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ABSTRACT
Accelerating anthropogenic climate change threatens to destroy coral reefs worldwide
through the processes of bleaching and disease. These major contributors to coral
mortality are both closely linked with thermal stress intensified by anthropogenic
climate change. Disease outbreaks typically follow bleaching events, but a direct positive
linkage between bleaching and disease has been debated. By tracking 152 individual
coral ramets through the 2014 mass bleaching in a South Florida coral restoration
nursery, we revealed a highly significant negative correlation between bleaching and
disease in the Caribbean staghorn coral, Acropora cervicornis. To explain these results,
we propose a mechanism for transient immunological protection through coral
bleaching: removal of Symbiodinium during bleaching may also temporarily eliminate
suppressive symbiont modulation of host immunological function. We contextualize
this hypothesis within an ecological perspective in order to generate testable predictions
for future investigation.
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INTRODUCTION
Anthropogenic climate change threatens to destroy coral reefs globally before the end of
the century (Hoegh-Guldberg et al., 2007; Hoegh-Guldberg, 2014). Increasing frequency,
severity, and duration of thermal anomalies have caused increased coral bleaching
and disease outbreaks (Harvell et al., 1999; Harvell et al., 2002; Bruno et al., 2007; Hoegh-
Guldberg & Bruno, 2010; Ruiz-Moreno et al., 2012; Randall & Van Woesik, 2015). Coral
bleaching represents the breakdown of the obligate mutualism between dinoflagellates of
the genus Symbiodinium and reef building corals. This breakdown results in decreased coral
growth, fecundity, and survivorship, as the loss of photosynthetic Symbiodinium deprives
corals of up to 95% of their energetic budget (Muscatine & Porter, 1977; Glynn, 1983;
Harriott, 1985; Goreau & Macfarlane , 1990; Szmant & Gassman, 1990; Baird & Marshall,
2002). Coral tissue-loss disease outbreaks frequently follow bleaching events (Harvell et
al., 2001; Muller et al., 2008; Brandt & McManus, 2009; Cróquer & Weil, 2009; Miller et
al., 2009; Precht et al., 2016; Lewis et al., 2017) and, like bleaching, are linked to thermal
anomalies (Selig et al., 2006; Bruno et al., 2007; Brandt & McManus, 2009; Cróquer & Weil,
2009; Ban, Graham & Connolly, 2012; Ruiz-Moreno et al., 2012) as well as poor water
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quality (Haapkylä et al., 2011; Vega Thurber et al., 2014). Many of these diseases remain
poorly characterized andmay represent the invasion of one ormore opportunisticmicrobes
or viruses (see Lesser et al., 2007; Bourne et al., 2009). Koch’s postulates have been fulfilled
for several coral diseases, but some of these same diseases have later been induced by
alternative etiological agents, indicating that signs of coral maladies may constitute
syndromes with many potential pathologies rather than a singular pathology (Denner
et al., 2003; Lesser et al., 2007; Sunagawa et al., 2009; Sutherland et al., 2011; Lesser & Jarett,
2014). Like bleaching, coral tissue loss diseases can cause coral mortality, reduce coral
growth and fecundity, and are recognized as major drivers of coral reef decline (Richardson
et al., 1998; Harvell et al., 2001; Patterson et al., 2002; Miller et al., 2006; Weil, Cróquer &
Urreiztieta, 2009; Miller et al., 2009). Coral tissue loss diseases (as opposed to diseases
resultant in discoloration or abnormal growth form) are the focus of this study.

