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Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms 
of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-
associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver 
injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol 
via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, 
chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, 
causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxida-
tive stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and 
non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial 
proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in 
the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, 
energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in 
bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis 
is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of 
inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial 
dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for 
targeted therapeutics.
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JNK	� C-Jun N-terminal protein kinase
Keap1	� Kelch-like ECH-associated protein
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α-SMA	� α-Smooth muscle actin
SOD	� Superoxide dismutase
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Introduction

Liver diseases are named based on their etiology. The hepa-
totoxicity of some drugs causes drug-induced liver dis-
eases (DILI) and alcohol-associated liver disease (ALD) is 

a harmful consequence that may occur from excessive and 
chronic alcohol consumption. Liver diseases can also occur 
from overnutrition and obesity [metabolic dysfunction-
associated steatotic liver disease (MASLD)], toxic agents 
[toxicant-associated fatty liver disease (TAFLD)], and 
hepatitis viruses (viral hepatitis). However, liver diseases, 
regardless of the cause, share many pathophysiological fea-
tures like oxidative stress, post-translational modifications 
(PTMs), fat accumulation, metabolic signaling alterations, 
mitochondrial dysfunction, gut barrier dysfunction, inflam-
mation, and hepatocyte apoptosis. Overall, we have reviewed 
the cellular and molecular pathologies of these liver diseases 
to derive potential preventions or therapeutic targets against 
liver diseases [1].

Oxidative stress in liver diseases

Oxidative stress is an imbalance between pro-oxidants 
and antioxidants. Usually, the cell can remove reactive 
oxygen species (ROS) and reactive nitrogen species 
(RNS) through antioxidant molecules such as reduced 
glutathione (GSH) and primary defense enzymes such as 
superoxide dismutase (SOD), catalase (CAT), and glu-
tathione-dependent peroxidases (GPx) [1]. So why has 
oxidative stress been observed in studies on DILI [2–5], 
TAFLD [6–8], ALD [9–12], and MASLD [13–23]? When 
organelles such as mitochondria, endoplasmic reticula 
(ER), and peroxisomes are damaged and dysfunctional, 
more ROS are produced [1, 18] in a vicious cycle [14, 
24]. Excessive oxidative stress may cause DNA oxidation 
[25], lipid peroxidation, oxidative protein modifications 
[26], impaired fat metabolism [6, 20, 26–28], systemic 
inflammation [26, 29, 30], and tissue damage [31–33], all 
of which contribute to the progression of liver diseases 
[17, 34, 35].

Hepatocytes respond to oxidative stress in diverse ways. 
Hepatic stellate cells (HSCs), when activated by ROS and 
damage-associated molecular patterns (DAMPs) from 
injured or necrotic hepatocytes, will produce extracellular 
matrix components to construct fibrotic tissue [36]. On the 
other hand, Kupffer cells, upon activation by endotoxins 
(including lipopolysaccharide, LPS) or superoxide anions 
(⋅O2

−), will then produce more ROS through stimulation of 
NADPH-dependent oxidases (NOXs), and the redox-sensi-
tive transcription factor nuclear factor-κB (NF-κB)-mediated 
pro-inflammatory storm of cytokines, chemokines, and cell 
adhesion molecules (CAMs) [36]. Consequently, in response 
to oxidative stress, hepatocytes stimulate necrotic and apop-
totic pathways, leading to impaired liver function, worsened 
paracrine inflammation, and fibrogenesis [36].
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Post‑translational protein modifications in liver 
diseases

PTMs regulate the localization, stability, and final activ-
ity of virtually all proteins in the context of liver dis-
eases [37, 38]. The proteins involved in promoting various 
PTMs exist in several subcellular organelles, including 
the cytoplasm [39], ER [40, 41], mitochondria [42], 
and nucleus [43]; PTMs may also be observed in the 
proteomes of the liver [37, 44–47], gut [7], and other 
peripheral tissues [29]. PTMs found in liver diseases 
include protein acetylation [37, 42, 48], nitration [10, 26, 
37, 49–53], S-nitrosylation [49, 54, 55], oxidation [37], 
phosphorylation [26, 56, 57], succinylation [58], ADP-
ribosylation [44], ubiquitination [37, 59], SUMOylation 
[60–65], carbonylation [66–68], S-palmitoylation [45–47, 
69], glycosylation [7, 37, 70, 71], protein adducts of 
aldehyde (i.e., acetaldehydes) [9, 72], lipid peroxidation 
products (LPOs), and advanced glycation end products 
(AGEs) [6, 66, 74–79]. Several studies detail that spe-
cific PTMs correlate with exposures to excessive alcohol 
[80, 81], CCl4 [7, 56], acetaminophen (APAP) [53, 82], 
3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) 
[39], or fructose [51]. In these cases, PTMs accumulate in 
cells and contribute significantly to fat accumulation [54], 
hepatocyte apoptosis, inflammation, fibrosis [51], and cir-
rhosis [37], by altering signaling pathways affiliated with 
liver disease progression [43, 66, 67] and by targeting 
proteins for ubiquitin-mediated proteolysis [59]. Overall, 
PTMs are one of the various ROS-mediated changes that 
occur on cellular and translational levels [29] to, directly 
and indirectly, contribute to alcohol-mediated hepatic 
injuries [12, 83, 84]. The contributing roles of specific 
PTMs or simple consequences in the disease process can 
be elucidated by carefully studying their time-dependent 
events. The functional activities of a specific PTM on 
a few selected proteins should also be found in disease 
models to figure out their roles further. Based on the con-
cept and approaches, precisely characterizing the roles 
of specifically targeted PTMs in designated subcellular 
organelles or tissues can provide valuable information 
to understand better the molecular mechanisms of liver 
diseases or even genetic- and aging-related disorders. For 
example, in various alcohol exposure models, an elevated 
intestinal activity or expression of the ethanol-inducible 
cytochrome P450-2E1 (CYP2E1) contributes to increased 
ROS/RNS [12, 85], promoting PTMs (e.g., nitration [26, 
51, 52, 59, 68, 86]), which structurally alters the intes-
tinal environment creating inflammation, gut tight junc-
tion (TJ) and adherens junction (AJ) protein degradation, 

apoptosis of enterocytes in the intestines [11, 86, 87], sys-
temic endotoxemia, and the progression of ALD  [88, 89].

Mitochondrial dysfunction in liver diseases

Mitochondria are critical sites of bioenergetics, fat oxida-
tion, intermediary metabolism, apoptosis, mitophagy, and 
redox homeostasis [90–93]. They are one of the primary 
sources of oxidative stress involved in fatty liver diseases 
[94]; α-ketoglutarate dehydrogenase and pyruvate dehydro-
genase are involved in redox reactions to generate NADH 
and FADH2 in the tricarboxylic acid (TCA) cycle [95], then 
in the electron transport chain (ETC), complexes I, II, and 
III perform redox reactions to generate ATP [18]. Thus, to 
balance out the ROS/RNS generated from these redox reac-
tions, many mitochondrial antioxidants and enzymes exist.

Mitochondrial antioxidant proteins in the first line of 
defense against ROS/RNS fall into three categories, includ-
ing non-enzymatic antioxidants (i.e., GSH), direct enzymatic 
antioxidants (i.e., SOD2 and GPx), and indirect enzymatic 
antioxidants [i.e., glutathione reductases (GR), peroxire-
doxins, and thioredoxins (Trx)] [96, 97]. The transcription 
of many of these antioxidants is either regulated by per-
oxisome proliferator-activated receptor-γ coactivator-1α 
(PGC-1α) [98] or by nuclear factor erythroid 2-related 
factor (Nrf2) separating from its regulatory binding pro-
tein Kelch-like ECH-associated protein (Keap1) [99, 100]. 
Typically, in the second line of defense, mitochondria trig-
ger mitophagy to restore redox homeostasis and retain the 
function of other mitochondria and organelles for cellular 
activities [101]. However, these natural lines of defense in 
mitochondria can be altered after excessive consumption of 
or exposure to alcohol (ethanol) [85, 94], drugs [66, 102, 
103], viruses [104], and some nutrients, including fructose 
[105]. Specifically, these exposures can alter mitochondrial 
redox homeostasis and oxidatively damage DNA [106, 107], 
RNA [106], lipids, and proteins, through PTMs [8, 26, 48, 
70, 108, 109], causing inactivation of their functions and 
signaling pathways, leading to mitochondrial dysfunction 
[26, 53, 68, 83], death of hepatocytes, and liver damage [17, 
110] or age-related conditions [91, 111–113]. Not only can 
many types of PTMs accumulate in mitochondria [85], but 
they can also downregulate the expression of or inactivate 
mitochondrial deacetylases like sirtuin 3 (SIRT3) [114–117], 
sirtuin 4  (SIRT4) [118–121], and sirtuin 5 (SIRT5)  [8, 
48108, 109, 117, 122, 123] in the context of ALD [124, 
125], MASLD [51, 126, 127], and other conditions [128]. 
Nucleus-localized sirtuin 1 (SIRT1) migrates to mitochon-
dria to exert its effects [125] and is another prevalent target 
in the context of ALD [125, 129–133] and MASLD [22, 
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117, 133]. Other than sirtuin pathways, signaling pathways 
of PGC-1α [131, 134], AMPK [135, 136], as well as Bax 
and Bcl2 [132, 137], are altered to cause mitochondrial dys-
function and apoptosis of hepatocytes in liver diseases [131, 
132, 134–137]. However, these proteins represent important 
targets for prevention and therapy [75, 85, 138–140]. Over-
all, mitochondrial conditions likely provide a more compre-
hensive picture of the molecular pathology of liver diseases 
[75, 127, 141, 142].

