
Identifying miRNA-mRNA Networks
Associated With COPD Phenotypes
Yonghua Zhuang1*, Brian D Hobbs2,3,4, Craig P Hersh2,3,4 and Katerina Kechris1

1Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,
2Channing Division of Network Medicine, Brigham andWomen’s Hospital, Boston, MA, United States, 3Division of Pulmonary and
Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, United States, 4Harvard Medical School, Boston, MA,
United States

Chronic obstructive pulmonary disease (COPD) is characterized by expiratory airflow
limitation and symptoms such as shortness of breath. Although many studies have
demonstrated dysregulated microRNA (miRNA) and gene (mRNA) expression in the
pathogenesis of COPD, how miRNAs and mRNAs systematically interact and
contribute to COPD development is still not clear. To gain a deeper understanding of
the gene regulatory network underlying COPD pathogenesis, we used Sparse Multiple
Canonical Correlation Network (SmCCNet) to integrate whole blood miRNA and RNA-
sequencing data from 404 participants in the COPDGene study to identify novel
miRNA–mRNA networks associated with COPD-related phenotypes including lung
function and emphysema. We hypothesized that phenotype-directed interpretable
miRNA–mRNA networks from SmCCNet would assist in the discovery of novel
biomarkers that traditional single biomarker discovery methods (such as differential
expression) might fail to discover. Additionally, we investigated whether adjusting
-omics and clinical phenotypes data for covariates prior to integration would increase
the statistical power for network identification. Our study demonstrated that partial
covariate adjustment for age, sex, race, and CT scanner model (in the quantitative
emphysema networks) improved network identification when compared with no
covariate adjustment. However, further adjustment for current smoking status and
relative white blood cell (WBC) proportions sometimes weakened the power for
identifying lung function and emphysema networks, a phenomenon which may be due
to the correlation of smoking status and WBC counts with the COPD-related phenotypes.
With partial covariate adjustment, we found six miRNA–mRNA networks associated with
COPD-related phenotypes. One network consists of 2 miRNAs and 28 mRNAs which had
a 0.33 correlation (p � 5.40E-12) to forced expiratory volume in 1 s (FEV1) percent
predicted. We also found a network of 5 miRNAs and 81 mRNAs that had a 0.45
correlation (p � 8.80E-22) to percent emphysema. The miRNA–mRNA networks
associated with COPD traits provide a systems view of COPD pathogenesis and
complements biomarker identification with individual miRNA or mRNA expression data.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is the third
leading cause of death worldwide (Celli and Wedzicha, 2019)
and is primarily attributable to the effects of cigarette smoking.
Although smoke exposure drives COPD, we still have a poor
understanding of the molecular traits and biologic pathways that
are associated with specific COPD-related traits (Carolan et al.,
2014). In addition, patients with COPD exhibit heterogeneity in
clinical presentation, with different morbidities and prognoses for
each phenotype (Bowler et al., 2015). Different COPD-related
phenotypes might be attributable to different molecular
mechanisms, such as miRNA–mRNA networks.

MicroRNAs (miRNAs) are a type of small non-coding RNAs
that are approximately 21–25 nucleotides long and play
important roles in regulating both gene and protein levels by
binding to mRNAs to contribute to either transcript degradation
or inhibition of protein translation. A single miRNAmay regulate
tens to hundreds of genes simultaneously due to the redundancy
of complementary sequences between miRNAs and target
sequences in the 3′UTR of mRNA(s). Many studies have
implicated miRNAs in the pathogenesis of COPD (Osei et al.,
2015; Salimian et al., 2018; Keller et al., 2019).

Although some COPD biomarker investigations have focused
on single candidate mRNA or miRNA (e.g., IRF-3, miR-199a-5p)
(Ishii et al., 2017; Takei et al., 2019), there is no single mRNA,
miRNA, or other molecule that can fully explain the development
of COPD. Compared with single biomarkers, panels of several
biomarkers have been shown to improve predictive accuracy of
disease severity, progression, and mortality in COPD (Zemans
et al., 2017). Furthermore, a network-based approach could
further pinpoint potential mechanisms by integrating datasets
and thereby increasing statistical power. This approach has been
used to integrate proteins and metabolomics to study their
combined relationship to COPD (Mastej et al., 2020).

Networks are a natural framework to represent relationships
between molecular components (Winterbach et al., 2013). A
network consists of a series of nodes, or biological entities
such as miRNAs and genes. The direct and indirect
interactions between miRNAs and mRNAs form regulatory
network(s) that contribute to biological processes. Networks
provide a graphical representation of molecular interactions
that may explain pathogenesis for complex diseases (Civelek
and Lusis, 2014).

For this study, we used our recently developed tool called
sparse multiple canonical correlation network (SmCCNet) (Shi
et al., 2019) to integrate blood-based miRNA and mRNA data
into COPD-associated miRNA–mRNA gene regulatory
networks. SmCCNet uses a canonical correlation-based
approach to simultaneously integrate multi-omics data and a
quantitative phenotype of interest to build interpretable
networks.

Unlike standard pairwise correlations between individual
features, canonical correlation measures the relatedness of two
sets of features simultaneously by finding a linear combination of
members from each set. SmCCNet is an extension of canonical
correlation in which linear combinations are found to maximize

the correlation between multi-omics datasets (e.g., miRNAs,
mRNAs) and a phenotype of interest (e.g., FEV1pp or
emphysema). We have previously published the details of the
SmCCNet method (Shi et al., 2019), where we inferred
miRNA–mRNA networks associated with COPD phenotypes
in a pilot study of 27 subjects. In the current study, we further
used SmCCNet to integrate whole blood miRNA and mRNA
expression data from 404 participants from the COPDGene
Study, which is one of the most comprehensive sets of blood
miRNA and mRNA data available to date for COPD to identify
novel miRNA–mRNA networks associated with lung function
and emphysema. Our aim was to integrate -omic data to build
interpretable networks that could assist in the discovery of novel
biomarkers that might have been overlooked in standard
biomarker discovery methods.