Whether tissue loss disease outbreaks follow bleaching events on a correlational or causal
basis is a topic of debate (Bruno et al., 2007; Muller et al., 2008; Brandt & McManus, 2009;
Cróquer & Weil, 2009; Ban, Graham & Connolly, 2012). A causal relationship between
the two conditions is intuitive as starvation induced by bleaching could lead towards
increased coral host susceptibility. Muller et al. (2008) and others demonstrated that
a relationship between temperature and disease prevalence could be found during a
bleaching year as opposed to non-bleaching years and further, that mortality due to disease
was correlated to temperature in bleached, but not unbleached corals. Furthermore, there
is a relationship between mean percentage of bleached corals and prevalence of several
diseases in numerous Caribbean scleractinian genera (Brandt & McManus, 2009;Cróquer &
Weil, 2009). These relationships correlate bleaching and disease, but do not necessarily link
them mechanistically. The co-occurrence of bleaching and tissue loss diseases is expected
even if the two conditions are mechanistically independent, because bleaching and tissue
loss diseases are both enhanced by thermal stress (Glynn & D’Croz, 1990; Bruno et al.,
2007; Lesser, 2011). Monitoring at the population level can indicate correlation between
bleaching and disease, but cannot be used to prove a mechanistic link. A causal relationship
between bleaching and disease would leave a pattern of co-occurrence when monitored
at the individual level (i.e., bleached individuals should have significantly greater rates of
disease). As such, monitoring efforts which perform repeated transects without tracking
individuals may be unable to differentiate a causal or correlational relationship (Cróquer
& Weil, 2009). Population and community level co-observation between bleaching and
disease linked by a common environmental driver should not be construed as a dependency
between them.

Contrary to this expected pattern of correlation, white band disease on the Great
Barrier Reef has had a negative spatial correlation to bleaching events, even though the
disease was correlated with thermal anomaly (Bruno et al., 2007). Further, geographically
predictive models for white syndrome outbreaks are not improved by the incorporation of
information known to accurately predict coral bleaching (Ban, Graham & Connolly, 2012).
This work suggests a correlational rather than causal relationship, because these disease
outbreaks are not enhanced by prior bleaching.
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At a physiological level, immunological markers respond to bleaching conflictingly;
prophenol oxidase and peroxidase activity may increase during bleaching, while phenol
oxidase, lysozyme-like, and microbial antibacterial activity decline (Ritchie, 2006; Mydlarz
et al., 2009; Palmer, Bythell & Willis, 2011). The coral mucus layer acts both as a physical
barrier to infection and a point of first contact/adhesion for an infectious agent (Banin et
al., 2001; Brown & Bythell, 2005). It is largely produced with resources from Symbiodinium,
and its production is therefore dependent upon the mutualism between Symbiodinium and
coral host (Brown & Bythell, 2005).

In the present study, monitoring for bleaching and tissue loss disease was carried out
in restoration nursery. Coral nurseries provide a unique opportunity for monitoring,
because histories of environmental conditions and genetic backgrounds is known in these
common gardens (Lirman & Schopmeyer, 2016). Mother colonies are often fragmented
many times, resulting in clonal individual colonies known as ramets ideal for replication.
The collection of all these clonal ramets descendant from a single mother colony are known
as a genet, although this is frequently referred to as a genotype in the restoration literature
(Baums, 2008).

Individual Acropora cervicornis ramets were monitored during a bleaching event and
subsequent recovery in an in situ coral nursery located near Miami, Florida, USA to
elucidate patterns of correlation between bleaching and disease (Lirman et al., 2014). All of
the ramets tracked had been at the nursery (common garden) for at least 3 years prior to
the onset of bleaching.

We hypothesized that bleached ramets should be more susceptible to disease than their
unbleached counterparts and that certain coral genets would have genetic pre-dispositions
towards disease and bleaching resistance or susceptibility. Our results confirmed our
hypothesis regarding the effect of genet. However, to our surprise, results revealed a
significant negative correlation between bleaching and disease. These findings lead us to
postulate a model whereby Symbiodinium may suppress host immunity. According to this
theoretical framework, bleaching events may be associated with a transient increase in host
immunological capacity, despite the nutritionally detrimental loss of Symbiodinium.

