizing life-

time fertility R0.

Rewrite the second equation in (0.33) as:

La
L1
¼

1

1þ z
bk

: ð0:34Þ

Eq (0.34) gives a relationship between the two Beverton-Holt invariants: (z/k) and (Lα/L1).

See [35] and our discussion section below. Eq (0.34) suggests that the exponent b in the fertility

function (0.11) should be included among the life-history invariants; more specifically, (z/bk)

should replace (z/k). Including the parameter b preserves the invariant as a dimensionless

number, while accounting for differences among taxa in the size-dependence of the allocation

to reproduction.

Before we examine the reaction norm, we ask: How do the optimal α� and L� vary with k in

(α,L) space? We write L�α(k) and α�(k) for the R0-maximizing expressions in (0.33). Since

dL�a
dk
¼ L1

bz
ðbkþ zÞ2

> 0;

L�α is a monotone increasing function of k; in fact, L�α converges toward L1 as k increases. See

Fig 5B. However,

da�
dk
¼

k� 1

k
� lnC � lnk

k2
; where k �

bkþ z
z
� 1:

The numerator in this expression starts positive at–ln C (since 0< C < 1), increases monoton-

ically (since its derivative is positive) and is eventually negative (since–ln κ! −1). Therefore,

α�(k) has an inverted U-shaped graph. It increases to a peak and then decreases as k grows. Fig

5A and 5B presents graphs of these parameter curves for reasonable values of the parameters.

The inverted U-shaped graph of α�(k) makes intuitive sense (Fig 5A). In a resource con-

stricted environment, say when food is scarce (low k), the ability to survive and produce more

eggs is limited. In this regime, one should respond to still lower resource availability by repro-

ducing earlier (“while one still can”). On the other hand, if food is plentiful and getting more

so and one is near maximum size, it makes no sense to delay reproduction for the benefit of a

little extra body weight and a tiny increase in fecundity.

We put these graphs together to construct the graphs of the reaction norms. For each von

Bertalanffy growth curve, we find the highest R0 level curve (Fig 1) that touches it. Fig 6A pres-

ents the reaction norm for R0 in α-ln(L) space, and Fig 6B presents the graph for Eq (0.33) in
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α-L space. Its U-shape follows from the fact that

da�
dL�
¼

da�
dk
= dL�

dk
:

Here we can see that if the growth resource is limited, one should mature earlier if the resource

decreases even more; on the other hand, it makes sense evolutionarily to take advantage of a

high growth rate (plentiful resource) by spawning sooner rather than later.

r with von Bertalanffy growth. We next examine semelparous species with von Berta-

lanffy growth and fitness function r. Recall the optimization criterion (0.22). As we saw in Fig

1A and 1B, the level curves of r are straight lines through a common point in age/log-length

space and a family of exponential curves from a common point in age/length space. For a

Fig 5. Optimal maturation age and length versus von Bertalanffy growth coefficient, for five survival rates. In all

four panels, the horizontal axis corresponds to the growth rate k in the non-linear von Bertalanffy growth curve. The

vertical axis presents the optimal maturation age on the left two panels (A, C) and the optimal maturation length on the

right two panels (B, D), for each value of k. For the top two panels the underlying fitness function is R0; for the bottom

two panels the underlying fitness function is r. In each panel, optimal age and size curves are drawn for five values of

survival rates s (red: 0.25; orange: 0.50; green: 0.70; blue: 0.80; violet: 0.85). As the annual survival rate increases from

s = 0.25 to 0.85, the optimal maturation age and length increase for a given k. In panels A & C, the horizontal black

dashed line indicates the age at smolting; the colored points at the peak of the vertical lines indicate the maximum

value of optimal maturation ages for a given annual survival s. In panels B and D, the horizontal red dashed line

represents the asymptotic length of the von Bertalanffy growth function.

https://doi.org/10.1371/journal.pone.0228990.g005
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given growth curve, we find the age at which the growth curve is tangent to the highest level

set of r that it can reach.

Substituting the von Bertalanffy growth curve from (0.32) into the optimization criterion

(0.22) for r yields the following:

Lð� lnLa0 þ lnLÞ ¼ aL1Cke� kða� yÞ

¼ akðL1 � LÞ
ð0:35Þ

There is no simple analytical solution, but this expression can be solved numerically.

One has to solve (0.32) and (0.35) for α� and L� in terms of k to derive the maturation reac-

tion norm MRN(r). In Fig 6C and 6D we present a computer solution to this system and pres-

ent the geometric picture analogous to that of Fig 6A and 6B. As for the case with linear

Fig 6. These panels illustrate the construction of maturation reaction norms (MRNs) for von Bertalanffy growth.

