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Automatic three-dimensional (3-D) reconstruction of the coronary arteries (CA) from
medical imaging modalities is still a challenging task. In this study, we present a deep
learning-based method of automatic identification of the two ends of the vessel from
X-ray coronary angiography (XCA). We also present a method of using template models
of CA in matching the two-dimensional segmented vessels from two different angles
of XCA. For the deep learning network, we used a U-net consisting of an encoder
(Resnet) and a decoder. The two ends of the vessel were manually labeled to generate
training images. The network was trained with 2,342, 1,907, and 1,523 labeled images
for the left anterior descending (LAD), left circumflex (LCX), and right coronary artery
(RCA), respectively. For template models of CA, ten reconstructed 3-D models were
averaged for each artery. The accuracy of correspondence using template models
was compared with that of manual matching. The deep learning network pointed the
proximal region (20% of the total length) in 97.7, 97.5, and 96.4% of 315, 201, and
167 test images for LAD, LCX, and RCA, respectively. The success rates in pointing the
distal region were 94.9, 89.8, and 94.6%, respectively. The average distances between
the projected points from the reconstructed 3-D model to the detector and the points
on the segmented vessels were not statistically different between the template and
manual matchings. The computed FFR was not significantly different between the two
matchings either. Deep learning methodology is feasible in identifying the two ends of
the vessel in XCA, and the accuracy of using template models is comparable to that of
manual correspondence in matching the segmented vessels from two angles.

Keywords: coronary artery, reconstruction, angiography, deep learning, fractional flow reserve

INTRODUCTION

Coronary artery (CA) diseases manifested by lumen narrowing is one of the leading causes of
death worldwide (Virani et al., 2020). The severity of stenosis is first evaluated by examining the
lumen area using medical imaging modalities. However, the coronary blood flow is not necessarily
correlated with the visually inspected geometry of the vessel (Park et al., 2012; Toth et al., 2014).
One of the methods to determine coronary blood flow is to measure the pressure drops along the

Frontiers in Physiology | www.frontiersin.org 1 September 2021 | Volume 12 | Article 724216

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.724216
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2021.724216
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.724216&domain=pdf&date_stamp=2021-09-07
https://www.frontiersin.org/articles/10.3389/fphys.2021.724216/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-724216 August 31, 2021 Time: 12:1 # 2

Hwang et al. Automatic 3D Reconstruction of Coronary Arteries

stenosis by inserting pressure wire into the vessel (Corcoran et al.,
2017). The pressure drop is represented by fractional flow reserve
(FFR) which is defined as the ratio of the distal pressure to the
proximal pressure through a coronary stenosis (Corcoran et al.,
2017). FFR can also be calculated analytically or computationally
(Kwon et al., 2014; Lee et al., 2016a, 2017a,b). FFR computation
uses reconstructed three-dimensional (3-D) geometry of the
vessel, and thus, the accuracy of the 3-D reconstruction is critical
to that of the computed FFR.

X-ray coronary angiography (XCA) is among the medical
imaging modalities that are used for 3-D reconstruction of
the CA. XCA provides relatively clear boundaries of the
CA and is widely used in clinical settings. However, XCA
provides two-dimensional (2-D) images, and reconstructing 3-D
geometry from 2-D images obtained at different angles is not a
straightforward task. Back-projection based methods are a group
of frequently used methods of reconstruction using 2-D images
of XCA (Cimen et al., 2016). In those methods, the locations of 3-
D points are determined using the triangulation method (Hartley
and Zisserman, 2004) involving the two corresponding points on
the two 2-D centerlines obtained at different angles. However, the
difficulty lies in establishing correspondence between the two 2-D
segmented vessels. Although epipolar constraint (Delaere et al.,
1991; Dumay et al., 1994) is generally used for correspondence,
it often does not generate a single match (Zhang et al., 1995;
Cong et al., 2015). Vessel overlapping and foreshortening,
which is shortened 2-D image of the vessel due to the relative
orientation of the vessel to the imaging device, often occur in
2-D images of XCA.