Intestinal barrier dysfunction in liver diseases

The gut, like many organs, has multiple barriers; the immu-
nological barrier is composed of gut-associated lymphoid 
tissue, the physical barrier consists of epithelial TJ/AJ pro-
teins and microbiota, and the chemical barrier is composed 
of antimicrobial proteins, IgA, and a mucus layer [143]. Gut 
dysbiosis is a term to describe changes in the relative abun-
dance of beneficial and pathogenic bacteria, where excessive 
Gram-negative bacteria may stick to and cause perforations 
in the gut barrier wall (intestinal permeability changes) and 
“leak” various toxic metabolites [e.g., bile acids, trimethyl-
amine (TMA), and LPS, a cell wall component of Gram-neg-
ative bacteria] into systemic circulation [144]. The atypical 
transmission of pathogenic gut bacteria and toxic metabo-
lites (endotoxemia) acts to permeate the barriers of the liver 
through the portal vein, enterohepatic circulation, or bile 
acid secretions [145–147]. Gut dysbiosis is inextricably 
linked to the exacerbation and progression of various liver 
diseases [148–153]. Altered microbiota compositions have 
been found in several clinical cases of ALD [154, 155], 
cirrhosis [156–159], MASLD [160, 161], viral hepatitis 
including Hepatitis B viral infections (HBV) [162–165] and 
Hepatitis C viral infections (HCV) [166–168], as well as 
hepatocellular carcinoma (HCC) [158, 169]. Furthermore, 
mechanistic animal studies on hepatic endotoxemia have 
shown it to be positively correlated with intestinal barrier 
dysfunction; elevated PTMs that disrupt TJ/AJ protein net-
works allow intestinal contents such as pathogenic bacteria 
and LPS to leak out into systemic circulation, characteristi-
cally manifesting in hepatic nitro-oxidative stress [170–172]. 
Endotoxemia is also affiliated with mitochondrial dysfunc-
tion [25] and systemic inflammation [172] in rodent models 
of ALD [11, 126, 151, 173] and MASLD [20, 51, 68, 151, 
174–178]. Sometimes, the etiology of ALD and MASLD 
may even overlap; several reports detail several taxa that 
produce endogenous ethanol, as observed in experimental 
models [51, 179], adult patients with MASLD [160], and 
even young children with metabolic dysfunction-associated 
steatohepatitis (MASH) [180]. Some cases of ALD [126] 

and MASLD [181–183] may even affect other peripheral 
organs via the intestinal route.

The causal roles of oxidative stress, PTMs, 
mitochondrial dysfunction, and intestinal 
barrier dysfunction in promoting several 
chronic and acute liver diseases

Alcohol‑associated liver disease

Alcohol‑mediated oxidative stress and gut barrier 
dysfunction

Alcohol is first absorbed in the small intestines, then trans-
ported to the liver and metabolized mainly by oxidative 
and non-oxidative metabolism [184–186]. The majority of 
alcohol is oxidized in the cytosol by aldehyde dehydroge-
nase (ADH), in peroxisomes by CAT, and in microsomes 
and mitochondria by CYP2E1 via the microsomal ethanol-
oxidizing system (MEOS) before toxic acetaldehyde is fur-
ther detoxified by mitochondrial aldehyde dehydrogenase 
2 (ALDH2) [187, 188]. Liver diseases have been widely 
studied in the context of these enzymes that either oxida-
tively metabolize ethanol into toxic metabolites, or detox-
ify alcohol and are made less effective through genetic 
polymorphisms. It is known that oxidative damage from 
NAPDH-dependent CYP2E1 metabolism [189] leads to 
toxicological damage in ALD [190], causing events such 
as increased ROS production [190], antioxidant down-
regulation, mitochondrial dysfunction [191, 192], sup-
pressed fatty acid oxidation, oxidative DNA damage, and 
protein adduct formation via lipid peroxidation [i.e., acr-
olein, malondialdehyde (MDA), and 4-hydroxynonenal 
(4-HNE)] in the liver [193]. In addition, another study 
showed a crucial role of CYP2E1 in alcohol-mediated oxi-
dative DNA damage in the liver [194].

However, there is evidence that alcohol absorption along 
with oxidative and non-oxidative metabolism, occurs in the 
gut [187, 195]. Studies have found the expression of ADH 4 
isoform [196], CYP2E1 [87], and ALDH2 in the intestines 
[87], as well as inactivated ALDH2 [55, 83] and upregulated 
CYP2E1 [87], acetaldehyde, and LPS [55, 83, 87, 196] in 
models of ALD. These changes indicate signs of oxidative 
ethanol metabolism that results in alcohol-induced oxidative 
stress and intestinal barrier dysfunction. Recently, it has been 
shown that protective ALDH2 is inactivated through PTMs 
such as oxidation [55]  and S-nitrosylation in ALD [55, 83], 
nitration in APAP-mediated DILI [53, 59], phosphorylation in 
CCl4-mediated TAFLD [56, 197], oxidation in MDMA-induced 
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TAFLD [198], and lipid peroxidation products in ALD [199]. 
Some believe that acetaldehyde independently causes alcohol-
associated organ damage; one study displayed that it indepen-
dently disrupted intestinal TJ and AJ protein networks, leading 
to endotoxemia and liver injury [9]. Similar effects of acetalde-
hyde have been shown in models of chronic alcohol exposure 
in Aldh2-KO mice, resulting in ALD [200]. Other studies con-
ducted with binge alcohol-exposed Aldh2-KO mice suggest that 
acetaldehyde stimulates intestinal barrier dysfunction, leading 
to acute liver injury [10].

When ALDH2 activity is depleted in Aldh2-KO mice 
[201], pro-oxidant CYP2E1 has been found to be upregu-
lated in the intestines upon alcohol exposure [87, 201, 202]. 
Intestinal CYP2E1-mediated oxidative stress can also sen-
sitize the liver to toxicity through endotoxemia and gut-
derived TNF-α through the CYP2E1-thioredoxin-ASK1-
JNK1 pathway [203]. The effects of intestinal CYP2E1 on 
gut barrier dysfunction and endotoxemia are worsened with 
concomitant LPS administration [11]. Hepatic CYP2E1 is 
also another significant contributor to alcohol-induced oxi-
dative stress and signaling pathway alterations [9], as shown 
in multiple studies examining the effects of inhibiting or 
knocking out the Cyp2e1 gene for [204–206]. For example, 
polyenyl phosphatidylcholine (PPC) effectively suppressed 
alcohol-mediated oxidative stress and then was found to 
be inhibiting CYP2E1 [40, 207]. In another study, trans-
genic over-expression of CYP2E1 in mice exacerbated the 
pathogenesis of ALD [206, 208] and MASLD [209, 210]. 
Perhaps reversing the expression and activities of CYP2E1 
and ALDH2 may serve a purpose in protecting against alco-
hol-induced hepato-intestinal oxidative stress and gut bar-
rier dysfunction. For example, a translational study showed 
that ALDH2 suppression was protected by physiologically 
relevant levels of omega-3 polyunsaturated fatty acids [103, 
211], and in a recent phase II clinical trial, treatment with 
clomethiazole (CMZ), an inhibitor of CYP2E1, mitigated 
the biomarkers of alcohol-induced oxidative stress and ALD 
progression [212].

Alcohol‑mediated oxidative stress and mitochondrial 
dysfunction in the fatty liver

Alcohol-mediated steatosis (or fat accumulation) can be 
induced by activating de novo fat synthesis, blocking fat 
degradation pathways, or increasing the transport of lipids 
from other tissues [190]. On a molecular level, this may also 
occur through mitochondrial dysfunction associated with 
decreased fat degradation due to PTM-mediated suppres-
sion of the enzymes in β-oxidation [103, 211], upregulated 
immune cell infiltrations, protein adducts, lipid peroxidati-
fon, and DNA damage [190].Alcohol-mediated ROS and 

RNS can also downregulate β-oxidation activity by inhibit-
ing peroxisome proliferator-activated receptor-α (PPAR-α) 
and a  lipid catabolism regulator named AMP-activated 
protein kinase (AMPK) [9, 213] while upregulating sterol 
regulatory binding protein-1 (SREBP-1) to increase hepatic 
fatty acid and cholesterol biosynthesis [9, 213]. Further-
more, chronic and binge alcohol models show increased 
lipid transport to the liver, contributing to fat accumulation 
in hepatocytes [214, 215]. A study from Ceni et al. theorizes 
that in cases of ALD, steatosis may happen epigenetically by 
targeting forkhead box (FoxO3a) and SIRT1, which serve as 
intermediaries between autophagy and transcriptional lipid 
metabolism regulation [9].