This figure corresponds to Figs 2 and 3 for linear growth. R0 is the underlying fitness function for the top two panels

(A, B); r is the underlying fitness function for the bottom two (C, D). The y-axis corresponds to log-length in the two

panels on the left (A, C) and to linear length in the two panels on the right (B, D). The graphs of the von Bertalanffy

growth curves are represented by black dotted lines in all 4 panels. The iso-fitness curves (from Fig 1) are solid grey

lines in the top 2 panels and solid red lines in the bottom two. For each growth curve, one finds the highest iso-fitness

curve that intersects it. The locus of such points, as growth varies, traces out the MRN (solid black curve). In the top

two panels the MRN(R0) is a vertical line bowed to the right; in the bottom two panels the MRN(r) is mostly

horizontal. The blue curve marks the R0 = 1 or r = 0 iso-fitness curve.

https://doi.org/10.1371/journal.pone.0228990.g006

PLOS ONE Geometry of maturation reaction norms

PLOS ONE | https://doi.org/10.1371/journal.pone.0228990 March 16, 2020 16 / 35

https://doi.org/10.1371/journal.pone.0228990.g006
https://doi.org/10.1371/journal.pone.0228990


growth, the maturation reaction norms for r are close to horizontal curves so that optimal mat-

uration age changes dramatically as k decreases, but the optimal maturation size does not

change much as k changes.

Comparing maturation reaction norms for R0 versus r for von Bertalanffy growth. In

Fig 7, we plot the numerical solution of MRN(R0) and MRN(r) for a given set of parameters

for von Bertalanffy growth, the analog of Fig 4 for linear growth. As expected, these two

MRNs intersect where R0 = 1 and r = 0. That is, when the rate of change (of offspring per

capita per year) for this lineage is 0, the optimal age and size for maximizing r are the same
as the optimal age and size for maximizing R0. When this lineage is increasing (R0 > 1 and

r > 0), then the optimal age and size for maximizing r are less than the optimal age and size

for maximizing R0. As one moves along the highest growth trajectory in Fig 7, one first

encounters the red circle indicating MRN(r) for von Bertalanffy growth. Farther along the

same growth trajectory one then encounters the black circle of MRN(R0), indicating matu-

ration at a later age and a larger size. The opposite occurs when the lineage is decreasing (R0

< 1 and r < 0): the age and size for maximizing R0 occurs earlier than the age and size for

maximizing r. As for the case with linear growth (Fig 4), this figure for von Bertalanffy

growth (Fig 7) shows a graphical explanation of the analytical result presented in (0.11). At

extremely high growth rates, optimal size approaches the asymptotic size (indicated by the

horizontal red dashed line in Fig 7).

As the population growth rate declines below the rate that would allow R0 = 1 and r = 0, the

MRN(r) indicates that the age that maximizes r will increase rapidly, with little change in opti-

mal size. In contrast, the MRN(R0) indicates that the age that maximizes R0 will change, first

increasing, then decreasing, while optimal length decreases monotonically.

For linear growth, MRN(r) is horizontal, while MRN(R0) is vertical in age-length space

(Fig 4). For von Bertalanffy growth, these patterns persist, especially for decreasing popula-

tions (R0 < 1) (Fig 7). A large difference between the MRNs occurs at very low von Berta-

lanffy growth rates, where MRN(r) indicates a very old age at maturity, whereas MRN(R0)

indicates that optimal maturation will occur early at a small size; growth is so slow that wait-

ing longer to mature would result in very small increases in fertility at the cost of much

greater risk of death.

Maturation reaction norms as the instantaneous mortality rate z changes

Up to this point, we have examined reaction norms for maturation age and size, α and L, as

the underlying growth rate k changes. Geometrically, we expressed the fitness functions in

terms of α and L; and for each growth curve with growth parameter k, we computed the

highest fitness isocline that touched that growth curve. We turn now from varying k to vary-

ing the underlying instantaneous mortality rate z. Intuitively, if k measures the availability

of a growth resource, like food supply or nurturing environment, then z measures the

impact of predation or environmental hazards. We use a similar geometric process to take

into account changes in z. However, z appears only in the expressions for survivorship in

the fitness functions r and R0, not in the expressions for the growth curves. As we noted ear-

lier, when viewed in α-ln(L) space (Fig 1A and 1C), changes in z lead to changes in the com-

mon slope (z/b) of the level sets of R0 (0.15), to changes in the various slopes ((r + z)/b) of

the level lines of r (0.19), and, for y > 0, to changes in the common intercept of the concur-

rent level lines of r (0.22).

We fix growth parameter k, which means we fix the underlying growth curve. For maximiz-

ing r, recall that for each fixed value of z, the level sets of r in age-log(length) space form a

“spray” of lines with common intercept point (0.14) (Fig 8A and 8B). As z increases, this
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intercept decreases (given y > 0) and the slope of the r = 0 line increases (Fig 8). As z increases,

the r-level line that is tangent to the growth curve moves down and to the left (Fig 9C and 9D

for linear growth; Fig 10C and 10D for von Bertalanffy growth). It follows that the z-matura-

tion reaction norms in age-log(length) space are simply the growth curves, with optimal matu-

ration age and size both decreasing as mortality rate z increases. Note that if y = 0, then the

Fig 7. Growth trajectories with maturation reaction norms maximizing r (horizontal line) and R0 (bowed vertical

line). This figure summarizes for von Bertalanffy growth trajectories (dotted lines) what Fig 4 summarized for linear

growth; red dots show where r is maximized and black dots show where R0 is maximized along each growth trajectory.