MATERIALS AND METHODS

Transcriptomics Data (mRNA and miRNA
Seq Data) and Data Processing
These data were generated as part of the COPDGene Study,
which is one of the largest studies ever that enrolled 10,198
participants with and without COPD between 2007 and 2011
(Visit 1, phase I study) to identify genetic factors associated with
COPD (Ragland et al., 2019; Regan et al., 2019). The miRNA and
mRNA high-throughput sequencing data were from peripheral
blood samples collected at the 5-years follow up visits from 2013
to 2017 (phase II study).

The total miRNA dataset consisted of 555 peripheral blood
samples and 2151 miRNAs (LaBelle et al., 2021). In a pilot study,
we observed abundant hemolysis-related miRNAs including hsa-
miR-486-5p, hsa-miR-451a, and hsa-miR-92a-3p in RNA seq
data. Therefore, we used single multiplexed blocking
oligonucleotides to reduce these unwanted hemolysis-related
miRNAs before sequencing RNA and allow for better
detection of lowly expressed biomarkers (LaBelle et al., 2021).
We removed 15 samples due to either low sequencing depth (total
read counts <200 k) or missing clinical information. In addition,
the plate5 batch in the microRNA data appeared to be
fundamentally different than all other batches, and the
samples in plate5 were removed; 404 subjects remained for
further preprocessing. We first removed three outlier miRNAs
with large counts (individual reads >5 million) including hsa-
miR-191-5p, hsa-miR-486-5p and hsa-miR-92a-3p. Of note, hsa-
miR-486-5p and hsa-miR-92a-3p are hemolysis-susceptible
miRNAs (Kirschner et al., 2013). Although the majority of
hsa-miR-486-5p and hsa-miR-92a-3p were removed with
blocking oligonucleotides, their remaining expression values
were still relatively high. We also filtered out “absent” and
low-variant miRNAs by requiring more than 10 reads in at
least 200 subjects, as well as a minimum standard deviation of
10 across subjects (Conesa et al., 2016). The number of miRNAs
reduced to 683 post-filtering. To normalize the miRNA
expression data, we applied upper-quartile normalization and
Remove Unwanted Variations with Residuals (RUVr) (Risso
et al., 2014). The generalized linear model used in RUVr to
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determine residuals includes the following covariates: sex, race,
age, smoking status, white blood cell percentages from the
complete blood count (CBC, including neutrophils,
lymphocytes, eosinophils), and forced expiratory volume
during the first second expressed as a percent of predicted
value (FEV1pp). Finally, the corrected sequencing counts were
transformed to be homoscedastic via a variance stabilizing
transformation (VST) (Anders and Huber, 2010) (Figure 1).

The full CODPGene total mRNA sequencing data contained
2655 peripheral blood samples on 65,988 transcripts. For the
genes, we first filtered down to protein coding genes (21,835/
65,988). Then for each gene, we required more than 10 reads in at
least 500 samples, and the standard deviation to be greater than
30. Post filtering, we obtained 2655 samples and 9,430 genes. As
with the miRNA data, we applied upper-quartile normalization
and RUVr (Risso et al., 2014) with the same generalized linear
model and covariates to remove unwanted variance including
batch effect. Finally, the corrected sequencing counts were
transformed to be homoscedastic via VST (Anders and Huber,
2010).

For the mRNA sequencing data, 555 subjects were also
profiled in the miRNA sequencing study. As described above,
we removed 151 samples of miRNAs data due to either low
sequencing depth, missing clinical phenotypes or in a bad batch.

We extracted the preprocessed mRNA data to match the
preprocessed miRNAs on the same 404 subjects with
phenotypes (Figure 1). The network analysis with SmCCNet
was performed on the 404 paired samples only, which included
183 controls, 169 COPD cases, and 52 subjects with Preserved
Ratio Impaired Spirometry (PRISm).

Clinical Variables and Definitions
We focused on two COPD phenotypes: percent predicted forced
expiratory volume in one second (FEV1pp) and percent
emphysema. A measure of lung function, FEV1pp is the
amount of air one can forcibly exhale in one second (L)
divided by the predicted FEV1 adjusted for age, height, race,
and sex (Hankinson et al., 1999). Emphysema, a destruction of
distal airspaces, is associated with the clinical severity of COPD
(Li et al., 2019) but is loosely correlated with FEV1pp. Percent
emphysema is an imaging phenotype defined as percent of lung
voxels with attenuation values less than −950Hounsfield Units on
quantitative analysis of chest computed tomography (CT) scans.

Individuals were classified as having normal spirometry if
FEV1 ≥80% and FEV1/FVC >0.7. In participants with COPD
(FEV1/FVC <0.7), the Global Obstructive Lung disease (GOLD)
system was used to grade the severity of airflow limitation: early,
GOLD 1 (FEV1 ≥80%); moderate, GOLD 2 (50% ≤ FEV1 < 80%);

FIGURE 1 | Flowchart of data preprocessing and covariate adjustment for SmCCNet analysis. The miRNA (n � 555) and mRNA (n � 2655) high-throughput
sequencing data were from peripheral blood samples collected at COPDgene phase II study. For RNAseq gene count data, the low-expressed and low-variance genes
were removed. Specifically, we first filtered down to protein coding genes. Then for each gene, we required more than 10 reads in at least 500 samples, and the standard
deviation to be greater than 30. The upper-quartile normalization and RUVr (remove unwanted variation using residuals) methods were applied to normalize the
library size, correct batch effect and remove unwanted variation. The resultant data were either preserved or further adjusted with two different sets of covariates [partial
adjustment: sex, age and race; full adjustment: sex, age, race, current smoking status and white blood cell (WBC) percentages]. The miRNA expression count was
processed similarly to the gene count data; 151 samples of miRNA data were removed due to low sequencing depth, missing clinical phenotypes, or being in a bad batch
(see detail in Methods). After removing three outlier miRNAs with large counts (individual reads >5 million), we filtered out “absent” and low-variant miRNAs by requiring
more than 10 reads in at least 200 subjects, as well as a minimum standard deviation of 10 across subjects. The clinical phenotypes including FEV1pp and %
emphysema were processed and adjusted correspondingly to match mRNA and miRNA data (n � 404) for the downstream SmCCNet analysis. Of note, FEV1pp is
already adjusted for sex, age, and race. Thus, no additional adjustment was needed in the partial adjustment. In addition, CT scanner model is a potential cofounder for
percent emphysema, and it was included in the partial and full adjustment for percent emphysema.
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severe, GOLD 3 (30% ≤ FEV1 < 50%); and very severe, GOLD 4
(FEV1 <30%). Individuals with FEV1 <80% but FEV1/FVC >0.7
were classified as Preserved Ratio Impaired Spirometry (PRISm)
(Wan et al., 2014). FEV1pp and percent emphysema variables
were both centered and scaled.