In this study, we present a method of automatically
establishing correspondences among the centerline points on the
2-D images obtained at two different angles in XCA, especially
focusing on overcoming the problem of foreshortening. The
two ends of the vessel were identified using a deep learning
methodology. The correspondences between the centerline
points on the two 2-D segmented vessels were established using
template models. The reconstructed 3-D models were compared
with those obtained by manual matching.

MATERIALS AND METHODS

Angiography Image Data Acquisition
The angiography image data were retrospectively obtained
from the patients who underwent XCA in Seoul National
University Hospital between January 2015 and October 2019.
XCA was performed using standard techniques. Angiographic
views were obtained after administration of intracoronary nitrate
(100 or 200 µg).

Identification of the Two Ends of the
Vessel
To automatically identify the two ends of the vessel in each of the
two images obtained at different angles, a deep learning method
was adopted. Training images for the deep learning network were
created by labeling the two ends of the vessel on the angiogram
images (Figure 1A). The proximal area of the vessel was labeled

at the tip of the catheter. The distal area of the vessel was labeled
at the distal end of the contrast material on the images when the
material fully filled the vessel. For the deep learning network, we
used a U-net consisting of an encoder (Resnet) and a decoder
(Figure 1B). The network was trained with 2,342, 1,907, and
1,523 labeled images for the left anterior descending (LAD),
left circumflex (LCX), and right coronary artery (RCA) images,
respectively. The network was trained using Nadam optimizer
(Dozat, 2016) with learning rate of 0.0001. Batch size of 4 and
150 epochs were implemented. The variables were initialized with
random numbers between 0 and 1 with uniform distribution.
Figure 2 summarizes the number of images used. The cases were
divided into the training, validation, and test cases randomly with
the ratio of 6.3:2.7:1, which resulted in the number of images
shown in Figure 2.

Two-Dimensional Segmentation of the
Vessel
Two-dimensional angiogram images were segmented by applying
Frangi filter (Frangi et al., 1998) to enhance the area where
contrast material exits. To determine the centerline of the vessel, a
fast-marching algorithm was used to find the fastest path from the
start point to the end point with a velocity weight proportional to
the distance to the nearest wall (Van Uitert and Bitter, 2007). The
diameter of the vessel was obtained by averaging the distances
from the centerline point to the two borders in the direction
normal to the centerline at each centerline point. These diameters
measured on the 2-D images were later converted to those in 3-D
space when 3-D reconstruction was performed.

Establishment of the Correspondence
Using Template Model
To overcome the problem of foreshortening in angiography
images when establishing the correspondence between the two 2-
D segmented vessels from two different angles, template models
of the centerlines of the CAs were used. Each template model
of the centerlines of LAD, LCX, and RCA was constructed by
averaging the centerline points of 10 randomly selected models
from a previous study (Lee et al., 2016b), which were generated
by using a commercial software (AutoSeg, Ver. 1.0, AI Medic
Inc., Seoul, South Korea) (Figure 3). The 10 models were resized
so that the lengths of the centerlines were the same. The 10
models were also translated so that the start points were identical.
One hundred equidistantly distributed centerline points were
generated from the start to the end locations for each of the
10 models, and the coordinates of the centerline points were
averaged among the 10 models (Figure 3).

For the given set of angiograms, two-dimensional coordinates
of the template centerline points were calculated when viewed
from the same angles at which the given angiograms were
obtained in terms of left/right anterior oblique (LAO/RAO)
and cranial/caudal (CRA/CAU) angles (Figure 4A). For each
centerline point, the distance from the start point along the
centerline was calculated at the 2-D plane, and the ratio to the
total distance from the start to the end point was also calculated.
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FIGURE 1 | Deep learning method for the identification of the two ends of the vessel. (A) An example of the labeling of the two ends (blue and green) and the vessel
inside (red) for LAD, LCX, and RCA. (B) Deep learning network used for the training of the labeled images.