(A) With log-length on the vertical axis, the underlying iso-fitness curves are straight lines (shown only as the blue line

that corresponds to R0 = 1 or r = 0; see Fig 6A and 6C). (B) With linear-length on the vertical axis, the underlying iso-

fitness lines are curved (blue line corresponds to R0 = 1 or r = 0; see Fig 6B and 6D). In both panels, the reaction norm

for fitness function R0 is bowed out to the right (optimal maturation age stays in a narrow range as growth rate varies),

while the reaction norm for fitness function r is mostly horizontal (optimal maturation size changes little as growth

rate varies).

https://doi.org/10.1371/journal.pone.0228990.g007

Fig 8. Level sets for R0 = 1, r = 0 in age-length space, by annual survival. (A) With log-length on the vertical axis, iso-

fitness lines are straight. (B) With linear-length on the vertical axis, iso-fitness lines are curved. As annual survival

probability increases from s = exp(-z) = 0.2 to 0.7, these level sets rotate clockwise about the red point (y, Ly) and the

age-0 intercept (0, Lα0) increases. (See the blue curves in Fig 1.).

https://doi.org/10.1371/journal.pone.0228990.g008
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intercept for the level sets of r does not change with z. In this case, the r-level set that is tangent

to the growth curve has the same point of tangency, so that the optimal size and age of matura-

tion are independent of z.

A similar story holds for fitness function R0; increases in z lead to increases in the slope of

the R0 level lines, which in turn implies that the optimizing tangency occurs below and to the

left of the original tangency. Once again, the growth curve itself is the maturation reaction

norm as z changes. Optimal maturation age and size both decrease as mortality rate z increases

(Fig 9A and 9B for linear growth; Fig 10A and 10B for van Bertalanffy growth).

Compare Fig 9B with Fig 1 in [4], derived from simulations because the authors are treating

the iteroparous case and hold b = 3.

Two-dimensional reaction norms

We now ask what happens to optimal age and size at maturation as both k and z change. As

our discussions in the previous two subsections indicate, the same equations apply to maxi-

mizing with respect to k and with respect to z. For fitness function R0, Eq (0.33) present the

optimal α and the optimal L for each choice of k and z. Fig 11 displays the level sets of optimal

α and L respectively in (k,z)-space for linear growth, for fitness function R0 and also for fitness

function r.

For the case of linear growth, we see (Fig 11) that if k changes but not z, optimal age α does

not change for fitness R0 but it increases monotonically for fitness r. If mortality rate z
increases, but k stays constant, optimal α decreases under R0 and also decreases under r. If

both k and z increase, α decreases under R0, but changes relatively more slowly under r.

The level sets for optimal maturation age are different for linear growth (Fig 11) and von

Bertalanffy growth (Fig 12). Also, the optimal size level sets differ for the two growth functions

(Fig 11, Fig 12). For von Bertalanffy growth, to maintain the same optimal size for fitness r, an

increase in k requires a compensatory increase in z (Fig 12D). For linear growth, the optimal

maturation size for fitness r is independent of the growth rate k but strongly influenced by

mortality rate z (Fig 11D).

To get the full picture for how optimal age and size vary as the underlying parameters k and

z vary, one can create a four-dimensional reaction norm graph by superimposing the optimal

age graphs over the optimal size graphs (Fig 11E and 11F and Fig 12E and 12F).

Fig 12 allows one to sketch reaction norms when there is an underlying relationship

between survivorship and growth. For example, in their treatment of iteroparous species, Per-

rin and Rubin [4] used simulations to draw different reaction norms when survivorship and

growth are positively correlated (their Fig 3) or negatively correlated (their Fig 4). In the latter

case, their reaction norms are “dome-shaped,” like those that Alm [36] found in his experi-

mental work with several fish species.

Optimal fitness trade-offs as k and z change

Finally, we relate optimal fitness to values of the growth parameter and mortality rate. In this

way, we can discuss the trade-off between increasing growth rate k (via more resources, like

food) and increasing risk of mortality (say, via more predators or harsher environment). All

species face this risk-reward dilemma: trading off the possibility of harm or death in order to

achieve a more valuable resource. Here we use growth rate k to measure resource acquisition

and instantaneous mortality rate z to measure “risk.” For each (k,z) pair we have computed the

optimal age α and size L of maturation and for each such pair (α, L) we can compute fitness r
and fitness R0. This gives us optimal fitness as a function of k and z.
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For the reproductive rate R0, we substitute α and L from Eqs (0.33) into expression (0.12)

for R0:

R0 ¼ qlye� zða� yÞAðLaÞ
b

¼ qly C
bkþ z

z

� �� ��
z
kAðL1Þ

b
1 �

z
bkþ z

� �b

¼ qlyAðL1Þ
b C b

k
z
þ 1

� �� ��
z
k 1

1þ
z

bk

0

B
@

1

C
A

b
ð0:36Þ

The first line of (0.36) follows from (0.12); the second line from (0.33). Note that k and z only

Fig 9. Given a linear growth trajectory, increasing survival increases optimal maturation age and size. As annual

survival s increases, the growth curve is unchanged, but the iso-fitness curves become less steep and the age-0

intercepts increase (see Fig 8), so optimal age and length increase along the growth curve. From this point of view the

reaction norm curve is the same as the growth curve. Colored lines show level sets of fitness function R0 in (A, B) and

level sets of r in (C, D); corresponding colored points show optimal age and length to maximize the fitness function for

each level of annual survival rate s (red: 0.25, orange: 0.50, green: 0.70, blue: 0.80). This linear growth trajectory has

k = 266.2 mm/yr, c = 0. (A, C) With log-length on the vertical axis, iso-fitness lines are straight. (B, D) With linear

length on the vertical axis, the linear growth curve is a straight line, but iso-fitness lines are curved.

https://doi.org/10.1371/journal.pone.0228990.g009
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occur in the ratio k/z. Thus, the R0 level curves are straight lines from the origin in (k,z) space

for von Bertalanffy growth (Fig 13C), in contrast to the curved lines for linear growth (Fig

13A).