The vicious cycle of oxidative stress and inflammation 
in promoting fibrosis

Oxidative stress and inflammation reciprocally communi-
cate in a positive feedback loop to stimulate fibrosis. The 
accumulation of ROS and LPOs promotes hepatocyte apop-
tosis/necrosis, which activates hepatic stellate cells (HSCs) 
[190]. In an attempt to heal this “wound,” HSCs may pro-
mote fibrosis and cirrhosis in an inflammatory signaling 
response [190]. The ROS-mediated activation of HSCs can 
be seen through the accumulation of α-smooth muscle actin 
(α-SMA), vimentin (VIM), and collagen in the extracellular 
matrices of hepatocytes [9, 191, 192]. Fibrosis may also be 
stimulated by upregulating the MDA/4-HNE pathway; this 
pathway will, in turn, upregulate pro-fibrogenic matrix met-
alloproteinase-2 (MMP2) and downregulate matrix metallo-
proteinase-1 (MMP1), two enzymes responsible for remod-
eling the hepatic extracellular matrix [9, 191, 192, 216]. 
Another method of alcohol-induced ROS-mediated liver 
fibrosis happens when acetaldehyde and other reactive alde-
hydes upregulate the expression of fibrogenic transforming-
growth-factor-β (TGF-β). This stimulates the production of 
collagen and α-SMA and decreases interferon-γ signaling in 
HSCs to cause fibrosis [9]. Other PTMs, such as acetylation 
and methylation, have been known to contribute to the pro-
gression of fibrosis in ALD [72, 195, 217, 218]. This accu-
mulated inflammation is worsened by increased intestinal 
barrier dysfunction [144, 219]. The likely-resulting endo-
toxemia from intestinal barrier dysfunction stimulates toll-
like receptor 4 (TLR4) in Kupffer cells to produce NADPH-
oxidase (NOX)-dependent ROS [213] and activate HSCs, 
leading to fibrosis [144, 219]. Additionally, the efforts of 
Nrf2 and its downstream antioxidant enzymes and proteins 
may be exhausted or suppressed, leading to lowered anti-
oxidant levels, in the progression of liver injury to hepatitis 
and fibrosis [220].
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Metabolic dysfunction‑associated steatotic liver 
disease

MASLD is closely affiliated with obesity [221, 222], type-2 
diabetes mellitus (T2DM) [221, 222], hypertension [221], 
and metabolic syndrome [221]. MASLD may be further 
specified as TAFLD. However, it should be noted that the 
overall mechanism of MASLD shares many commonalities 
with that of ALD. In MASLD and ALD, dysregulated lipid 
metabolism contributes to lipotoxicity and peroxidation 
[223], leading to ER stress, mitochondrial dysfunction, and 
hepatocyte damage. These alterations activate HSCs, lead-
ing to inflammation and fibrogenesis [193, 223–225]. Liver 
insults begin with the phase of steatosis; mitochondrial res-
piration increases to meet the increased need for energy. As 
a result, ROS production increases, activating antioxidant 
responses [95, 226, 227]. Lipid accumulation will develop 
due to the excess of free fatty acids (FFAs) [223], com-
promising mitophagy responses through the activation of 
JNK-dependent apoptosis [95, 226, 227]. In the next stage 
of MASH, inflammation and oxidative stress occur in a 
vicious, positive feedback loop [228], triggering apoptosis 
of hepatocytes [227], and potentially compromising cellular 
respiration, mitophagy, and antioxidant pathways. Fibrosis is 
initiated when increased inflammation, oxidative stress, and 
hepatocyte apoptosis cumulatively stimulate Kupffer cells 
and HSCs, as well as neutrophil infiltration, to repair the 
“wounds” [95, 229].

Despite this common pathology of ALD and MASLD, 
the Multiple-Hit Hypothesis remains a phenomenon more 
studied in the context of MASH/MASLD. The Multiple-Hit 
Hypothesis details increased fat accumulation to be the “first 
hit” [230]. According to Day and James, oxidative stress fol-
lows steatosis as the “second hit” [230]. MASLD has many 
manifestations of metabolic syndrome, from as little as lipid 
droplets to total systemic inflammation seen in MASH, with 
the possibility of progression to fibrosis and HCC. Other 
factors, such as inflammation, altered hepatocyte apopto-
sis signaling, and activation of HSCs, allow milder cases 
of MASLD to progress to more severe cases, including 
MASH [14]. More reports mention the  Three-Hit Hypoth-
esis, involving dysregulated lipid metabolism, mitochondrial 
dysfunction with decreased fat degradation, and oxidative 
stress that happens in cycles in the progression of MASLD 
cases [231, 232]. Additional theories on the Multiple-Hit 
Hypothesis of MASLD detail the role of lipid and sugar 
metabolism, gut barrier dysfunction, and systemic inflamma-
tion as common factors in metabolic syndrome [233]

MASLD/MASH, caused by non-alcohol substances, such 
as fructose/sucrose and Western-style high-fat diets (HFDs) 
(containing high ratios of pro-inflammatory omega-6 fatty 
acids to anti-inflammatory omega-3 fatty acids), is a hepatic 

manifestation of metabolic syndrome [234]. Similar to ALD, 
increased de novo fat synthesis and fat transport from adi-
pose tissue with decreased mitochondrial fat degradation 
are usually observed in MASLD [235]. Increased oxidative 
stress and nitrative stress also significantly contribute to 
the progression of MASLD/MASH. Oxidative stress may 
happen partly through the involvement of translocation and 
activation of mitochondrial NOX4 [235], CYP2E1-gener-
ated ROS [68, 210, 236], HFD-mediated insulin resistance 
[22], and various PTMs of mitochondrial proteins, causing 
mitochondrial dysfunction, decreased fat degradation, and 
elevated hepatocyte death [49].

The effect of fat metabolism dysregulation on oxidative 
stress

Elevated FFAs can be more hepatotoxic than TG accumula-
tion since FFAs can cause JNK-mediated hepatocyte apop-
tosis [227] and the production of a cytokine storm in the 
progression of MASLD and MASH [226]. In addition, an 
increased FFA pool may lead to oxidative stress in cells, 
altering apoptosis and causing NF-κB-related inflammatory 
pathways that induce cytokine production and activate HSCs 
[235]. The specific mechanism of FFA and ROS-related 
apoptosis of hepatocytes involves the regulation of the mito-
chondria by Bcl-2 and Bax. For instance, when NOX4 and 
CYP2E1 oxidize substrates like long-chain FFAs, uncoupled 
electrons leak from the mitochondrial ETC [68]. When FFAs 
are oxidized in peroxisomes and the ER, oxidative stress 
accumulates and activates the Bax/Bcl-2 complex through 
FoxOa3 and JNK [237]. Bax, when released from Bcl-2, 
will induce a mitochondrial permeability transition (MPT) 
in response to this oxidative stress [238], which will trigger 
cytochrome c to be released from mitochondria, activating 
caspase-mediated apoptosis [235]. Alternatively, activated 
JNK can stimulate the phosphorylation of Bax, leading to its 
translocation to mitochondria to cause mitochondrial perme-
ability changes and hepatocyte apoptosis [239].

Besides the accumulation of FFAs and LPOs, cholesterol 
(dys)regulation significantly affects the onset and progres-
sion of MASLD. One study suggests that the cholesterol-
to-bile acid ratio is vital to supporting the homeostatic 
redox environment of HSCs [240]. One report showed that 
cholesterol could be a selective inducer of oxidative stress 
and mitigate fibrosis by inducing HSC apoptosis [240]. A 
recent genetic study suggested that having a good cholesterol 
index (i.e., more high-density lipoprotein (HDL) cholesterol 
and less low-density lipoprotein (LDL) cholesterol) could 
significantly prevent FLD because HDLs allow LDLs and 
other fats to be filtered through the liver and excreted rather 
than accumulating in blood vessels and tissues [241].
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The effect of insulinemia on fat metabolism 
and inflammation

Insulin resistance/insulinemia, genetics, and metabolic 
syndrome account for most cases of MASLD [231, 235]. 
Insulinemia has been shown to serve as a cause of FFA accu-
mulation [242]. Mainly, most FFAs in hepatocytes are found 
in the FFA pool in the liver and transported after lipolysis 
from other tissues [242]. Insulin typically signals lipolysis of 
triglycerides (TGs) into FFAs. However, in cases of insuline-
mia, adipose cells are in constant lipolysis, causing excess 
FFAs to travel to the liver and lead to fat accumulation [18, 
235].