Covariate-Adjusted Omics Data
Although covariates may influence miRNA and mRNA
abundance in human blood studies, covariate adjustment is
often missing in many -omic studies, especially network
analysis. There is no consensus on the effect covariate
adjustment has on data and many covariates can also be
associated with disease variables. In addition, it is not clear if
the confounder effects for epidemiologic studies and single omics
analyses are translatable to network integration studies. To
investigate the effect of covariate adjustments for network
analysis, we prepared the data in three ways: 1) no covariate
adjustment; 2) partial covariate adjustment; 3) full covariate
adjustment (Figure 1). Of note, the COPDgene study has
collected 905 clinical variables. In this study, we selected a
small subset of potential covariates based on co-author clinical
expertise and previous literature (Coxson et al., 2013; Bradford
et al., 2017; Willinger et al., 2017).

In partial covariate adjustment, we adjusted the mRNA and
miRNAs data for sex, age, and race. Regarding the phenotypes for
the partial covariate adjustment, since FEV1pp has been already
adjusted for sex, age, and race, no further adjustment for the
phenotype FEV1pp is required in partial covariate adjustment.
For percent emphysema, we adjusted for sex, age race, and CT
scanner model, since the latter is a potential confounder for
percent emphysema.

In full covariate adjustment, we adjusted the mRNA and
miRNAs data for sex, age, race, smoking, and white blood cell
(WBC) percentages including percent lymphocytes, neutrophils,
and eosinophils. Regarding the phenotypes for full covariate
adjustment, FEV1pp was further adjusted for current smoking
and WBC. For percent emphysema, we adjusted for sex, age race,
CT scanner model, current smoking, and WBC percentages.
Covariate adjustment was performed using linear regression
for each mRNA/miRNA/phenotype with the listed covariates
as the predictors. Residuals from these models were utilized in
adjusted models moving forward.

Sparse Multiple Canonical Correlation
Network
miRNA–mRNA networks correlated to FEV1pp and percent
emphysema were constructed using SmCCNet (Figure 1), a
technique developed previously in our group (Shi et al., 2019)
that uses multiple canonical correlation network analysis to
integrate multi-omics data types with a phenotype of interest.

Before applying SmCCNet, the Pearson correlation matrices
were calculated between the -omics data (X1 for mRNA, X2 for
miRNA) and the phenotype of interest (Y). The range of
correlations of between the -omic data was comparable to the
range of correlations of mRNA-omic data and the phenotype of
interest. However, the range of correlations between the miRNA-

omic data and the phenotype of interest was weaker. Thus, we
applied a scaled version of SmCCNet (i.e., a, b, and c are not all
equal) to prioritize the correlations between the miRNA-omic
data and the phenotype of interest. The scaling factors and sparse
penalty parameters (l1, l2) were chosen through a fourfold cross
validation in a grid search (See details in Supplementary method).
Besides K-fold cross validation, the SmCCNet framework also
provides feature subsampling to create robust network
construction (Shi et al., 2019). Since the number of miRNAs is
much smaller, we chose the subsampling proportions to be 70%
and 90% for mRNA and miRNA, respectively. The subsampling
procedure was repeated 1,000 times in this study.

Edge Thresholds
Lastly, after miRNA–mRNA networks were generated from
SmCCNet, absolute edge thresholds were applied to the
networks to filter out weak edges (edges with low weights)
(Shi et al., 2019). Edge thresholds were systematically testing
starting at 0.001, to the maximum of adjacency matrix in each
module, in increments of 0.001 to reveal trimmed, interpretable
networks with strong edges that still had strong correlations to the
phenotype of interest and a balanced miRNA to mRNA ratio.

miRNA–mRNA Network Correlations With
Phenotypes
To determine the quality of each network, we calculated the
Pearson correlation of the first principal component (PC1) of the
network and the phenotype of interest. PC1 was selected as a
single summary of the network because it explains the most
variance in the expression data of the nodes in the network.
Identified FEV1pp and percent emphysema associated networks
were visualized using Cytoscape version 3.8 (Shannon et al.,
2003).

COPD-Associated Network Quality
Assessment
To assess the effects of covariate adjustment networks that were
constructed on unadjusted, partially-adjusted and fully-adjusted
-omic data and to compare the quality of COPD-associated
networks, the pairs of miRNA and mRNA with negative
correlation in the identified network were queried in multiple
microRNAs/targets databases, including validated microRNA-
target databases (miRecords, miRTarBase, and TarBase),
predicted microRNA-target databases (DIANA-microT,
ElMMo, MicroCosm, miRanda, miRDB, PicTar, PITA, and
TargetScan), and microRNA-disease/drugdatabases
(miR2disease, Pharmaco-miR VerSe, and PhenomiR). Of note,
the correlation direction was determined by calculating Pearson’s
correlation for each pair of mRNA and miRNA based on their
expression data. The queries were performed with the
“multiMiR” R package (Ru et al., 2014).