The corresponding level curves of fitness r require a numerical approach. Note that for lin-

ear growth, the level sets of r are more “parallel” (Fig 13B) than are those of R0. For von Berta-

lanffy growth, the level sets of r do not arise from the k-z origin (Fig 13D). For r the tradeoff

between improved resources for growth k and the risk in attaining those resources does not

depend much on current fitness. However, for R0 the lower one’s fitness level, the more risk

one is willing to trade off for the resources for higher k.

Comparison with data

Naturalized Chinook Salmon in Lake Michigan. It is natural to ask whether changes in

growth rate cause Chinook Salmon in Lake Michigan to modify their age at maturity (in line

Fig 10. Given a von Bertalanffy growth trajectory, increasing survival increases optimal maturation age and size.

As annual survival s increases (red: 0.25, orange: 0.50, green: 0.70, blue: 0.80), the growth curve is unchanged but the

iso-fitness curves become less steep and the age-0 intercepts increase, so optimal age and length increase along the

growth curve. From this point of view the reaction norm curve is the same as the growth curve. (A, C) With log-length

on the vertical axis, iso-fitness lines are straight. (B, D) With linear length on the vertical axis, iso-fitness lines are

curved. The horizontal red dashed line represents the asymptotic length L1 for von Bertalanffy growth, with

k = 0.4973 yr-1, L1 = 1019 mm, y = 0.701 yr, and Ly = 80 mm.

https://doi.org/10.1371/journal.pone.0228990.g010
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with r) or their size at maturity (in line with R0). We present some preliminary data here; we

will compile a more complete empirical analysis in a follow-up report.

A major factor affecting fish growth rate is the availability of preferred foods. The preferred

food of Lake Michigan Chinook is the Alewife (Alosa pseudoharengus), a fish related to her-

ring. The relative biomass of Alewives (tons of Alewives per ton of Chinook Salmon) in Lake

Michigan varied by a factor of two during the period 1991–2008 [37]. Fig 14 summarizes these

data. For any prey biomass, the female age at maturity mostly hovers between 2.4 and 3.0

years, while the female weight at maturity increases with relative prey biomass roughly from 5

to 8 kg (Fig 14A). (For salmonids that spawn at a single time each year, roughly October 1 for

the Chinook Salmon in Lake Michigan, an age of maturity of 2.5 is interpreted as 50% of the

females maturing at age 2 and 50% at age 3.) Fig 14B plots age at maturity versus weight at

maturity for these 18 points; it presents a relatively constant age and an increasing size. We

note that the data in Fig 14 broadly represent Lake Michigan Chinook Salmon in that they

come from an empirical study [37] of multiple tributaries over many years.

It is natural to ask how the data points in Fig 14B relate to the MRNs in Fig 4 (linear

growth) and Fig 7 (von Bertalanffy growth). To draw the relevant MRNs we used the values

for the parameters we estimated for Lake Michigan Chinook Salmon (S1 Appendix, especially

Appendix Table B). We then drew the MRNs for r and R0 by letting growth rate k vary.

First consider linear growth. Many authors [4,23–28] work with linear growth for fish;

some even present empirical evidence of linear growth, at least prematuration. The points in

Fig 14B are clearly more consistent with the vertical MRN(R0) than with the horizontal MRN

(r) in Fig 4.

Turning to von Bertalanffy growth, we overlay in Fig 15 the maturation size and age data

from Fig 14B with the von Bertalanffy growth trajectories and MRNs from Fig 7B, converting

length to weight [38]. The second-highest and third-highest growth trajectories (with growth

coefficients of 0.64 and 1.28 y-1) bound the almost two-fold variation in mean weight at matu-

rity. Within this range of growth rates both MRNs show an increase in maturation age with a

decrease in weight at maturity. The MRN(R0) goes through the range of data points. In striking

contrast, the MRN(r) for the same range of growth rates predicts a weight at maturity about

three-fold smaller and an age at maturity about one year younger than the data. The data are

more consistent with MRN(R0) than MRN(r).

Hatchery-reared Chinook Salmon

A comparison of hatchery-reared salmon with wild salmon also points to R0 as the more likely

underlying fitness function. For maximizing r (but not for maximizing R0), the egg-to-smolt

survival affects the optimal maturation age and length. (Compare (0.23) and (0.24).) Thus, if r
is the underlying fitness function, changes in this early survival will change the optimal matu-

ration age and length.