Other studies have detailed an interaction between the 
NF-κB pathway and insulin resistance to MASLD [19]. 
Many therapeutic effects against MASLD related to oxida-
tive stress and lipid peroxidation have been explored through 
this pathway, including normalizing mitochondrial function 
with proper mitochondrial β-oxidation and ATP synthesis 
[19]. Inhibiting the redox-sensitive transcription factor 
NF-κB is also an essential therapy targeting inflammation in 
MASLD to prevent the progression to worse disease stages 
such as MASH [19].

The effect of oxidative stress on fat metabolism 
and inflammation

Recent reviews suggest that increased oxidative stress may 
cause de novo lipogenesis through upregulation of SREBP-1 
and mitochondrial dysfunction in MASLD [24, 228]. In 
MASH, ROS primarily come from mitochondrial elec-
tron leakage, pro-oxidative enzyme activation (i.e., CYP2E1, 
NOX4), iron accumulation and Fenton reaction metabolism 
[18, 243], and antioxidant depletion [235]. While it is well 
documented that CYP2E1 contributes to oxidative stress 
pathways in ALD and DILI, many reports have also demon-
strated the critical role of CYP2E1 in MASLD through the 
production of ROS and LPOs; this may represent the second 
hit in the progression of steatosis to MASH [26, 41, 68, 178, 
244]. Thus, this oxidative and lipotoxic stress must be bal-
anced out with the help of various antioxidants.

The Nrf2/ARE pathway is a crucial prevention for 
MASLD because it counteracts oxidative stress and corrects 
lipid metabolism [19]. Under physiological states, Nrf2, a 
transcription factor, is usually bound to Keap1. Under oxi-
dative stress conditions, ROS oxidizes Keap1, which is 
degraded by ubiquitin-dependent degradation and releases 
Nrf2. When Nrf2 is released, it travels to the nucleus to 
bind antioxidant response elements (ARE). Activation of the 
Nrf2/ARE pathway upregulates the transcription of several 
antioxidant enzymes, including HO-1, NADPH-dependent 
quinone reductase, and GSH synthesis enzymes like GR and 
glutamate-cysteine ligase modifier subunit (GCLM) [5].

Many antioxidants have been known to target MASLD, 
including vitamins E and C in MASLD patients, caffeine 
and coffee polyphenols in murine models of Western-style 
HFDs [14]. Other studies detail the use of metformin and 
Hesperetin in rat hepatocytes and HepG2 cells, and caffeine 
in zebrafish [14]. Mitochondria-targeting synthetic and natu-
rally-occurring antioxidants like melatonin have an immense 
potential to treat or prevent MASLD [17].

Role of intestinal barrier dysfunction in MASLD

Earlier reports showed that intestinal barrier dysfunction 
plays a causal role in MASLD [160, 245–248]. In our opin-
ion, intestinal barrier dysfunction in MASLD is caused by 
increased oxidative stress, which can cause apoptosis of 
gut epithelial cells (enterocytes), and PTMs of intestinal 
TJ/AJ proteins that lead to their decrements via ubiquitin-
dependent proteolytic degradation [86]. WT mice exposed 
to a Western-style HFD (containing cholesterol to represent 
a fast food diet) showed elevated serum LPS within 2 weeks 
of feeding, indicating gut barrier dysfunction; insulin resist-
ance, hepatic inflammation, and fibrosis followed at 10 and 
22 weeks of feeding, suggesting a causal role of gut bar-
rier dysfunction in the progression of liver disease [244]. 
[CYP2E1 levels may have been induced by endogenous 
ethanol production by gut microbiota [180, 249]. Although 
the cell death mechanisms of gut enterocytes in these rodent 
models of MASLD/MASH were not described, mitochon-
drial dysfunction may have happened due to elevated oxi-
dative PTMs and Bax-mediated apoptosis. Thus, CYP2E1 
may be an essential target to mitigate gut barrier dysfunction 
in MASLD/MASH [41, 232]. However, NADPH-oxidase 
may not be as important as CYP2E1 in the development of 
intestinal barrier dysfunction in MASH, as done in one study 
using a methionine and choline-deficient diet (MCD) [250].

Toxicant‑associated fatty liver disease

Carbon tetrachloride

Carbon tetrachloride (CCl4) has been widely used as a hepa-
totoxic agent in experimental models. Since 1924, scien-
tists have understood that CCl4 causes acute hepatotoxicity, 
fatty liver, and liver fibrosis, depending on the dosage and 
treatment duration. In the last hundred years, scientists have 
understood this mechanism to include lipid peroxidation, 
hepatotoxicity, and liver damage through CYP2E1-mediated 
metabolism into toxic trichloromethyl and trichloromethyl 
peroxyl radicals; these toxic metabolites cause oxidative 
damage in the mitochondria and ER [78]. CCl4-mediated 
hepatotoxicity is exacerbated by a Western-style HFD [251] 
and alcohol consumption [252], which both happen to ele-
vate CYP2E1 levels. Previous animal studies also found that 
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Cyp2e1-KO mice were relatively resistant to CCl4-mediated 
hepatotoxicity [189, 253].

Despite many reports, the molecular mechanisms of 
CCl4-mediated hepatotoxicity and acute liver injury could 
be further elucidated. A recent report detailed the time-
dependent events of PTMs and hepatotoxicity in WT ver-
sus Cyp2e1-KO mice [56]. The results showed that JNK-
mediated phosphorylation of many mitochondrial proteins 
occurred 1–8 h in WT mice after CCl4 treatment [56]. At 
the same time, acute hepatotoxicity, assessed by serum ALT 
activity, LPO levels, and H&E-stained liver histology, was 
observed 24 hours after IP injection of a single toxic dose 
(50 mg/kg) of CCl4 [56]. In this model, activated p-JNK 
translocated to mitochondria at 2 h and phosphorylated 
many mitochondrial proteins, such as ALDH2, ubiqui-
none-dependent NADH dehydrogenase (Complex I), and 
α-ketoglutarate dehydrogenase, decreasing their activities 
[56]. These changes in protein phosphorylation, decreased 
activities, and liver injury were markedly prevented when 
CCl4-exposed WT mice were co-treated with a highly 
selective JNK inhibitor (i.e., SU3327 or BI-78D3) and 
mitochondria-targeted Mito-TEMPO [56]. This model also 
demonstrated that Cyp2e1-KO mice were protected from 
CCl4-mediated cellular changes, JNK-mediated phospho-
rylation, mitochondrial dysfunction, and liver injury [56]. 
Thus, CYP2E1-mediated metabolic activation of CCl4 was 
shown to play a significant role in ROS production, and 
JNK-mediated PTMs in promoting mitochondrial dysfunc-
tion and acute liver injury. In fact, increased oxidative stress 
stimulated the activation of JNK, which translocated to mito-
chondria and phosphorylated many target proteins ( decreas-
ing their activities), leading to hepatotoxicity at a later time 
point. These results support the causal  role of PTMs in 
promoting mitochondrial dysfunction and the characteristic 
hepatotoxicity of TAFLD.

Thioacetamide

Thioacetamide (TAA) was developed as an anti-fungal 
agent. However, TAA exposure has caused acute liver injury, 
cirrhosis, and HCC, in experimental models [254–257] and 
humans [257], depending on the dosage and TAA expo-
sure duration [255, 258]. TAA-mediated hepatotoxicity and 
other tissue damage, including renal and cardiac toxicity, 
are believed to be induced through CYP2E1-mediated TAA 
metabolism in mammals. In fact, Cyp2e1-KO mice were 
protected from TAA-mediated hepatotoxicity and HCC 
[259]. A recent report showed that TAA-mediated hepato-
cyte pyroptosis in mice can be attenuated by administration 
of an anaerobic bacterial species named Parabacteroides 
distasonis by modulating intestinal bile acid metabolism 
[260]. In this report, decreased levels of Parabacteroides 
distasonis were observed in people with hepatic fibrosis. 

Administration of this bacteria inhibited bile salt hydrolase 
and suppressed intestinal expression of Farnesoid X receptor 
(FXR) and its signaling [261]. It also reduced hepatic levels 
of a component of bile acid named taurochenodeoxycholic 
acid (TCDCA), which typically induces mitochondrial per-
meability transitions and caspase-11-dependent pyroptosis; 
therefore, reduction of TCDCA mitigated TAA-mediated 
liver fibrosis in mice [261]. Additionally, co-administration 
of the natural compound celastrol increased the relative 
abundance of Parabacteroides distasonis, promoting bile 
acid excretion and hepatic fibrosis attenuation. Celastrol was 
also shown to increase SIRT1 expression and FXR signaling 
to improve cholestatic liver disease [261]. These results sug-
gest the beneficial effects of Parabacteroides distasonis and 
celastrol against liver disease and suggest crosstalk between 
the gut microbiota and liver disease. Based on these results, 
more studies detailing gut–liver interactions are needed to 
improve liver disease prognosis.