MATERIALS AND METHODS
The strong El Niño Southern Oscillation (ENSO) event that occurred in 2014 triggered
mass coral bleaching events and subsequent disease outbreaks in the Greater Caribbean
and the Florida Reef Tract (Manzello, 2015; Precht et al., 2016; Lewis et al., 2017). Ramets
of A. cervicornis propagated since 2007 within the in situ University of Miami ‘‘North
Nursery’’ at N 25.488; W 80.109 were monitored by the same observer using SCUBA at
four time points (September and November 2014, January andMarch 2015) under permits
SAL-14-1086-SCRP, BISC-2014-SCI-0018, and BISC-2015-SCI-0018.

Within the nursery, multiple ramets belonging to the same genet grow on individual
pedestals raised off of a common cement block. Each block containing clonal ramets
belonging to the same genet rests on a sand bottom all within approximately 100 m
of each other at an approximate depth of 7 m. No ramets were in physical contact for

Merselis et al. (2018), PeerJ, DOI 10.7717/peerj.4494 3/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.4494


the duration of the study. During the bleaching event and subsequent recovery, lasting
from September 2014 through March 2015, 152 ramets representing 21 A. cervicornis
genets were tracked. These genets were previously genotyped and identified as genetically
distinct using microsatellite markers (Baums, Miller & Hellberg, 2005; Baums et al., 2009;
Lirman et al., 2014). During every time point, each ramet was photographed and scored
for presence or absence of bleaching using a calibrated colorimetric card as a reference
(Siebeck et al., 2006). Any visible presence of disease was also recorded when an easily
discernible linear boundary between apparently normally pigmented (tan to brown) tissue
and transparent tissue and visible skeleton was observed. Each ramet was then assigned
to one of the following categories based upon observations: ‘‘bleaching without disease’’,
‘‘bleaching with disease’’, ‘‘no bleaching without disease’’, or ‘‘no bleaching with disease’’.
Manifestation of a tissue loss condition was noted as disease, because it followed a linear
progression of tissue loss from the base progressing towards the tips in a manner similar
to white band disease. However, our study did not fully explore the pathogenesis of this
phenomenon and it should properly be referred to as a tissue loss disease. The individual
history of one ramet throughout the entire duration of the study was considered the
experimental unit, so that if a ramet bleached, recovered, and later experienced disease, it
was grouped as ‘‘bleaching with disease’’ even though bleaching and tissue-loss conditions
never co-occurred. A Fisher’s exact test was employed to detect significant effect of genet on
likelihood of bleaching or disease. To determine which genets were significantly different
from each other, a Bonferroni corrected pair wise fisher’s exact test was performed. A
chi-squared test for independence was carried out to determine whether bleaching and
disease were correlated or independent. Expected values were calculated for each category
based upon the null hypothesis that bleaching and disease were fully independent as follows:

O%B= observed % of ramets bleached

O%D= observed % of ramets with disease

O%B&D= observed % of ramets bleached and diseased

Bleaching without disease= (O%B−O%B&D)× total ramets

Disease without bleaching= (O%D−O%B&D)× total ramets

Bleaching with disease=O%B×O%D× total ramets

No Bleaching or disease= (1− (O%B&D+O%D+O%B))× total ramets.

Genets (9 of 21) that contained neither a bleached nor a diseased ramet over the entire
duration of the study were removed from statistical analyses. We reasoned that these
genets lacking vulnerability to both bleaching and disease are unsuitable for studying the
interaction of bleaching and disease (Vollmer & Kline, 2008). Expected values for each test
were calculated based upon the pool of observations inclusive of all those genets analyzed
by each respective test. Only genets which showed neither bleaching nor disease in all of
their ramets were removed from analyses.
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Figure 1 Monthly prevalence of bleached and diseased coral ramets of Acropora cervicornis between
September 2014 and March 2015 in the ‘‘North Nursery’’ at Biscayne Bay (N 25.488; W 80.109).