Under natural conditions this survival fraction (which we denote as ly) may be low. For nat-

uralized Chinook Salmon in Lake Michigan we use an estimate of ly = 0.00953 (see Table B in

S1 Appendix). In hatcheries, this egg-to-smolt survival is much greater; that is the purpose of

Fig 11. Level sets of optimal age and length as functions of growth rate and mortality rate. The underlying growth is

linear. For each combination of growth rate k and mortality rate z and underlying fitness function, there is an optimal age

α of maturity and optimal length L. (A) Level sets of optimal age for fitness function R0, with the age listed on each level

set; (B) Level sets of optimal age for fitness function r; (C) Level sets of optimal length for fitness function R0, with the

length listed on each level set; (D) Level sets of optimal length for fitness function r; (E) combines information from (A)

and (C); (F) combines information from (B) and (D). Optimal age is insensitive to k for R0; optimal length is insensitive

to k for r.

https://doi.org/10.1371/journal.pone.0228990.g011
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Fig 12. Level sets of optimal age and length as functions of growth rate and mortality rate. These panels repeat the

analyses in Fig 11 but use von Bertalanffy growth.

https://doi.org/10.1371/journal.pone.0228990.g012
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hatcheries. Salmon hatcheries in British Columbia, Canada, have egg-to-smolt survivals of

0.70–0.80 [39]. Hatcheries on the Lower Snake River in Idaho, for the 2005 Chinook Salmon

brood year, had a reported egg-to-release (at smolt) survival of 0.813 [40].

If we use R0 as the underlying fitness function and use our nominal values for von Berta-

lanffy growth and other parameters (see Table B in S1 Appendix), this results in an optimal

maturation age of 3.1 years after fertilization and an optimal maturation length of 739 mm,

with an expected fecundity of 2,012 female eggs. The resulting value of R0 is 5.37 females per

female per generation. These values are expected to be the same for wild and hatchery Chinook

Salmon, because the parameter ly does not influence the calculations for R0.

If we use r as the underlying fitness function and continue using our nominal values for

von Bertalanffy growth and the other parameters, then ly = 0.00953 results in an optimal matu-

ration age of 1.8 years and an optimal maturation length of 472 mm, with an expected fecun-

dity of 861 female eggs. The hatchery value of ly = 0.813 produces dramatically different

results; the optimal maturation age becomes 0.89 years, the optimal maturation length

becomes 163 mm, with an expected fecundity of 115 female eggs (with 0.813 surviving to

smolt!). The growth rate of the lineage would increase from r = 0.735 to r = 4.59,

Fig 13. Level sets of fitness as functions of growth rate and mortality rate. Level sets of fitness as R0 (A, C) and

fitness as r (B, D) in relation to mortality rate z and growth coefficient k, for linear growth (A, B) and for von

Bertalanffy growth (C, D). Combinations of growth rate k and mortality rate z in the region below and to the right of

the blue line have R0 > 1 and r > 0 and thus indicate the lineage is increasing. Such a figure helps in the evaluation of

the trade-offs, say, in the search for a more substantial but riskier food source.

https://doi.org/10.1371/journal.pone.0228990.g013
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corresponding to the annual growth multiplier λ = er increasing from λ = 2.1 to λ = 98. How-

ever, the observation is that stocked hatchery-reared fish tend to mature at the same age and

Fig 14. Weight and age at maturity for female Chinook Salmon in Lake Michigan. (A) Weight at maturity in kg

(black circles) and age at maturity in years (red squares) for female Chinook Salmon in Lake Michigan each year for

the period 1991–2008 [37] in relation to the relative prey biomass (tons of Alewife/tons of Chinook Salmon). (B)

Weight at maturity relative to age of maturity for these same points. In both panels, we see small changes in age at

maturity and relatively large swings in size at maturity.

https://doi.org/10.1371/journal.pone.0228990.g014

Fig 15. Weight and age at maturity for female Chinook Salmon in Lake Michigan, with growth trajectories and

maturation reaction norms for R0 and r. Data points from Fig 14B for the period 1991–2008 [37] are shown with

growth trajectories (dashed gray lines), MRN(R0) (black line) and MRN(r) (red line) from Fig 7B, converting length to

weight [38].

https://doi.org/10.1371/journal.pone.0228990.g015
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length as wild (or naturalized) fish [37]. This strongly suggests that the salmon are not maxi-

mizing r, at least not under these conditions.

Discussion

Overview

Optimal age and size at maturity depend on many life history parameters, including early-age

survivorship (our ly), juvenile survival (our z), and fertility as a function of body size (A Lb).

These need to be estimated in order to compute optimal life history characteristics. Once func-

tions are specified for survivorship as a function of age, fertility as a function of size, and

growth as a function of age, then one can write fitness (as R0 and as r) as a function of age and

size.

Several authors have correctly pointed out that maximizing r and maximizing R0 yield the

same optimal life history traits for the case when r = 0 and R0 = 1. However, as environmental

conditions change or vary, the growth rate or mortality rate is likely to change, leading to

changes in r and R0. We have shown how the optimal age and length at maturation would

change for each fitness function given such potential changes in r and R0.

The case of linear growth in length clearly shows the differences in maturation reaction

norms between these two classic fitness functions. Furthermore, the linear-growth case also

helps interpret the variation on this theme seen in the MRNs for von Bertalanffy growth.