Drug‑induced liver injuries

Drug-induced liver injuries (DILI) account for 50% of all 
acute liver diseases. Of this 50%, 37% of DILI are associ-
ated with acetaminophen (APAP, paracetamol) and the other 
13% are caused by isoniazid (isonicotinic acid hydrazide, 
INAH), TAA, erythromycin, diclofenac, and others [262]. 
DILI cases fall into two major categories: intrinsic/direct 
hepatotoxicity or idiosyncratic hepatotoxicity, with a third 
emerging category being indirect mechanisms of hepato-
toxicity (that may include gut dysbiosis) [263]. The most 
common cause of intrinsic DILI is APAP overdose mecha-
nistically through mitochondrial dysfunction and hepatocyte 
damage [4], and the severity of idiosyncratic DILI varies 
based on the geographical region of prevalence [264] and 
environmental factors such as alcohol consumption and 
other pathological conditions, including obesity, insulin 
resistance, and (pre)diabetes. For example, the leading 
cause (45.4% according to the American DILI Network) 
of idiosyncratic DILI cases in the US and UK were due to 
antibiotic use, followed by herbal and dietary supplements, 
whereas, in Korea, herbal and dietary supplements were 
the cause of 70% of idiosyncratic DILI cases [142, 264]. 
The National Institutes of Health (NIH) supplies a database 
named LiverTox (http://​liver​tox.​nih.​gov) that one meta-
analysis [265] grouped into categories based on types of 
hepatotoxicity and should provide more detailed information 
on idiosyncratic cases. However, this review will focus on 
a few models illustrating the mechanisms of intrinsic cases 
of DILI.

http://livertox.nih.gov
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Over‑the‑counter pain medicines: acetaminophen

APAP, the active ingredient found in Tylenol, Pan-
amax, Excedrin, and Panadol, is generally prescribed and 
available as an over-the-counter medicine to treat pain, 
fever, and inflammation by reducing the production of pros-
taglandins. However, APAP overdose is the leading cause 
of acute liver diseases in the UK and USA [262, 266] and 
is responsible for 50% of acute DILI in the USA [267]. A 
multitude of investigations have elucidated the critical role 
of oxidative stress, mitochondrial dysfunction, and hepato-
cyte death in the mechanism of APAP overdose-induced 
liver diseases [110, 267–270]. In normal doses, APAP tox-
icity is not observed because its toxic metabolites are neu-
tralized by GSH. However, after fasting (which decreases 
GSH), large amounts of APAP rapidly deplete cellular GSH, 
leading to acute liver injury [110, 268, 269]. In one mecha-
nism, APAP becomes hepatotoxic after its metabolism by 
CYP2E1 and other P450 isoforms, and produces a reactive 
metabolite named N-acetyl-p-benzoquinone imine (NAPQI) 
[110, 271, 272]. This reactive metabolite produces conju-
gation adducts for many cellular proteins, including those 
involved in the mitochondrial ETC and others [110, 268, 
269]. These protein-adducts, in turn, create mitochondrial 
nitro-oxidative stress, likely promoting PTMs of mitochon-
drial proteins [26, 41, 68, 178, 244], leading to impaired 
mitochondrial function and energy production. However, 
the roles of NAPQI-related covalent protein adducts have 
been challenged with evidence of similar patterns of protein-
adducts observed in studies with a non-hepatotoxic struc-
tural analog named 3’-hydroxyacetanilide [26, 41, 68, 178, 
244, 273]. In one study, pretreatment with gadolinium chlo-
ride, a suppressor of Kupffer cells, significantly prevented 
APAP-mediated liver injury but not NAPQI-protein adducts, 
suggesting a noncritical role of NAPQI-protein adducts in 
APAP-related hepatotoxicity [274]. Thus, scientists have 
explored the role of various PTMs in APAP-mediated acute 
hepatotoxicity. APAP can trigger a mitogen-activated pro-
tein kinase (MAPK) cascade [269], ultimately activating 
c-Jun N-terminal kinase (JNK) phosphorylation [267, 268, 
271]. Phosphorylated JNK travels into the mitochondria to 
further phosphorylate many mitochondrial proteins, includ-
ing the mitochondrial ETC, causing even more ROS leakage 
and oxidative stress by binding to SH3 homology associ-
ated BTK binding protein (Sab) [110, 275]. This excessive 
buildup of ROS causes a mitochondrial permeability change 
and the release of mitochondrial proteins that induce DNA 
damage and activate hepatocyte apoptosis [269, 276]. Ulti-
mately, this process also impairs the autophagosome, leading 
to defective mitophagy [110] and receptor interacting protein 
(RIP) kinase-mediated necrosis of the cell [110, 268, 269, 
277–279].

In addition to JNK-mediated protein phosphorylation, 
the essential roles of nitrated proteins in mitochondria 
and cytosol were reported [53, 59]. In these studies, time-
dependent events of protein nitration and necrotic cell death 
were compared after a single toxic dose (350–400 mg/kg) 
of APAP was administered to WT and Cyp2e1-KO mice. 
Nitrated cytosolic and mitochondrial proteins were observed 
around 2–4 h, and hepatocyte necrosis and elevated serum 
ALT levels were noticed 24 hours after APAP exposure in 
WT mice. Mitochondrial ALDH2, ATP synthetase, GPx, 
3-ketoacyl-CoA thiolase (KAT), SOD2, and cytosolic 
SOD1 were nitrated, and their activities were suppressed 
at 2–4 hours, suggesting a causal role of protein nitration 
in promoting mitochondrial dysfunction, leading to apop-
tosis or necrosis of hepatocytes. Additionally, the non-toxic 
analog 3’-hydroxyacetanilide did not cause nitration and 
liver injury in WT mice. In contrast, protein nitration and 
hepatotoxicity were not seen in the corresponding Cyp2e1-
KO mice, supporting the vital roles of CYP2E1 and nitra-
tion in APAP-mediated DILI [53, 59]. Recent studies sug-
gest that boosting antioxidants in the mitochondria through 
mitoquinone [280] and others [270] may serve as effective 
treatments for APAP-induced DILI.

It is also known that APAP toxicity is enhanced by co-
existing conditions such as obesity and MASLD [281] and 
is often potentiated by alcohol intake [282–285]. APAP tox-
icity is also observed in people with alcohol use disorder 
(AUD), possibly due to upregulated CYP2E1 activity [282, 
286, 287] or a response to fasting [288] (which is known to 
decrease GSH levels and increase CYP2E1 [202]). Thus, 
co-administration of excessive alcohol and therapeutic doses 
of APAP may put individuals at risk of severe liver injury 
[289].

Misused substances: cocaine, amphetamines, and MDMA

It has been well-established that many misused substances 
such as pain-relieving drugs, mood-enhancing drugs, and 
recreational psychostimulants such as cocaine, ampheta-
mines, and 3,4-methylenedioxymethamphetamine (MDMA, 
Ecstasy, Molly) are known to cause significant toxicity to the 
liver as well as many other organs [290]. Cocaine toxicity 
is mediated by its oxidative metabolism by P450 isozymes, 
including CYP2B, CYP3a, and CYP2E1. Reactive metab-
olites of cocaine  (i.e., norcocaine and norcocaine nitric 
oxide) and increased ROS produced during P450-mediated 
catalysis are known to increase oxidative stress, leading 
to mitochondrial dysfunction, hepatocyte death, and liver 
injury [77, 291]. Hepatotoxicity due to cocaine has been 
significantly worsened in the presence of other agents such 
as endotoxin [292] and alcohol; co-administration of cocaine 
and ethanol produces potently toxic cocaethylene [293] and 
suppresses mitochondrial ALDH2 activity through PTMs 
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[294]. Although the detailed cell death signaling mecha-
nisms are unknown, one recent report showed that cocaine 
toxicity was attenuated in p53-knockout (p53-KO) mice, 
suggesting the involvement of the p53-mediated apoptosis 
pathway [295]. A recent study showed that cocaine caused 
mitochondrial dysfunction and acute liver injury in WT 
mice, and hepatotoxicity was prominently observed in Gpx-
1-KO mice but protected in Gpx1-overexpressing transgenic 
mice [66]. Based on the importance of PTMs in mitochon-
drial dysfunction and hepatocyte cell death in DILI, ALD, 
and MASLD models, the contributing roles of various PTMs 
in cocaine-mediated mitochondrial dysfunction and hepato-
toxicity are expected, although this needs to be verified by 
future research.