Since the microRNA-target databases are not COPD-specific, we
further compared the miRNAs in the identified networks with the
published miRNAs associated with COPD phenotypes. In the review
paper of Osei et al. (2015), 70 unique miRNAs related to “FEV1,”
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“emphysema,” or other COPD relevant phenotypes were summarized.
In the recent review papers of Salimian et al. (2018) and Dutta et al.
(2019), 174 miRNAs associated with COPD were summarized. The
COPD-associated miRNAs were combined in these three reviews. For
someCOPD-associatedmiRNAs, 3′ or 5′ informationwas not reported
in the original research studies. Therefore, we used both 3′ and 5′ for
those miRNAs. The final set was 289 COPD-related miRNAs for
comparison with miRNAs in our results.

Gene Ontology Enrichment Analysis on
Chronic Obstructive Pulmonary
Disease-Associated Network
We performed gene ontology (GO) enrichment analysis with
Fisher’s exact test on the gene nodes in the COPD-associated
networks to identify important pathways related to COPD
phenotypes. Gene ontology provides a controlled vocabulary
for describing biological processes (BP), molecular functions
(MF) and cellular components (CC). We focused on BP
ontology enrichment analysis since we are interested in what
biological processes are involved in COPD. The GO size
parameter was set to be 30 to prune the GO hierarchy from
the terms which have less than 30 annotated genes. Besides
running classic GO enrichment tests, we also took into
account GO hierarchy into account and performed
conditional enrichment analysis with the “weight01”
algorithm in “topGO” R package (Alexa et al., 2006). Under
GO hierarchy, one parent GO gene set is likely to be enriched
when one of its offspring gene set is enriched. Conditional
enrichment analysis accounts for this phenomenon in analyzing
enrichment significance. In conditional enrichment analysis, all
leaf gene sets are tested as conventional enrichment analysis.
Then, parents of these gene sets are examined as follows: if one
of their offspring is significant, the genes belonging to this child
are removed from the parent gene set. The analysis is performed
recursively until reaching the root gene set.

Single Omics Analysis for Comparison
We performed Pearson correlation analysis on the mRNAs or
miRNAs and COPD phenotypes including FEV1pp and percent
emphysema. The significant genes and miRNAs were selected for
comparison if adjusted p-values <0.05 after Benjamini-Hochberg
multiple testing corrections.

Statistical Package
All analyses were performed using the statistical R v4.0 software.
The following R packages: “SmCCNet v0.99” (Shi et al., 2019),
“WGCNA v1.66 (Langfelder and Horvath, 2008),” “topGO v2.44
(Alexa et al., 2006),” and “multiMiR v1.14 (Ru et al., 2014)” were
used for gene network analysis.

RESULTS

Clinical Characteristics of Subjects
The samples in this miRNA–mRNA network study covered a
range of spirometry profiles including normal (183), COPD with

all four grades of GOLD airflow limitation severity (GOLD 1: 47;
GOLD 2: 68; GOLD 3: 37; GOLD 4: 17), and Preserved Ratio
Impaired Spirometry category (PRISm: 52). We categorized the
samples into three groups: normal spirometry, COPD cases
(GOLD � 1–4) and PRISm (Table 1). There are differences in
age, BMI, neutrophil percent, lymphocyte percent, FEV1pp,
FVCpp and percent emphysema in the three different groups
(p < 0.05). However, sex and race are not statistically different
(p > 0.05).

Correlations Between Adjusted -Omic Data
and Phenotype
Before applying SmCCNet to -omic data, we explored the
range of correlations between -omic datasets and between-
omic data and the phenotype of interest. The range of
correlations between the partial adjusted mRNA data and
the adjusted miRNA data was −0.48 to 0.60. The range of
correlations between the adjusted mRNA and the FEV1pp
was −0.34 to 0.36, but the correlations between the
adjusted miRNA and the FEV1pp was smaller and in the
−0.25 and 0.27 range (Figure 2A). The range of correlations
between the adjusted mRNA and the percent emphysema
was −0.46 to 0.40, but the correlations between the
adjusted miRNA and the percent emphysema was smaller
and in the −0.21 and 0.29 range (Figure 2B). Of note, the
similar patterns of pair correlation distributions were
observed in the unadjusted and fully adjusted datasets
(data not shown).

The range of correlations between the adjusted miRNA
and phenotype data was smaller than the range of
correlations of mRNA–miRNA and mRNA–phenotypes
likely because the total number of miRNAs is smaller.
However, this discrepancy can result in networks that are
driven by mRNA related correlations and ignore potentially
important correlations between miRNA and the
phenotype(s). Therefore, additional emphasis was made on
the correlations between miRNAs data and the phenotypes
with the scaled version of SmCCNet applied to the miRNA
and mRNA data as discussed in the Methods section.

The final scaling factors for SmCCNet were selected through a
four-fold cross validation to find the pair that minimized the
prediction error (Supplementary Table S1).

Identified COPD Networks with Different
Covariate Adjustments
Scaled SmCCNet was applied on the unadjusted, partially-
adjusted, or fully-adjusted miRNA and mRNA data. As
summarized in Table 2 and Supplementary Figure S1, we
identified 4, 11, and 7 FEV1pp-associated modules in
unadjusted, partially-adjusted and fully-adjusted data,
respectively. The number of miRNAs in the identified modules
ranges from 1 to 6. The median ratio of the number of miRNAs to
mRNA was 0.01 (unadjusted and fully-adjusted) or 0.02
(partially-adjusted).
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The emphysema-associated modules derived from unadjusted,
partially-adjusted and fully-adjusted data are summarized in
Supplementary Figure S2 and Supplementary Table S2. We

identified 4, 7, and 17 emphysema-associated raw modules in
unadjusted, partially-adjusted and fully-adjusted data,
respectively. The number of miRNAs in the identified modules

TABLE 1 | Clinical characteristics of overlapping mRNA and miRNA dataset.