Given our assumptions for survivorship, fertility, and growth, we show the following, for

linear growth (Fig 4). (1) MRN(R0) is a straight vertical line in age-length space, so that optimal

age at maturation is constant despite changes in growth rate. The optimal age is proportional

to the length exponent for fertility b and inversely proportional to mortality rate z; (2) MRN(r)

is a straight horizontal line in age-length space, so that optimal size at maturation is constant

despite changes in growth rate. The optimal size is Lα = e�Lα0, where Lα0 = (ly e zy A)(-1/b); that

is, related to survivorship to smolting ly, age at smolting y, juvenile mortality rate after smolting

z, the length coefficient for fertility A, and the length exponent for fertility b. (3) The pattern in

MRNs is similar for von Bertalanffy growth, but in this case the MRN lines are curved, not

straight (Fig 7).

For semelparous species, both analytical and graphical analyses show that the optimal age

of maturation for maximizing r is younger than the optimal age of maturation for maximizing

R0, but only when r> 0; this reverses when r< 0. This difference is dramatic for linear growth

(Fig 4), and is also apparent for von Bertalanffy growth (Fig 7). In fact, the analytical result

applies for any increasing growth function.

We believe this is the first demonstration of this difference between these fitness functions.

The graphical depiction of the two MRNs presented here explains this analytical result for the

two fitness functions. Because the two MRN lines intersect (at r = 0 and R0 = 1), a growth tra-

jectory that passes to the left and above the intersection point (so that r> 0) must first encoun-

ter MRN(r) and then MRN(R0). Conversely, a growth trajectory that passes below and to the

right of the intersection point (so that r < 0) must first encounter MRN(R0) and then MRN(r).

These differences between the fitness functions in optimal maturation age have a parallel in

the differences in optimal maturation length, which may be of more interest to anglers and

fisheries managers. Following along a particular growth trajectory that passes to the left and

above the intersection point of the MRNs (so that r> 0), one can see that the optimal matura-

tion length that maximizes r is smaller than the optimal maturation length that maximizes R0.

Again, this reverses for growth trajectories that result in r < 0.

In the rest of this discussion section, we examine some of the choices we made in construct-

ing our underlying models.
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Alternative functions for survivorship and fertility

Roff [1] and others [11,41] have used a simpler model of survivorship than we do (Eq 0.12), by

assuming that much of early mortality is concentrated very shortly after hatch, followed by a

constant mortality rate that applies to the subsequent juvenile period. Mathematically, their

approach would simplify our equation for survivorship from lx = ly e−z (x-y) to lx = p e −z x, set-

ting our y = 0 and ly = p. This simplification is not a good description for survival of salmon,

because the early period in the natal stream can last months or years [42], so that y >> 0, and

growth and mortality in the stream is much different than in the ocean or Great Lakes. How-

ever, Roff’s [1, page 184] model does give a result consistent with ours: with r as the fitness

function, his model indicates that optimal maturation age depends on p but not z. Our model

gives the same result, but only for the case with y = 0; in the more biologically realistic case of

y > 0, our model indicates that both p and z influence optimal maturation age. With R0 as the

fitness function, both our model and Roff’s [1] model give the result that optimal maturation

age depends on z but not on p.

Skorping et al. [43] assume, as we do, that juvenile mortality rate z is constant, but they

assume that fertility increases linearly with age. Their approach is equivalent to setting b = 1 in

our fertility function (0.13): mx = A(Lx)b. Using R0 as the fitness function for their semelparous

species, they find that the optimal age to mature is 1/z. Our model for linear growth in length

gives the optimal maturation age as b/z. Our model would reduce to the Skorping et al. [43]

model for b = 1 and y = 0. [Skorping et al. note that their maturation age corresponds to the

time when survivorship decreases to a constant value of 0.368 = e−1.]

Charnov and Berrigan [44] discuss the Beverton-Holt life-history invariants, αz, z/k, and

Lα/L1, as do [5,8,35]. Charnov and Berrigan [44] point out that populations with the same val-

ues of z/k and Lα/L1 will have the same value of αz. The product αz as a constant arises in our

approach, for one can show, using (0.33) and (0.34) that semelparous fish with von Bertalanffy

growth that are maximizing R0 will have

ða � yÞz ¼
z
k

� �
lnðCÞ � ln 1 �

La
L1

� �� �

; ð0:37Þ

with the invariants appearing as ratios or products. This equation suggests that the relation-

ships for salmon should be examined using “lake age” or “ocean age” (α –y) rather than total

age α. Semelparous fish with linear growth in length that are maximizing R0 will have α = b/z,

so that αz equals the fertility parameter b. Charnov and Berrigan [44] have the y and C in

(0.37) equal to 0 and 1, respectively. Perhaps some of the observed variation in the “invariants”

among taxa [44] is due to differences in early life history that would translate to differences in

y and C.

Maximizing fitness R0 in fisheries models of growth and survival, Jensen [8] obtained theo-

retical values of the Beverton and Holt invariants. He then compared his theoretical estimates

with regression-based estimates using data from 19 freshwater fish populations. The values of

the invariant constants obtained from regression across species agreed fairly closely with the

theoretical values of the constants, suggesting that the life history invariants result from funda-

mental ecological relations among the parameters. Our Eqs (0.34), (0.36) and (0.39) show such

relationships, and include additional parameters (y, C, and b) that may be helpful in account-

ing for some of the observed differences in the “invariants” among taxa.