Overdoses of amphetamine-type psychostimulants like 
amphetamines and MDMA can cause hyperthermia, tissue 
injury, acute liver failure, and death, depending on their dos-
age and host conditions (e.g., hepatic GSH levels). MDMA 
toxicity is thought to occur through the P450-mediated 
production of its reactive metabolites, which can activate 
lysosomal functionand increase mitochondrial swelling 
and dysfunction [103, 296]. Other risk factors, such as 
hyperthermia,elevated neurotransmitter effluxes, increased 
LPOs, oxidized biogenic amines, decreased GSH, and 
dysregulated host environments, have also been suggested 
[103]. Although the detailed mechanisms of tissue injury 
are poorly understood, it is widely accepted that increased 
oxidative stress and nitrative stress play a key role in pro-
moting MDMA-mediated hepatotoxicity. Targeted prot-
eomics approaches revealed that many mitochondrial and 
cytosolic proteins were oxidatively modified upon exposure 
to MDMA, and some of them, like mitochondrial ALDH2, 
3-ketoacyl-CoA, and ATP synthetase, were inactivated 
[198]. These reports support the role of oxidatively modi-
fied cellular proteins in promoting mitochondrial dysfunc-
tion and ER stress, contributing to cell death of hepatocytes 
and liver injury [49, 296, 297]. Other types of PTMs, such 
as nitration, JNK-mediated phosphorylation, and acetylation, 
of proteins, can also take part in the pathology of MDMA-
mediated tissue injury, although this area solicits further 
investigation.

Anti‑cancer agents: cisplatin

Many chemotherapies have been found to cause hepatotox-
icity as well as other tissues. Antitumor antibiotics (e.g., 
dactinomycin, doxorubicin, and mitomycin) and alkylating 
agents (e.g., Busulfan, Melphalan, and Cyclophosphamide) 
have been shown to elevate serum ALT and AST activi-
ties  in liver function tests [298]. Platinum-based agents 

(e.g., Oxaliplatin, Cisplatin, and Carboplatin) have also been 
shown to elevate serum levels of liver transaminases to cause 
steatohepatitis [298]. Cisplatin is a platinum-based chemo-
therapy drug that was approved by the FDA in 1978 despite 
its harsh side effects of inducing organ damage (including 
the liver and kidneys) [299], through oxidative metabolism 
via CYP2E1 and CYP4A11 [300]. Since then, the effects of 
cisplatin have been studied and reviewed; cisplatin induces 
oxidative stress [301–303], inflammation [299, 301, 304], 
mitochondrial dysfunction [304], apoptosis [305], and DNA 
damage [299, 304, 306]. Cisplatin causes oxidative stress 
by increasing MDA and decreasing GSH, GPx, CAT, and 
SOD [307]. Cisplatin also stimulates apoptotic signaling 
pathways involving TNF-α, Bax and Bcl-2, cytochrome c, 
and caspase-3, and stimulates IL-6 related inflammatory 
pathways [307].

There are also theories on how cisplatin-induced hepa-
totoxicity happens through the gut–liver axis. One study 
mentioned that cisplatin-induced liver toxicity is accelerated 
by inflammation and oxidative stress in the gut through the 
increased abundance of pathological bacteria like Escheri-
chia, Parabacteroides, and Ruminococcus, all of which 
are Gram-negative bacteria [301]. In this study, antibiotic 
treatment improved liver histology, promoted Nrf2 activa-
tion, increased the levels of GSH, and inhibited the JNK- 
and p38-related cell death signaling pathways [301, 308], 
demonstrating its significance as an effective treatment for 
cisplatin-mediated hepatotoxicity.

Anti‑tuberculosis agent: isoniazid

It is known that an anti-tuberculosis agent, isoniazid 
(isonicotinic acid hydrazide, INAH), can cause hepatitis 
through CYP2E1-mediated metabolism [309]. INAH or 
INAH metabolites, such as hydrazine, can cause mitochon-
drial injury, mitochondrial oxidative stress, and impaired 
metabolic homeostasis [310]. Consequently, these reactive 
metabolites and ROS will likely promote oxidative PTMs, 
lipid peroxidation, and cell death pathways. In addition, 
these reactive metabolites can bind to proteins, lipids, or 
nucleic acids and inhibit the enzymes in the mitochondrial 
ETC, resulting in oxidative stress, mitochondrial dysfunc-
tion, and hepatotoxicity [310, 311].

Like cisplatin, INAH alters CAT activity, GPx activ-
ity, and GSH content while increasing ROS and MDA 
levels. It also decreases the expression of microRNA-122 
and PPAR-α and increases AP1 and JNK phosphoryla-
tion [312]. It also upregulates the mRNA expression of ER 
stress-related factors, including glucose-related protein 78 
(Grp78), activating-transcription-factor-6 (ATF6), protein 
kinase RNA-like ER kinase (PERK), inositol-requiring 
enzyme 1 (IRE1), x-box binding protein 1 (XBP1s), and 
C/EBP homologous protein (CHOP) [312]. Furthermore, it 
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upregulates apoptotic signaling pathways, including Bax, 
cytochrome c release from mitochondria, and activation of 
caspases 3, 8, and 9. Lastly, it suppresses the Nrf2 signaling 
pathway, including Nrf2 and its downstream targets of heme 
oxygenase-1 (HO1), NAD(P)H quinone dehydrogenase 1 
(NQO1), GCLM, and glutamate-cysteine ligase catalytic 
subunit (GCLC) [312].

Anti‑depressants and anti‑psychotics

Recent reports have shown that many anti-depressant med-
ications clinically used are known to cause side effects of 
liver toxicity and weight gain [313, 314]. The mechanisms 
of these undesirable effects are poorly understood. Most of 
these side effects are idiosyncratic hepatotoxicity, and their 
symptoms appear as early as 5 days and last up to 3 years. 
Some severe cases are linked to users’ deaths [313], pos-
sibly due to severe drug interactions with other agents or 
pre-existing conditions like metabolic syndrome, obesity, 
and diabetes [315]. In contrast, people with MASLD may 
be prone to developing anxiety and depression [316]. 
Thus, this newly emerging area with anti-depressants 
related liver injury needs more studies.

Much of depression, schizophrenia, bipolar disor-
ders, and psychotic disorders are associated with oxida-
tive stress in the brain through the gut–brain axis [317, 
318]. However, it is also known that the metabolisms of 
anti-depressants, including monoamine oxidase inhibi-
tors (MAOIs), tricyclic antidepressants, selective sero-
tonin reuptake inhibitors (SSRIs), first-generation anti-
psychotics (FGAs), and second-generation anti-psychotics 
(SGAs), cause oxidative stress which may affect mito-
chondrial functions [314]. The mechanism by which anti-
depressant and anti-psychotic medications induce oxida-
tive stress in hepatocytes begins with their metabolism 
through cytochrome P450 isoforms, causing reduced GSH 
to convert to oxidized glutathione disulfide (GSSG), as 
well as producing ROS and reactive metabolites that cova-
lently bind proteins, lipids, and nucleic acids [314]. These 
changes affect multiple mitochondrial metabolism path-
ways, including the proton gradient in oxidative phospho-
rylation and the proportion of  superoxide anion metab-
olites leaking from the ETC [314]. These ROS activate 
apoptotic pathways involving Bax and Bcl-2, cytochrome 
c release from mitochondria, and activation of caspase-3 
cleavage, as well as inducing cell damage and necrosis 
[314]. They can also decrease the activities of GST, GPx, 
and CAT [314]. A recent report also showed that a tricyclic 
anti-depressant named clomipramine caused mitochon-
drial dysfunction by decreasing ATP production [319]. 
It is important to note that all anti-depressants and anti-
psychotics collectively follow this umbrella mechanism, 
although there are some subtle differences in individual 

mechanisms of creating hepatotoxic oxidative stress [314]. 
Oxidative stress is also produced from inflammatory path-
ways induced by chronic usage of anti-depressants and 
anti-psychotics; DAMP signals are likely to stimulate the 
apoptotic and necrotic pathways [314]. They also activate 
Kupffer cells through TLRs and inflammatory signaling 
pathway, including NF-κB, tumor necrosis factor-α (TNF-
α), ROS, nitric oxide (NO), and chemokine and cytokine 
storms [314]. Chemokine and cytokine storms can also 
recruit circulating lymphocytes, eosinophils, and neutro-
phils, infiltrating the liver to start further inflammation and 
hepatotoxicity [314].