Clinical Variables Normal
Spirometry (n = 183)

COPD
(GOLD 1–4) (n = 169)

PRISm (n = 52) p-Values

Sex, Male (%) 79 (43.2) 84 (49.7) 24 (46.2) 0.47
Race, Non-Hispanic White (%) 134 (73.2) 128 (75.7) 36 (69.2) 0.631
Race, African Americans (%) 49 (26.8) 93 (24.3) 16 (30.8)
Age (y) 62.98 (8.20) 68.28 (8.67) 61.04 (7.02) <0.001
BMI (kg/m2) 28.92 (5.84) 28.18 (6.09) 32.34 (6.15) <0.001
Current smoking (%) 60 (32.8) 64 (37.9) 27 (51.9) 0.041
Percent of neutrophil 57.28 (10.76) 61.62 (10.64) 59.00 (7.64) 0.001
Percent of lymphocyte 31.81 (10.22) 26.51 (9.24) 29.98 (7.75) <0.001
Percent of eosinophil 2.62 (1.98) 2.69 (1.98) 2.56 (1.65) 0.903
FEV1% predicted (FEV1pp) 97.62 (12.40) 63.75 (23.76) 66.87 (9.61) <0.001
FVC % predicted (FVCpp) 95.26 (11.84) 84.85 (20.25) 67.38 (10.38) <0.001
Percent emphysema 1.61 (2.39) 9.50 (11.45) 0.96 (1.88) <0.001

Data are presented as the mean (standard deviation) for age, body mass index (BMI), FEV1% predicted, percent neutrophil, percent lymphocyte, percent eosinophil, and percent
emphysema. COPD: chronic obstructive pulmonary disease. PRISm: Preserved Ratio Impaired Spirometry defines individuals with a reduced FEV1 but with a preserved FEV1/FVC where
FVC is forced vital capacity. GOLD: the Global Obstructive Lung Disease system for grading COPD severity: GOLD 1 is early COPD, GOLD 2 is moderate COPD, GOLD 3 is severe COPD,
GOLD 4 is very severe COPD, and GOLD 0 is an individual without COPD (control). FEV1%: percent predicted forced expiratory volume in one second. Percent emphysema: percent of
lung voxels less than −950 Hounsfield Units on inspiratory CT scans.

FIGURE 2 | Correlations of mRNA, miRNA, and phenotypes. The miRNA and mRNA data were partially adjusted as discussed in method session. Each pair of
correlations among mRNA and miRNA, mRNA, and phenotype. (A) FEV1pp or (B) percent emphysema was calculated. Boxplots illustrate the distribution of pair-wise
correlations.

TABLE 2 | Summary of FEV1pp-related modules.

Covariate adjustments Unadjusted Partial Full

n 4 11 7
No. miRNA [median (min, max)] 2.00 (1.00, 5.00) 1.00 (1.00, 6.00) 2.00 (1.00, 5.00)
No. mRNA [median (min, max)] 328.50 (82.00, 884.00) 61.00 (7.00, 1,003.00) 71.00 (16.00, 1,364.00)
Ratio [median (min, max)] 0.01 (0.00, 0.01) 0.02 (0.00, 0.14) 0.01 (0.00, 0.09)
propVar [median (min, max)] 0.45 (0.42, 0.60) 0.40 (0.16, 0.56) 0.23 (0.13, 0.30)

Notes: propVar, percent variance explained; No., number; min, minimum; max, maximum.
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ranges from 1 to 96. The median ratio of the number of miRNA
and mRNA is 0.08 (unadjusted), 0.01 (partially-adjusted) and
0.14 (fully-adjusted), respectively.

Comparison of COPD Networks with
Different Covariate Adjustments
To compare the quality of the COPD-associated networks, the
pairs of miRNA and mRNA (gene) with negative correlation in
the identified networks were queried in multiple microRNA/
target databases, including predicted microRNA-target databases
and validated microRNA-target databases. In the identified
FEV1pp networks, we found 1,450, 4,999, and 3405
miRNA–mRNA pairs in unadjusted, partially-adjusted and
fully-adjusted data (Figure 3). Among these identified pairs,
95, 381, and 193 were found in the predicted miRNA–mRNA
databases, which are determined based on sequence information
of potential targets. The percentage of predicted miRNA–mRNA
amongst all miRNA–mRNA edges in the network was highest in
the partial adjusted networks (7.62%, Figure 3A). The partial
adjusted networks also had the highest percentage of predicted
miRNA–mRNA when we applied the 0.001 and 0.05 edge
threshold (7.48% and 8.15% respectively, Figure 3A). In
addition, we found 52, 299 and 276 pairs of identified miRNA
andmRNA have been validated in the miRNA–mRNA databases.
The highest percentage of validated miRNA–mRNA amongst all
miRNA–mRNA edges in the network was for the fully-adjusted
network (Figure 3B) regardless of edge threshold, but the
partially adjusted network had the next highest percentages. In
summary, compared with unadjusted control, the partial

adjustment had higher percentages of accuracies of
miRNA–mRNA pairs when mapping with predicted and
validated databases. Although the full adjustment had higher
percentages of accuracies of miRNA–mRNA pairs whenmapping
with validated databases, it had the lowest percentage of
accuracies of predicted miRNA–mRNA pairs.

In addition to the predicted/validated miRNA–mRNA pairs,
we also used another metric, published miRNAs related to COPD
relevant phenotypes, to compare the adjustment strategies. We
found 10, 27, and 16 miRNAs in unadjusted, partially adjusted, or
fully adjusted network analysis, respectively (Figure 4A). Among
the identified COPD-associated miRNAs in three covariate
adjustment strategies, we found 5, 15, and 4 have been
published correspondingly. The partially-adjusted networks
had the highest percentage of published miRNAs percentages
(55.5%) regardless of edge cutoff (Figure 4B).