Parameters needed for calculation

In order to test models for age and length at maturity, one needs, of course, observed values of

age and length at maturity. One also needs estimates of other parameters to calculate predicted
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values, including parameters for size as a function of age, fecundity as a function of size, and

mortality rate during the juvenile period. If one wants to calculate predictions based on maxi-

mizing r, then one also needs survivorship from spawning (or hatch) to the age at which juve-

nile mortality rate becomes constant. Comparison of expression (0.21) for optimal age and

size under fitness R0 with the corresponding expression (0.22) for fitness r makes clear the

need for more parameters when maximizing with r, especially parameters on early life survival.

This difference may give R0 a slight advantage over r as the natural fitness function.

As we pointed out in the previous section, if one concentrates stream life history into one

small interval near t = 0, or equivalently set y to 0, then mortality z drops out of the expressions

for optimal age and size.

Correlations in growth and mortality

Changes in growth rate are sometimes negatively correlated with changes in mortality rate. For

example, slower growth might accompany higher mortality if food becomes less abundant and

the chance of starvation or predation increases. Alternatively, growth rate may be positively
correlated with mortality rate if environments with more abundant food also have higher risk

of predation. Choice of such environments has been observed in the lab [45,46] and in the

field [47]. Haugen et al. [47] present evidence that northern pike adjust the probability of mov-

ing between the two ends of Lake Windermere to equalize relative fitness–one basin with

higher food production and higher risk of mortality, the other basin with lower food produc-

tion and generally lower risk of mortality. The growth (hence fecundity) and mortality in both

basins were strongly influenced by pike density. These pike adjust their dispersal probabilities

with the result that densities are adjusted between the north and south ends of the lake result-

ing in roughly equal fitness in each end of the lake. This situation is illustrated in our Fig 13.

Whether r or R0 is the underlying fitness function, Fig 13 displays iso-fitness curves that go

from low growth/low mortality to high growth/high mortality diagonally across growth/mor-

tality space—the situation where growth and mortality are positively correlated.

Observed patterns in reaction norms

If fish experience slower growth rates, while other parameters remain the same, then there are

three possible responses in terms of age at maturity (age could move earlier, remain the same,

or move later) and three possible responses in terms of length at maturity (length could

become smaller, remain the same, or become larger). Four of these nine combined responses

are unlikely: mature at the same age and the same or larger size; or mature at an earlier age and

the same or larger size. For example, suppose that under a regime of slower growth, fish

matured at the same or larger size. Since it takes more time to reach this size in this new

regime, age at maturity automatically increases.

Working only with fitness function r, Stearns and Koella ([3]; see also [50]) describe the five

remaining patterns they found in their studies of how age and size at maturity respond to

decreases in growth rate. “When organisms are forced to grow more slowly, they 1) mature

later at a smaller size, 2) mature later at the same size, 3) mature later at a larger size, 4) mature

earlier at a smaller size, or 5) mature at the same age at a smaller size” [3, p. 894]. Our matura-

tion reaction norms can describe four of these five patterns, and the remaining pattern could

be produced if decreases in growth rate were accompanied by decreases in mortality rate.

More details are given in S7 Appendix.

As growth decreases to very low levels, our MRN(R0) specifies ever younger ages of matu-

rity (Fig 6B). In contrast, for the case where growth decreases to very low levels, the reaction

norms of Stearns and Koella [3] and our MRN(r) specify ever older ages of maturity (Fig 6D).
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Finally, note another peculiarity of the fitness function r. Because of the particular curvature

of the level sets of r in age-length space (Fig 3B and 3D), as either linear or von Bertalanffy

growth rate decreases, the highest r that can be achieved is attained at the same value of matu-

ration length. This extends to unrealistically old ages. This is an unusual feature of attempting

to maximize r at very low growth rates, especially where r < 0.

Other related work

Our maturation reaction norms describe variation in age (or size) at maturity using accessible

data and show how maturation reaction norms respond to variation in growth rate, mortality

rate and fecundity. Hutchings and Jones [48] expressed the need for a model similar to ours in

their empirical and simulation analyses of Atlantic salmon (Salmo salar) maturation reaction

norms. We are working to extend our model to iteroparous species, such as Atlantic salmon.

Several investigators have published empirical analyses of growth trajectories that influence

maturation reaction norms [3,9,25,28,49]. Mangel and Satterthwaite [50] developed a life his-

tory model of oceanic salmonids that combines proximate and ultimate mechanisms. They

viewed life history as a series of developmental decisions (maturation, smolt) taken at various

key times. The outcomes of these decisions depend on whether or not the value of some trait

(age or size with an environmental influence) exceeds a (selection determined) threshold.

They use R0 as their underlying fitness function and work around the R0 = 1 equilibrium.

Lester et al. [25] analyze a two-part growth curve, with linear growth until maturation, and

von Bertalanffy growth after maturation. They present an explanation for the parameters of

the von Bertalanffy growth curve in terms of pre-maturation growth rate, age at maturation,

and annual reproductive investment. They assume that age at maturity and reproductive

investment are adjusted to maximize lifetime production of offspring (R0), accounting for the

adult mortality rate. Quince et al. [28,42] extended this analysis [28] and compared it with

empirical data [42].