Viral hepatitis

It is also known that infection with hepatitis B (HBV) 
and C virus (HCV) can cause mitochondrial dysfunc-
tion, hepatic inflammation, and chronic liver disease, in 
people and cell lines, through the hepatitis virus core and 
other proteins associated with HBV/HCV [16, 104]. For 
instance, over-expression of the HCV core protein has been 
shown to induce oxidative stress and mitochondrial depo-
larization, leading to cell death [104]. These events were 
Ca2+-dependent and could be prevented by Ca2+ chelation. 
In addition, chronic infection with HCV increased oxidative 
DNA damage with high levels of MDA and 4-HNE, which 
correlated with the degree of liver inflammation and fibrosis 
[320]. The activity of the mitochondrial complex I enzyme 
(NADH-ubiquinone oxidoreductase) was suppressed in the 
genomic HCV replicon cells. This suppression decreased 
mitochondrial GSH and increased ROS production; these 
changes were restored by decreasing HCV replication with 
Fluvastatin [321]. Another study showed that the HCV core 
protein and CYP2E1, which produces ROS, work additively 
to decrease mitochondrial GSH and sensitize hepatocytes 
to ROS-mediated cell death [322]. Furthermore, a retro-
spective study with HCV-infected patients before and after 
antiviral treatment revealed that higher levels of serum LPS 
and intestinal fatty acid binding proteins, markers of intes-
tinal permeability, were observed in patients with fibrosis/
cirrhosis than those of patients without fibrosis and healthy 
volunteers [149] in both HBV [162–165] and HCV infec-
tions [166–168]. These studies indicate the importance of 
intestinal barrier dysfunction in accelerating hepatitis virus-
induced liver disease outcomes through the gut–liver axis.

Hepatocellular carcinoma (HCC)

ALD and MASLD have been known to ultimately progress 
to HCC; 4.4 per 100,000 people with MASLD were diag-
nosed with HCC globally from 1989 to 2015 [221]. HCC 
is highly associated with metabolic risk factors and alco-
hol consumption [323], and is exacerbated by underlying 
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cirrhosis [324]. Humans with the ALDH2*2 gene variants 
are more susceptible to alcohol-induced HCC [325] and 
esophageal cancers [73, 326]. ALDH2*2 protein variants 
are also individually-correlated with HCC [327, 328] and 
are identified as potential biomarkers for HCC [329, 330]. 
Some believe that accumulated acetaldehyde, LPOs, and 
ROS are carcinogenic and contribute to HCC through aging; 
this may allow fibrosis to progress to HCC by modulating 
various PTMs that increase DNA adducts of liver cells [9, 
331]. Alcohol-mediated DNA oxidation, resulting from 
the polymorphisms of the ALDH2 gene and activation of 
CYP2E1, may also partake in the development of HCC and 
other cancers [9, 194, 331–333]. Overall, excessive alcohol 
intake induces CYP2E1 and/or inactivates mitochondrial 
ALDH2; both can lead to oxidative DNA damage, apop-
tosis, suppressed cell proliferation, and altered inflamma-
tory pathways [9, 331], contributing to the development of 
tumors. Thus, targeting CYP2E1 or activating ALDH2 with 
safe chemicals, including naturally occurring dietary sup-
plements [334], is a promising strategy to prevent alcohol-
induced HCC. Recent reports showed that CMZ, a specific 
inhibitor of CYP2E1, was shown to prevent or improve ALD 
in humans [335] and experimental models of fibrosis and 
HCC [192]. Oxidative stress and dysbiosis are critical fac-
tors contributing to the progression of ALD to HCC [169, 
331, 336, 337], and thus serve as important targets to prevent 
the onset of alcohol-related HCC [336, 338].

Challenges and opportunities

Challenges

One challenge is that many overlapping similarities exist 
between ALD and other liver diseases [339], but treatments 
for each liver disease can differ. A practical guideline for 
treating ALD patients described the clinical observation 
that ALD frequently occurred with other liver diseases, 
including MASLD and HCV [340]. Specific studies have 
been designed to distinguish the characteristics of ALD and 
MASLD. However, their histological features and patho-
logical mechanisms are very similar [341]; this is because 
many metabolic risk factors for MASLD/MASH overlap 
with those of ALD [342] (and significantly increase the risk 
of severe liver disease [343]) and patients need to be treated 
for both types of liver disease.

Another challenge is the additive or synergistic interac-
tions between alcohol intake and many other risk factors for 
liver diseases. For instance, Åberg et al. showed that mild 
and moderate consumers of alcohol with obesity, waist cir-
cumference, and diabetes may have increased levels of liver 
disease; in contrast, heavy drinkers with diabetes, large waist 
circumferences, and high BMIs had elevated risks of severe 

liver disease [343]. Other studies have detailed that BMI 
and moderate alcohol intake increase the risk of liver dis-
ease [344, 345]. Raynard et al. showed that BMI and blood 
glucose are independent risk factors for alcohol-associated 
fibrosis (cirrhosis) [342]. However, more studies are needed 
to differentiate the risk factors for ALD and MASLD. Due 
to the synergistic or potentiation effects of concurrent expo-
sures to alcohol, HFDs, smoking, recreational and pharma-
ceutical drugs, individual mechanisms of liver injury and 
disease listed in previous sections may not be observed in 
isolation.

Likewise, a third consideration is that each of these expo-
sures promotes unique patterns of ROS/RNS, inflammation, 
dysbiosis, and PTMs, and most of these features take place 
simultaneously. Overlapping pathological risk factors of 
liver diseases could further increase the difficulty of prog-
nosis and therapeutic benefits unless those multiple interven-
tions target many pathways simultaneously.

A fourth consideration is that the pharmacokinetics, spe-
cifically the absorption, distribution, metabolism, excretion, 
and toxicity (ADME-Tox) properties of hepatotoxic com-
pounds and targeted interventions vary. These complexities 
present a significant challenge in the context of DILI. How-
ever, the Liver Tox Knowledge Base (LTKB) may provide 
more insight into adverse drug reactions in DILI research 
[255] and allow medical professionals to distinguish DILI 
caused by agents with different latencies, symptoms, mecha-
nisms, and responses [346]. An editorial suggests that digi-
talizing these assessments differentiating DILI from ALD 
and MASLD  and detecting specific agents of hepatotoxic-
ity with a Revise Electronic Causality Assessment Method 
(RECAM) may improve the likelihood of treating emer-
gency cases of DILI [346, 347]. Others mention the possibil-
ity of artificial intelligence (AI) for DILI predictions [348], 
but additional research is needed in the emerging field of AI.

The final challenge in liver disease research is establish-
ing the correct diagnosis to differentiate between various 
liver diseases. Serum enzymes that are elevated in ALD 
may not necessarily be elevated in DILI diagnoses. Addi-
tionally, the current diagnosis of many liver diseases, such as 
MASLD and MASH, involves invasive access to biomarkers, 
often requiring biopsy surgeries for targeted interventions 
[349]. Some studies suggest screening for MASLD using 
less-invasive procedures (i.e., ultrasounds) [350], but decid-
ing on a screening method may prove complex given the 
varied cost of diagnosis and treatment under different health 
insurance plans.

Opportunities

Fortunately, many preventions and treatments are being 
investigated for various liver diseases. Other than what 
has already been mentioned, interventions for MASLD 
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include but are not limited to four main specific targets. 
The first intervention class targets hepatic fat accumulation 
by modulating PPARs (i.e., pemafibrate and elafibranor), 
targeting FXR signaling (i.e., obeticholic acid and celas-
trol), inhibiting de novo lipogenesis (i.e., aramchol and 
ACC inhibitors), and utilizing fibroblast growth factor ana-
logues [347]. The second intervention class aims to allevi-
ate oxidative stress, inflammation, and apoptosis, includ-
ing ASK1 and caspase inhibitors (i.e., Emricasan) [347]. 
The third intervention class targets the intestinal micro-
biome and metabolic endotoxemia through IMMe124, 
TLR antagonists, and antibiotics (i.e., solithromycin). The 
fourth intervention class works to mitigate hepatic fibrosis 
through antifibrotic agents [i.e., cenicriviroc, (a cysteine-
cysteine-motif chemokine receptor-2,5 antagonist) and 
gelectin-3 antagonists] [347].

Current interventions for ALD include abstinence, nutri-
tional support, glucocorticosteroids, Pentoxifylline, anti-
TNF therapy, antioxidants, liver transplantations, probiotics, 
antibiotics, S-adenosyl methionine, betaine, endocannabi-
noid antagonists, osteopontin inhibitors, and stem cell ther-
apy, as reviewed [351]. To facilitate the development of safe 
and effective therapeutic drugs for treating ALD patients, 
the National Institute on Alcoholism and Alcohol Abuse 
(NIAAA, NIH) supports a multi-center Consortia for drug 
evaluation studies in double-blind randomized clinical tri-
als. Since the start of the multi-center consortia in the early 
2010s, many reports on clinical trials have been published. 
In addition, the executive summary of many published 
reports and other information related to various clinical tri-
als by the multi-center Consortia, including DASH (Defeat 
Alcoholic Steatohepatitis) and TREAT (Translational 
Research and Evolving Alcoholic Hepatitis Treatment), 
have been compiled and available in Alcoholic Hepatitis 
Network (AlcHepNet). Currently, three agents, anakinra as 
an inhibitor of the IL-1 receptor [352], prednisone [353, 
354], zinc sulfate [355], and coffee [356] are being evaluated 
for their efficacies in phase II clinical studies for alcohol-
associated hepatitis. We expect more reports on the clinical 
trial outcomes to be published by the Consortia in the future. 
However, the most crucial factor for long-term survival and 
improvement of ALD patients is abstinence without relapse 
of AUD. Thus, many scientists proposed that ALD patients 
be treated with integrated care by preventing AUD [357] and 
obtaining nutritional support [358–361].