Taken together, compared with unadjusted control, the partial
adjustment but not full adjustment improved FEV1pp-associated
network estimation in terms of prediction accuracy mapping to
published COPD-related miRNAs. In addition, we performed a
similar analysis with percent emphysema networks based on the
three different covariate adjustmentmethods (Supplementary Figure
S3-S4). Compared with unadjusted control, both partial adjustment
and full adjustment had higher percentages of accuracies of
miRNA–mRNA pairs when mapping with predicted and validated
data bases. We also found that the partial adjustment but not full
adjustment improved percent emphysema-associated network
estimation in terms of prediction accuracy mapping against the
published COPD-related miRNAs. Our study demonstrated that
partial covariate adjustment for age, sex, and race, in addition to

FIGURE 3 | Predicted/validated miRNA–mRNA pairs percentage in the identified FEV1pp-networks with different adjustment strategies. Scaled SmCCNet were
applied on the unadjusted, partially adjusted or fully adjusted miRNA and mRNA data with the FEV1pp phenotype. To compare the quality of FEV1pp-associated
networks, the pairs of miRNA and mRNA (gene) with negative correlation in the identified networks were queried in multiple microRNA/target databases, including
predicted microRNA-target databases and validated microRNA-target databases. The queries were performed with the “multiMiR” R package as discussed in the
Methods. (A and B) The ratio of predicted (A) or validated (B) pairs in databases and total pairs in the constructed networks. We applied 0.001 and 0.05 edge thresholds
to filter weak edges between miRNAs and mRNAs, the ratio of predicted miRNA–mRNA in unadjusted, partially adjusted, and fully adjustment resulted networks were
updated correspondingly.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7483567

Zhuang et al. Identifying miRNA-mRNA COPD Networks

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


CT-scanner for percent of emphysema, improved network
identification when compared with no covariate adjustment.
However, further adjusting for smoking and blood cell
composition sometimes weakened the power of identifying
networks associated with COPD. Therefore, we focused the
network construction on the partially adjusted data and clinical
phenotypes.

microRNA–mRNA Networks Associated
With FEV1pp or Percent Emphysema
With partial covariate adjustment, we found three
miRNA–mRNA networks associated with FEV1pp and three
miRNA–mRNA networks associated with percent emphysema
(Table 3). For each module, we trimmed the networks with
increasing edge threshold. The number of nodes, the ratio of
miRNA and mRNAs, and the correlations of 1st PC of trimmed
networks and phenotypes were considered together to select the

edge threshold for optimal network pruning. We focus on
Module 3, which has the highest absolute correlation to
FEV1pp and Module 6, which has highest absolute correlation
to percent emphysema (Table 3).

For Module 3 related to FEV1pp (Table 3), the edge thresholds
were selected with a grid search (Figure 5A). The maximum
absolute correlation between the 1st PC of the trimmed network
and FEV1pp was achieved when the edge threshold was set to
0.004 (Figure 5B). The optimal edge threshold was chosen as
0.004, which leads to a trimmed network including two miRNAs
and 28 mRNAs (Table 3). The absolute correlation between the
1st PC of this trimmed network and FEV1pp is 0.33 (p � 5.40E-
12). The trimmed graph is presented in Figure 5C, where hsa-
miR-15b-5p and hsa-miR-29a-3p serve as two hubs in the
networks.

For Module 6 related to percent emphysema (Table 3), the
absolute correlation between the 1st PC of the trimmed network
and percent emphysema first increased and then decreased when

FIGURE 4 | Published COPD-associated miRNA percentage in the identified FEV1pp-networks with different adjustment strategies. Scaled SmCCNet were
applied on the unadjusted, partially adjusted, or fully adjusted miRNA and mRNA data with FEV1pp phenotype. To compare the quality of FEV1pp-associated networks,
the miRNAs in the identified networks were mapped with the list of published COPD-associated miRNAs (A). The denominators on each bar are the number of miRNAs
associated with FEV1pp with different adjustment as indicated. The numerators are the number of validated miRNAs related to COPD. We applied 0.001 and 0.05
edge thresholds to filter weak edges between miRNAs and mRNAs and the remaining miRNAs were used to calculate the published COPD-associated miRNA
percentage in unadjusted, partially adjusted, and fully adjusted.

TABLE 3 | Summary of miRNA–mRNA networks associated with COPD.

Module number Associated
phenotypes

Absolute
correlations

p-Values No. of
miRNA

No. of
mRNA

Module size

1 FEV1pp 0.0979 0.049 6 29 35
2 FEV1pp 0.1543 0.0019 5 21 26
3 FEV1pp 0.3341 5.40E-12 2 28 30
4 % emphysema 0.3202 4.40E-11 4 67 71
5 % emphysema 0.1885 0.00014 4 126 130
6 % emphysema 0.4524 8.80E-22 5 81 86

Note: Absolute correlations: the absolute value of Pearson correlation coefficient between the 1st PC of the trimmed network and phenotypes [FEV1pp or percent (%) emphysema].
p-Values: p values of the Pearson correlation test. The significance level of the correlation between PC and phenotype is 0.05.
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the edge threshold increased (Figures 6A,B). The optimal edge
threshold was chosen as 0.002, which leads to a trimmed network
including 5 miRNAs and 81 mRNAs (Table 3). The absolute

correlation between the 1st PC of this trimmed network and
percent emphysema is 0.45 (p � 8.80E-22). The trimmed graph is
presented in Figure 6C, where hsa-miR-15a-5p, hsa-miR-16-5p,

FIGURE 5 | FEV1pp-associated miRNA–mRNA network (Module 3 in Table 3) pruning with grid search. The edge threshold candidates were defined by the
distribution of the edges in the raw network. (A) The number of nodes including miRNA (red) and mRNA (light blue) with different edge thresholds. (B) The absolute
correlation between FEV1pp and the 1st PC (i.e., first principal component) of the trimmed network under different edge thresholds. The red dotted line indicated the
chosen optimal edge threshold (0.004) for network trimming, which achieved a maximum correlation (0.33) between FEV1pp and the 1st PC. (C) The trimmed
miRNA–mRNA network (module 3 in Table 3) with the optimal edge threshold (0.004). The orange nodes denote miRNAs while the purple nodes denote genes. The
signs of edges are based on the correlation of the original expression data between the nodes. Red and blue edges represent negative and positive correlations
respectively. Edge thickness corresponds to the strength of relationship between the nodes based on the canonical weights.