The distance ratios were used to determine the matching points
on the two 2-D centerlines in the actual angiograms (Figure 4A).

Three-Dimensional Reconstruction of
the Vessel
The 3-D coordinates of the centerline points were determined
in a point-by-point manner using a back-projection based
method (Cimen et al., 2016). Briefly, each centerline point in
the 3-D space was determined using geometrical relationships
among the locations of X-ray sources at the two angles, and
the coordinates of the points on the 2-D images at the two
angles (Figure 4B). First, a line is formed between the X-ray
source and a centerline point on the 2-D image at the first

angle. The 3-D point is searched on the line such that the
projection to the 2-D image at the second angle is closest to
the corresponding point on the image. Patient table panning
was incorporated in the process by adding two more search
parameters defining the movement of the 3-D point on the
plane parallel to the table. The vessel diameters measured
on the 2-D images in the segmentation step were converted
to 3-D diameters after the coordinates of the 3-D points
were determined.

Computation of FFR
FFR was obtained using a commercial software (HeartMedi, Ver.
1.0, AI Medic Inc., Seoul, South Korea). Briefly, unstructured
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FIGURE 2 | The number of images used for the deep learning network. The cases were divided into the training, validation, and test cases randomly with the ratio of
6.3:2.7:1, which resulted in the number of images shown in the bottom boxes. Each case had up to 8 images full of contrast medium in the vessel.

FIGURE 3 | Template model generation. Ten models for each CA reconstructed from a previous study (Lee et al., 2016b) were averaged to generate template
models.

tetrahedral meshes were created inside the 3-D vessel geometries
for computation. Incompressible Navier-Stokes equations
were solved numerically. Blood flow velocity obtained from
angiography frame count analysis was converted to hyperemic
velocity using the formula used in Carson et al. (2019). The

hyperemic velocity was used as the inlet boundary condition
for the computation. Steady state simulation was performed,
and the pressures obtained from the simulation was used
to calculate Pd/Pa where Pd and Pa are distal and inlet
pressures, respectively.
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FIGURE 4 | Reconstruction of CA using template model. (A) Template model is viewed from the same angles the angiograms were obtained. For each centerline
point of the template model, the distance from the start point along the centerline is calculated and the ratio to the total length is calculated. The correspondences
between the segmented vessel centerlines (yellow) are established using the distance ratios obtained from the template model. (B) Geometrical relationships among
the CA in 3-D space, X-ray sources and the vessel images on the detectors.

FIGURE 5 | Examples of the two ends (yellow) pointed by the deep learning
network for LAD, LCX, and RCA.

TABLE 1 | Success rates of pointing the vessel ends by the deep
learning network.

Defined length of
vessel end with
respect to total
vessel length (%)

Vessel type Success rate (%)

Start End

LAD 97.7 94.9

20 LCX 97.5 89.8

RCA 96.4 94.6

LAD 96.8 90.4

15 LCX 97.5 83.5

RCA 96.4 87.3

LAD 92.3 82.2

10 LCX 93.5 69.1

RCA 86.7 70.4

LAD 88.2 63.8

5 LCX 92.5 62.1

RCA 83.1 54.2

RESULTS

Identification of the Two Ends of the
Vessel
Figure 5 shows an example of the start and end points of the
LAD, LCX, and RCA indicated by the trained deep learning
network. The total success rates of the indication of the start and
end points were 97.3 and 93.3%, respectively, among 683 test
images for each end. The indication was regarded as successful
when the indicated point was located on the vessel within the
20% of the total vessel length from either the actual start or end
point. The success rates for the start point in the cases of LAD,
LCX, and RCA were 97.7, 97.5, and 96.4%, respectively, and for
the end point, they were 94.9, 89.8, and 94.6% among 315, 201,
and 167 test images, respectively. The success rates for pointing
the vessel area within 5, 10, 15, and 20% of the total vessel
length from the two ends are shown in Table 1. The test image
acquisition angles were (RAO 30.5 ± 2.12, CRA 34.1 ± 4.58),
(RAO 23.0 ± 8.43, CAU 29.1 ± 5.82), and (LAO 36.5 ± 2.07,
CRA 20.0 ± 11.4) for LAD, LCX, and RCA, respectively, for the
first views, and for the second views, they were (LAO 38.6 ± 2.84,
CRA 23.7 ± 4.45), (RAO 1.91 ± 0.94, CAU 35.4 ± 7.89),
and (LAO 36.1 ± 1.91, CAU 0.04 ± 0.69) for LAD, LCX, and
RCA, respectively.