MASLD and ALD prevention may also begin with 
identifying bacterial signatures that distinguish the two 
and differentially diagnosing each through fecal samples 
[362]. Many other natural compounds such as silymarin, 
resveratrol, curcumin, and berberine have effectively pre-
vented the progression of MASLD and MASH [363, 364]. 
Some of these naturally occurring compounds function 
as antioxidants and inhibitors of CYP2E1 [365–367] to Ta
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prevent ALD, MASLD, and DILI. In addition, many natu-
rally occurring antioxidants, including resveratrol, querce-
tin, and curcumin, are known to activate sirtuins, Nrf2, 
and PGC1α to improve liver disease outcomes [85, 138, 
139, 363, 364, 368]. Based on the previous information 
regarding the prevalence of sirtuins 3, 4, and 5 in mito-
chondria and protectors against liver diseases and general 
age-related diseases, sirtuin activators including naturally 
occurring polyphenols would exhibit great therapeutic 
benefits [86, 126, 369]. Additionally, given the plethora 
of studies suggesting that SIRT1 is a therapeutic target in 
ALD, SIRT1 is another opportunity for precision medicine 
and targeted interventions [370]. Lastly, ghrelin has been 
shown to improve oxidative stress, apoptosis, and inflam-
mation in MASLD development [371].

DILI may be prevented with adequate nutrition and 
abstinence. It may also be prevented by predicting its onset 
and type; this may be done by measuring hepatic trans-
porter inhibition, mitochondrial toxicity, reactive metabo-
lite formation, hepatocyte cytotoxicity, as well as the dose 
and physiochemical properties of the drug ingested [372]. 
Current interventions for DILI include abstinence, N-ace-
tylcysteine, corticosteroids, ursodeoxycholic acid, silyma-
rin, glycyrrhizin, bile acid washouts, and emergency liver 
transplants [373].

Modulation of mitochondrial dysfunction, PTMs, 
and oxidative stress for liver diseases

Overall, mitochondrial dysfunction is associated with 
decreased function of energy supply, redox homeostasis, 
fat oxidation, cellular metabolism, and cell survival signals 
[374]. Webb et al. detailed that targeting mitochondrial 
dysfunction to prevent liver disease progressions includes 
altering metabolic signaling cascades to increase energetic 
efficiency, mitigating ROS/RNS, and restoring mitophagy 
and other systems to maintain homeostasis within mito-
chondria [91]. There are many ways to treat mitochondrial 
dysfunction liver diseases, including the consumption of 
a less caloric diet, anti-diabetic drugs (i.e., elafibranor, 
liraglutide, metformin, thiazolidinediones, MSDC 0602K), 
bile acid regulators (i.e., obeticholic acid, ursodeoxycholic 
acid), and antioxidants that act on nuclear receptors or 
mitochondrial metabolism (i.e., vitamin E, tempol, res-
veratrol) [91, 375]. Other mitochondria-targeted antioxi-
dants, including mitoquinone [280], MitoE [376], mito-
quinol mesylate (Mito-MES) [377], mitochondria-targeted 
ubiquinone [52], and quercetin [378] were reported to 
affect mitophagy and improve liver conditions. Further-
more, silymarin, corilagin, anthocyanins, dihydromyri-
cetin, berberine, hydroxytyrosol, cysteamine, pentoxifyl-
line, avocado oil, and pegbelfermin, mitotherapy, as well 
as ACC inhibitors, genistein, and aramchol were reported 
to improve mitochondrial function in MASLD [237]. 
Naturally occurring terpenoid polyphenols, including 

Fig. 1   The functional outcomes of oxidative stress in hepatocytes. 
Oxidative stress in hepatocyte mitochondria may lead to mitochon-
drial dysfunction by promoting covalent modifications of lipids, pro-
teins, and nucleic acids. These covalent modifications  target some 
proteins for degradation and accumulate oxidized macromolecules 
in the mitochondria. These events may inactivate mitophagy and 

autophagy or cause mitochondrial dysfunction, leading to fat accu-
mulation, caspase-mediated apoptosis, and NF-κB-mediated inflam-
mation. These events collectively activate Kupffer and stellate cells in 
the liver, leading to further damage and dysfunction of liver physiol-
ogy
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capsaicin [140], are excellent liver disease preventions 
that target mitochondrial dysfunction [379, 380] and 
CYP2E1-induced oxidative stress [381]. N-acetylcysteine 
[141], naturally occurring terpenoid polyphenols, and 
phenolic acids [368] were reported to minimize oxidative 
stress and hepatotoxicity by targeting antioxidant enzymes 
[299]. Melatonin is another promising agent that improves 
mitochondrial abnormalities in APAP-induced DILI [382, 
383], chemotherapies [384], and other liver injuries [385].

Targeting intestinal barrier dysfunction for liver diseases

Gut dysbiosis is responsible for the exacerbation and pro-
gression of various liver diseases [386] through the promo-
tion of toxic metabolites [150]; in fact, targeting gut dysbio-
sis has the potential to mitigate the onset and progression 
of liver diseases [150, 387]. Given this information, it is 

necessary to create intestinal eubiosis or symbiosis to miti-
gate liver disease development and progression. Many gut 
bacteria are helpful in their ability to turn toxic compounds 
into non-toxic compounds; for instance, B. xylanisolvens can 
metabolize nicotine in smokers with MASLD, preventing 
the progression to MASH [387].

Many reports reviewed different mechanisms by which 
the gut can be targeted to prevent liver disease or metabolic 
diseases caused by intestinal barrier disruption and endotox-
emia. Considering the critical connection of the gut microbi-
ota and liver, fecal microbiota transplants (FMT), or admin-
istering probiotics of Lactobacillus rhamnosus GG [388] and 
Akkermansia muciniphila [389] may be used to treat ALD 
[390] or metabolic disease in general [391]. In addition to 
probiotics, other gut-targeted treatments include antibiotics, 
prebiotics, and “postbiotics”. These treatments have various 
targets, acting on the microbial barrier, physical barrier, or 

Fig. 2   Mitochondrial function changes from healthy hepatocytes 
to liver diseases. Normally, mitochondria can clear out mild  oxida-
tive stress generated by oxidative phosphorylation and other cellular 
activities through enzymatic and non-enzymatic ways. They can tran-
scribe new antioxidant enzymes to balance oxidative stress and the 

cycle of inflammation, and to regulate of metabolic pathways and 
mitochondrial biogenesis. However, mitochondrial dysfunction is a 
staple of ALD, MASLD, and other liver diseases due to its contribu-
tions to elevated oxidative stress, inflammation, dysfunctional meta-
bolic pathways, and promotion of cellular death pathways
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chemical barrier of the intestines [152, 392]. Modulation of 
the microbial composition of the intestines would decrease 
the production and release of LPS into serum [393], regulate 
FXR signaling [394], limit or lower bacterial metabolites 
such as trimethylamine (TMA) and trimethylamine-N-oxide 
[395, 396], and prevent oxidative stress, inflammation, and 
gut barrier dysfunction [393] (Table 1).

Concluding remarks

This article briefly reviewed the causes and manifestations 
of various liver diseases, including ALD, MASLD/MASH, 
TAFLD, and DILI. We have precisely described the roles 
of oxidative stress and examples of PTMs (e.g., oxidation, 
S-nitrosylation, JNK-mediated phosphorylation, nitration, 
acetylation, and adduct formation) of mitochondrial proteins 
and transcription factors in promoting fat synthesis, mito-
chondrial dysfunction and apoptosis of hepatocytes, leading 
to individual liver diseases caused by different etiological 
agents. We have also explained the causal roles of CYP2E1 
and NOXs as initial sources of ROS through the metabolism 
of many substrates, including alcohol (ethanol), long-chain 
FFAs, APAP, INAH, cisplatin, CCl4, cocaine, MDMA, anti-
depressants, and TAA. In addition, we have mentioned the 
protective role of mitochondrial ALDH2 against oxidative 
stress-mediated mitochondrial dysfunction and hepatotoxic-
ity, apoptosis/necrosis of hepatocytes and gut enterocytes, 
the production of DAMPs, the activation of Kupffer cells 
and HSCs, altered inflammation, and fibrosis, leading to 
cirrhosis and HCC. We have also discussed the role of 
gut dysbiosis in promoting intestinal barrier dysfunction, 
endotoxemia, and liver disease through the gut–liver axis. 
Furthermore, we proposed four challenges regarding the 
diagnosis and prognosis of several liver diseases. Based on 
the mechanistic insights and challenges, we have suggested 
basic and translational research opportunities against liver 
diseases by listing the benefits of many agents, including 
naturally occurring antioxidants and synthetic compounds. 
We hope our review can contribute to developing new and 
effective preventive or therapeutic agents against individual 
liver diseases as well as organ damage in other tissues.
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