FIGURE 6 | Percent of emphysema-associated miRNA–mRNA network (Module 6 in Table 3) pruning with grid search. The edge threshold candidates were
defined by the distribution of the edges in the raw network. (A) The number of nodes including miRNA (red) and mRNA (light blue) with different edge thresholds. (B) The
absolute correlation between percent emphysema and the 1st PC (i.e., first principal component) of the trimmed network under different edge thresholds. The red dotted
line indicated the chosen optimal edge threshold (0.002) for network trimming, which achieved a maximum correlation (0.35) between FEV1pp and the 1st PC. (C)
The trimmed miRNA–mRNA network (module 6 in Table 3) with the optimal edge threshold (0.002). The signs of edges are based on the correlation of the original
expression data between the nodes. Red and blue edges represent negative and positive correlations respectively. Edge thickness corresponds to the relationships
between the nodes based on the canonical weights.
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hsa-miR-199b-3p, and hsa-miR-199a-3p serve as hubs in the
pruned networks.

We also pruned the other four identified modules with similar
strategies. The correlations between the FEV1pp or percent
emphysema and trimmed modules are included in the
supplement (Supplementary Figure S5-S8).

Enrichment Analysis on the Pruned COPD
Networks
We performed classical gene ontology (GO) enrichment analysis
on the gene nodes in the FEV1pp-associated and percent
emphysema-associated networks to identify important
pathways related to COPD. In the top FEV1pp-associated
network (Module 3 in Table 3), we found that the enriched
biological processes include regulation of transcription, DNA
repair, immunity, cellular response, and metabolic regulation
(Supplementary Table S3). In classical GO enrichment
analysis, all genes annotated to GO terms are automatically
annotated to its parents and it could lead to redundancy. To
avoid redundancy, we also took into account the GO hierarchy
and performed conditional enrichment tests. We that found
regulation of transcription RNA polymerase II, fibroblast
growth factor receptor signaling pathway, and joining and
regulation of DNA repair pathways are conditionally enriched
in the FEV1pp-associated network (Supplementary Table S4).

In the top emphysema-associated network (Module 6 in
Table 3), we found that the enriched biological processes
include cytosolic transport, TOR signaling, regulation of
translation, and metabolic regulation (Supplementary Table
S5). In the conditional GO enrichment analysis, we found that
the apoptotic process, TOR signaling, COPII vesicle coating,
glutathione metabolic process, endosome transportation, and
type I interferon production are significantly enriched in this
emphysema-associated network (Supplementary Table S6).

Network Analysis Identified mRNAs and
miRNAs Overlooked in Single -Omic
Analysis
In the above three identified FEV1pp-related networks, there are
74 gene nodes and 13miRNA nodes. To compare the nodes in the
identified networks with the biomarkers in a single -omics study,
we performed Pearson correlation testing on mRNAs/miRNAs
with FEV1pp. With Pearson correlation analysis on the single
omics data, we found 32 miRNAs significantly associated with
FEV1pp. Of the 13 miRNAs in the FEV1pp networks identified
through SmCCNet, only one of them (“hsa-miR-145-5p”) was
significantly correlated with FEV1pp in the single -omics analysis.
Of the 74 genes in the identified FEV1pp networks, only 12 of
them were significantly correlated with FEV1pp in the Pearson
correlation analysis.

In the three identified percent emphysema-related networks,
there are 269 gene nodes and 13 miRNA nodes. With Pearson
correlation analysis on the single omics data, we found 25
miRNAs significantly associated with percent emphysema. Of
the 13 miRNAs in the percent emphysema networks identified

through SmCCNet, none of them was significantly correlated
with percent emphysema in the single -omics analysis. Of the 269
genes in the identified percent emphysema-related networks, 187
of them were significantly correlated with percent emphysema in
the Pearson correlation analysis.

DISCUSSION

For studies of complex traits in human, it is important to correct
for baseline characteristics, referred to as covariate adjustment. In
particular, the expression of mRNA and miRNA in blood from
human studies may be influenced by many covariates such as sex,
race, white blood cell count, and percentages. However, there is a
lack of consensus on the best way to account for covariates, what
covariates need to be adjusted, and the effect of covariate
adjustment on the data. Therefore, we applied SmCCNet to
unadjusted, partially adjusted (age, sex and race, in addition to
CT-scanner for percent emphysema), and fully-adjusted (age, sex,
race, CT-scanner for percent emphysema, current smoking status
and WBC percentages) expression data in parallel. Evaluation of
optimal covariate adjustment in identified networks was based on
the prediction accuracy of miRNAs compared to published
COPD-related miRNAs and measuring the frequency of
validated/predicted miRNA–mRNA pairs. We found that the
partial adjustment, but not full adjustment improved both the
FEV1pp-associated network and percent emphysema-associated
network estimation based on this evaluation strategy. However,
further adjusting for smoking and white blood cell percentages
sometimes weakened the power of identifying networks
associated with COPD, which may be due to their correlations
with the COPD phenotypes. Of note, the fraction of validated
miRNA–mRNA pairs in the discovered miRNA–mRNA pairs is
low, but it is much larger than what would be expected by chance.
Taking all miRNA–mRNA pairs in the multiMiR database for the
miRNA and genes in our analysis, there are 4,399 predicted and
3060 validated miRNA–mRNA pairs. The union of these two
resources are 6456 miRNA–mRNA pairs. In our dataset, there are
6,412,400 potential miRNA–mRNA pairs [9,430 (# of mRNAs in
our data) * 683 (# of miRNAs in data)]. Therefore, the percentage
of validated/predicted pairs possible is 6456/6,412,400 (∼0.1%).
However, our approach identified a smaller set of
miRNA–mRNA pairs, which had ∼8.0% overlap with the
multiMiR pairs, indicating that we are finding pairs that are
enriched in predicted/validated miRNA–mRNA interactions
from multiMiR compared to randomly selected pairs of
miRNA and mRNA from our data.