In the study by He and Stewart [9] predictive models of age and size at first reproduction

were developed for 85 marine and freshwater fish species (235 populations) based solely on

growth parameters. Their study provided predictions of age at first maturity that were consis-

tent with the different life history strategies of fish reported by Winemiller and Rose [51].

Density dependence

Density dependence can change an individual’s consumption rate, growth rate, fecundity and

survival, thus affecting the individual’s age (or size) at maturity and the rate of increase of the

individual’s lineage. Ernande et al. [10] looked at the effect of density dependence on fisheries-

induced changes in maturation reaction norms. They found that harvesting mature individuals

displaces the reaction norm for age and size at maturation and rotates it clockwise, whereas

harvesting immature individuals had the reverse qualitative effect. They concluded that the

changes in reaction norms were qualitatively similar whether one assumed positive density

dependence, no density independence, or negative density dependence.

Mylius and Diekmann [52] compare r and R0 around equilibrium (r = 0, R0 = 1) in a gen-

eral density dependent system. Their r and R0 depend on type T and environment E. They find

that R0(E, Tinv) leads to an evolutionarily stable strategy (EES) relative to invading types Tinv if

density dependence (invading) reduces life-time offspring production, while r(E, Tinv) leads to

such an ESS if density dependence increases the probability of dying at each age.

Density dependence is not directly addressed in our model. However, changes in density

often result in changes in growth rate or mortality rate, especially during the first year of life
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[35]. The influence of changes in these rates on age and size at maturity can be evaluated in

our model.

Size-dependent mortality will be addressed in future versions of this approach.

Other taxa

Though developed for semelparous fish, our framework is quite general, and could be applied

to other taxa. It applies to populations where survivorship to some early size can be estimated,

a growth function and constant mortality rate can be specified starting at that age, and fertility

can be described as a function of size. We have begun the task of comparing the framework of

this paper with observations for multiple fish species.

Applications for conservation and management

Since different fitness functions lead to different MRNs, using the correct fitness is important

for predicting species’ reactions to environmental changes. For example, suppose climate

change leads to warming of lake waters, and therefore to faster growth of that lake’s salmon

[53]. Conservationists and managers would like to predict the effect on the sizes of individual

fish and on the sizes of fish populations. As we have seen, if r or Vx is the underlying fitness

function, then as k increases, maturation age decreases (while maturation size stays approxi-

mately steady). In this case, generation time decreases and the total population increases over

the years. On the other hand, if R0 is the underlying fitness function, the maturation age α –

and therefore the larger generation time–remains approximately the same. However, spawning

fish will be larger, their fecundity will increase, and, once more, total population will increase.

Stream anglers certainly appreciate the increased size of spawning fish–and studies have dem-

onstrated the importance of fish size to generating interest in recreational fishing [54], which

in the Great Lakes is worth over $7 billion/yr. The increased individual size that anglers appre-

ciate will only occur if R0 is the fitness function.

For either fitness function, population increases as k increases–because of shorter genera-

tion time for r or Vx, because of increased fecundity for R0. A careful geometric analysis of Figs

2 and 3 leads to the conclusion that the population increase is larger when r is the fitness func-

tion than when R0 is. Our key point: accurate predictions of population changes resulting from

increased k require knowing what the underlying fitness function is. (Of course, they also need

to take into consideration population-density and size-interaction dependencies.)

Recently, Lake Michigan Chinook Salmon have experienced a slower growth rate because

of a dramatic decrease in the Alewife population, their main food source. As Fig 14A indicates,

this lowering of k has led to a decrease in the size of spawning salmon. It has also led to dra-

matic decreases in population size.

There are, of course, other semelparous lake fishes for which managers require guidance

about maturation age, maturation size, and population size—guidance that requires knowl-

edge of the right fitness function. Consider the Sea Lamprey Petromyzon marinus, a parasitic

invasive species that invaded the upper Great Lakes in the 1940s and caused extirpation of sev-

eral stocks of harvested fish [55]. As with Chinook Salmon in the Great Lakes, growth rate and

time that Sea Lamprey spend in the lake are dependent on their prey abundance. Control of

Sea Lamprey has allowed the valuable sport and commercial fisheries to flourish, and relies on

reliable treatment schedules of stream nursery habitats with a pesticide that is toxic to Sea

Lamprey. Knowledge of the appropriate fitness is critical for maintaining sustainable fisheries.

Recovery and conservation of declining populations of the American Eel Anguilla rostrata
also depend on knowing the right fitness function. The American Eel is a semelparous catadro-

mous fish (matures in fresh water, emigrates to spawn in the ocean) whose abundance in the
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Great Lakes has declined dramatically in the last few decades owing to increased mortality

from dams and overharvest [56]. Male eels mature at a fixed length but variable age. By con-

trast, female eels mature at larger and more variable lengths and fecundities—depending on

the latitude, productivity of their juvenile habitat, and mortality risk of a longer spawning

migration [57].

Our graphical depiction of reaction norms of changes in age or size at maturity as a func-

tion of growth and survival are easily interpretable and useful for managers or conservation

planners who wish to understand population consequences of changes in habitat quality or

fishing pressure on fish populations.
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