Establishment of the Correspondence
Using Template Model
The template models averaged among 10 randomly selected
models for LAD, LCX, and RCA are shown in Figure 3. When
all the 10 models and the template model were translated so
that the start points were identical, the distances among the
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FIGURE 6 | Reconstructed 3-D models for LAD, LCX, and RCA using manual (M) and template (T) matchings.

FIGURE 7 | Computed FFR. Distribution of computed FFR is shown for LCX for two different views. Manual (M) and template (T) matchings are compared.
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models increased as the distance from the start point increased
along the centerline. For LAD, the average distance from the
template model to each random model was 0.20 ± 0.07 at the
end point when the centerline length from the start to the end
point was 1. For LCX and RCA, they were 0.23 ± 0.09 and
0.15 ± 0.07, respectively.

Because the 3-D centerline points were determined among
the 3-D points on the line connecting the X-ray source and
the points on the 2-D image at the first angle, the accuracy of
the reconstructed 3-D centerline were examined by comparing
the projected and segmented 2-D centerlines at the second
angle. When the template models were used in the matching
of the centerline points between the two images from two
angles, the average distance between the projected and segmented
centerline points at the second angle (ADPS2) was 1.66 ± 1.56
pixels for a model of LAD. The total number of pixels in each
image was 512 by 512. The 3-D model was also created by
manually matching four landmark points on the centerlines
of 2-D images for comparison. In the case of the manual
matching, the ADPS2 was 1.35 ± 0.74 pixels (Figure 6).
There was no statistically significant difference between the
ADPS2s for the template and manual matchings based on an
independent samples t-test (p= 0.11, n= 100). For a model of
LCX, ADPS2s were 1.76 ± 0.94 and 1.55 ± 0.81 (p= 0.09,
n= 100) for template and manual matchings, respectively. For
a model of RCA, they were 1.48 ± 1.04 and 1.59 ± 1.09
(p = 0.49, n = 100), respectively. We also generated template
models using 5 and 15 coronary models for each artery,
and the ADPS2s were not significantly different between the
template and manual matchings for all the three types of
the artery when 15 coronary models were used for template
model generation (Supplementary Material). However, when
5 models were used for template model generation, the
ADPS2s were significantly different between the template
and manual matchings for all the three types of the artery
(Supplementary Material).

Computation of FFR
The values of FFR were also compared between the 3-D models
created by the template and manual matchings (Figure 7). Table 2
shows the FFR values at the locations of 25, 50, and 75% of the
total length from the inlet along the centerline for LAD, LCX,
and RCA. The largest difference of FFR values between the two
matching methods was 2.3% observed in the case of LCX at 75%
location, which seems to be due to the mild stenosis located
in the middle part of the vessel. All the other cases showed

TABLE 2 | Computed FFR for manual (M) and template (T) matchings.

Distance from
inlet (%)

LAD LCX RCA

M T M T M T

25 0.965 0.960 0.987 0.988 0.961 0.963

50 0.927 0.921 0.916 0.911 0.926 0.929

75 0.879 0.872 0.844 0.825 0.895 0.898

less than 1% of the difference of FFR values between the two
matching methods.

DISCUSSION

Automatic 3-D reconstruction of the CAs using medical
images is still a challenging task. Currently available imaging
modalities have their own limitations in resolution and the
appropriate interpretations of the resulting images require
significant amount of the knowledge in the working of the
imaging device and the anatomy of the arteries. Although
XCA provides images of relatively high resolution, the
automatic matching of the centerlines obtained at two
different angles needs to be established for automatic
3-D reconstruction. This study tested the possibility of
utilizing deep learning and template models of the arteries
in achieving that goal.