With partial covariate adjustment, we found three
miRNA–mRNA networks associated with FEV1pp and
another three miRNA–mRNA networks associated with
percent emphysema. The identified miRNA–mRNA networks
provide additional information on COPD-related traits that
complements biomarkers identified through a single-omics
analyses. The FEV1pp miRNA–mRNA networks and percent
emphysema network share three genes (CAPZA1, CEP57, and
SLC15A3) and eight miRNAs including hsa-miR-145-5p, hsa-
miR-223-3p, hsa-miR-26b-3p, hsa-miR-338-5p, hsa-miR-1275,
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hsa-miR-150-3p, hsa-miR-150-5p, and hsa-miR-342-3p. One
miRNA–mRNA network consists of two miRNAs and 28
mRNAs which had a strong correlation (r � 0.33) to FEV1

percent predicted, where hsa-miR-15b-5p and hsa-miR-29a-3p
are hubs. hsa-miR-15b-5p and hsa-miR-29a-3p have been
recently identified as biomarkers for fibrosis and lung
diseases including COPD (Sessa and Hata, 2013; Budding
et al., 2017). We also found a network of five miRNAs and
81 mRNAs that had a strong correlation (r � 0.45) to percent
emphysema, where hsa-miR-15a-5p, hsa-miR-16-5p, and hsa-
miR-199b-3p are hubs. hsa-miR-15a-5p is one of the top five
miRNAs in 151 differentially expressed miRNAs that target
differentially expressed mRNAs related to COPD (Qian et al.,
2018). hsa-miR-15a might prevent the progression of acute
exacerbations of COPD by inhibition of Wnt signaling
(Reuter et al., 2016). The enrichment of the Cadherin/Wnt/
Catenin pathways in FEV1pp networks was also found in our
pilot study with much smaller sample size (Shi et al., 2019). For
another hub hsa-miR-199a-5p, its expression in lung is
diminished in COPD patients (Hassan et al., 2014).
Decreased expression of hsa-miR-199a-5p leads to an
intensification of the unfolded protein responses (UPRs) and
contributes to lung cell apoptosis and lung inflammation. Many
genes in the identified networks have also been shown to have
associations with COPD development. For example, IFN
regulatory factor-3 (IRF-3) plays an essential role in COPD
exacerbation (Ishii et al., 2017). The GO enrichment analysis
suggests that regulation of transcription, DNA repair, immune
response, cellular response to unfolded protein, and metabolic
regulation are enriched in the identified FEV1pp network. The
cytosolic transport (RNF126, PLEKHJ1, VPS51, and AP1G1),
target of rapamycin (mTOR) signaling (PIK3CA, STK11,
RPS6KB2, and PRR5), regulation of translation, metabolic
regulation, and apoptosis are involved in the percent
emphysema-associated network. It was recently reported that
diminished DNA repair underlies the complex and
heterogeneous manifestations of COPD (Sauler et al., 2018)
and that mTOR plays a major role in driving lung cell
senescence and lung alterations in COPD (Houssaini et al.,
2018). Recent studies also demonstrate that metabolic
reprogramming occurs in COPD patients and metabolic
dysregulation impacts cellular functions and contributes to
the pathogenesis and progression of these diseases (Zhao
et al., 2018). In addition, many animal models and human
studies support an important role for apoptosis in the
pathogenesis of COPD and emphysema (Demedts et al.,
2006; Comer et al., 2013; Yoshida et al., 2019). Of note,
many of the genes and miRNAs mentioned above in the
identified COPD-related networks were not significantly
associated with COPD phenotypes and were therefore
overlooked in a single -omics analysis. These results
demonstrate how identifying miRNA–mRNA networks
through SmCCNet on multiple-omics data provides
additional information for COPD-related traits that
complement biomarkers identified through a single-omics
analyses.

Although we identified several networks related to COPD
phenotypes, there are some limitations in this study. One
limitation in covariate adjustment evaluation is that the
published COPD-related miRNAs were collected not only
in blood but also other samples such as lung tissue. Ideally, it
would be useful to have a large list of blood-specific COPD-
related miRNAs for evaluation since our transcriptomic data
were from peripheral blood samples, but existing miRNA
studies in blood for COPD are limited, and our study is one of
the largest. Another limitation is that our ground truth for
miRNA–mRNA validated target pairs might not be complete
or specific to COPD. The other limitation is that we only
evaluated the negative interactions between miRNAs and
mRNAs in the identified networks, which ignores the
potential positive indirect relationships between miRNAs
and mRNAs. In addition, GO enrichment analysis resulted
in the identification of inflammation pathways. Although this
pathway is not specific to COPD, inflammatory responses are
relevant to COPD and demonstrates the reasonable network
findings in this study. However, in addition to these more
general enrichment results, we also identified other important
pathways and miRNA, which furthers our understanding of
more specific mechanisms associated with COPD, in addition
to important regulatory roles of miRNA during COPD
pathogenesis. Finally, we did not develop a prediction
model of clinical traits and instead focused on discovery of
integrated microRNA–mRNA networks underlying COPD
outcomes. Risk score prediction could be an important
future direction for clinical translation of our findings
when larger sample sizes, in addition to replication
cohorts, are available to create a reproducible and robust
risk score.

CONCLUSION

With partial covariate adjustment, we found six miRNA–mRNA
networks associated with COPD-related phenotypes. Many genes
and miRNAs in the identified networks have been shown to have
associations with COPD development and progression. We
found the identified networks to be enriched in many
biological processes including DNA repair, apoptosis, mTOR
signaling, and metabolic regulation, which have been reported
to contribute to the pathogenesis of COPD and emphysema. The
identified miRNA–mRNA networks provide additional
information on COPD-related traits that complement
biomarkers identified through a single-omics analysis, in
addition to highlighting the potential role of miRNA in
regulating certain COPD related gene and pathways.
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