One of the commonly used methods of establishing
correspondence between the centerlines obtained at two
different angles is utilizing epipolar lines resulting from the
epipolar planes defined by the object points and the two X-ray
sources (Delaere et al., 1991; Dumay et al., 1994; Chen and
Carroll, 2000, 2003). Although it is a theoretically accurate
method of establishing correspondences, uncertainties such
as patient table panning between the two acquisitions from
different angles move the corresponding points away from the
epipolar lines in the second view image. Although the degree of
the uncertainties can be estimated using optimization processes
(Chen and Carroll, 2000, 2003; Yang et al., 2009), the search of
the accurate corresponding points should be included in the
optimization process (Blondel et al., 2006), which would make
the whole process complicated and time-consuming. In addition,
a part of the vessel could be parallel with the epipolar lines, which
also would complicate the determination of the corresponding
points (Yang et al., 2014; Cong et al., 2015). Bifurcation points of
the arteries can be landmarks in the matching of the vessel trees
obtained from two angles (Andriotis et al., 2008; Galassi et al.,
2018). However, automatic detection of all the branches is not
always feasible because some branches are often indistinguishable
in the angiographic images. Moreover, some curved branches
sometimes overlap with the main vessel, which makes the distal
end of the branch seem like a new branch.

For fully automatic 3-D reconstruction of the CA using XCA,
automatic determination of the two ends of the vessel on 2-
D images is an important step (Vukicevic et al., 2018). Those
ends selected from the images obtained from two different angles
should be correspondent. The methodology of deep learning
turned out to be useful in the selection of the end points in
this study. The selection of the proximal end was relatively more
successful compared to that of the distal end, because the tip
of the catheter was relatively clear for deep learning network to
identify. For the identification of the distal end, it was helpful
that the viewing angles the clinicians prefer were more or less
set for each CA (Yang et al., 2019). As a result, the distal ends
were located more or less within a certain area in the 2-D image
of XCA for each CA. The difference of the locations of the
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proximal ends on the two images from different angles would
also provide a clue for the degree of the table panning and
cardiac/respiratory motions. The accuracy of the identification
remains to be improved for fully automatic reconstruction.

Besides the automatic establishment of correspondences
between the centerline points and the determination of the two
ends of the vessel focused on in this study, fully automatic 3-
D reconstruction of the CA from XCA requires more steps
such as the determination of the shape of the cross-section
of the vessel (Vukicevic et al., 2018) and the compensation
of the cardiac/respiratory motions (Chen and Carroll, 2003;
Blondel et al., 2006; Zheng and Qi, 2011). Also, for the
computation of FFR, another advantage of XCA is that the
blood flow velocity can be extracted by analyzing the time-
dependent locations of the contrast medium (Kunadian et al.,
2009). The inclusion of all these components would enable
more accurate 3-D reconstruction of the CA and help diagnosis
of CA disease. Although the reconstructions using template
models were comparable to those using manual matchings in
this study, validations against synthetic phantoms or catheter-
based FFR measurements need to be performed to evaluate the
accuracy of the present approach. Especially, the FFR simulations
need to be performed for vessels with complex stenotic lesions
to fully validate the present reconstruction method. Also, the
present method needs to be compared with pre-existing 3-D
reconstruction methods. It is important to know the uncertainty
or confidence in the predictions from computational tools.
Although the comparison of ADPS2 between the template
and manual matchings for using 5, 10, and 15 coronary
models for template model generation could provide a rough
idea of the uncertainty in the predictions from the present
method, we believe a more rigorous methodology should be
designed and implemented to know the confidence in the
predictions. Although the methods presented in this study are
approximate approaches, they could be combined with currently
available methods and provide ideas for future development of
more rigorous ones.
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