Full-size DOI: 10.7717/peerj.4494/fig-1

RESULTS
In September 2014, nine ramets were bleached while fourteen ramets were affected by a
white band-like tissue loss disease. In November 2014, four ramets were bleached, while
one experienced tissue loss. In January 2014, two ramets were bleached and an additional
two were afflicted by tissue loss disease. In March 2015, both bleaching and tissue loss
disease increased in prevalence to eight and eleven cases, respectively (Fig. 1). During
the entire period, 19 of the 152 (12.5%) A. cervicornis ramets showed signs of bleaching,
while 28 ramets (18.4%) showed signs of this tissue loss disease. Only one ramet (0.7%)
showed signs of both bleaching in Sept 2014 and disease recorded in March 2015, though
pigmentation had recovered prior to the onset of disease. No ramet with simultaneous
bleaching and disease was ever observed.

The tissue loss disease appeared to follow a linear progression from the base towards
the apical tips of ramets in a manner reminiscent of white band disease (Fig. 2). However,
molecular analyses necessary to confirm the identity of the disease were not conducted and
the disease we observed is henceforth referred to as a ‘‘tissue loss disease’’. Furthermore,
preliminary transmission trials bringing unaffected ramets into contact with the active
lesions were unable to induce transmission although a linear progression of tissue loss
was apparent. A highly significant negative correlation was detected between the presence
of bleaching and disease (χ2

= 7.14, p= 0.0075). In total, nine of the 21 genets did not
contain a single ramet suffering from either bleaching or disease during the monitoring
period. There were significant differences between genets’ proportion of ramets bleached,
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Figure 2 Images of bleaching and diseased colonies of Acropora cervicorniswithin the North Nursery.
Examples of bleaching and diseased colonies of Acropora cervicornis within the North Nursery. (A) Sev-
eral ramets, some of which show normal, healthy pigmentation (H), while others are bleached pale (P).
(B) One ramet showing signs of white band-like white syndrome. Photographs taken by Stephanie Schop-
meyer.

Full-size DOI: 10.7717/peerj.4494/fig-2

Figure 3 Frequency of health status in Acropora cervicornis corals as a function of genet identity.
Genet identity has a significant effect on the probability for each studied health status (p < 0.0001).
Shared letters between genets indicate no significant difference. Both the trend for fewer significant
comparisons for those genets with few ramets and low overall statistical power 1− β = 0.31 suggest that
more significant differences could have been detected with a larger sample size.

Full-size DOI: 10.7717/peerj.4494/fig-3

diseased, neither bleached nor diseased, or both bleached and diseased despite limited statis-
tical power to detect a medium sized effect (p< 0.0001, 1−β = 0.31, Fig. 3) (Cohen, 1992).

DISCUSSION
Focusing on a ramet by ramet basis, our study revealed a negative correlation between
bleaching and tissue loss disease during the thermal event in 2014 while simultaneously
documenting a positive temporal relationship betweenbleaching anddisease at a population
scale (Fig. 1). While negative correlation between bleaching and a tissue loss disease has
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been previously documented (Bruno et al., 2007), ours is the first report that shows a
negative correlation between bleaching and a tissue loss disease in individually tracked
ramets.

Previous work has indicated that coral genet identity influences diverse host phenotypes
such as bleaching susceptibility, disease resistance, growth rate, and morphology (Willis
& Ayre, 1985; Vollmer & Kline, 2008; Bowden-Kerby & Carne, 2012; Lirman et al., 2014).
Our study further contributes to the body of genotypic response literature, suggesting that
host genotype is a significant factor to consider for effective conservation and restoration.
Unfortunately, the limited statistical power of our analyses may have contributed to
our detection of relatively few significant comparisons (Fig. 3). A much larger analysis
including 443 ramets equally distributed amongst genets would have provided a much
greater statistical power of 0.90, but was beyond the scope of the current study.

Despite the great importance of coral host genetics in determining both bleaching
and disease resistance, presence of genets susceptible to only one of the two conditions
and resistant to the other does not appear to have solely driven the negative correlation
between bleaching and disease. This is evident especially in genets A, J, R, and W (Fig. 3)
which contain both ramets that suffered from disease and other ramets that suffered from
bleaching, although never at the same time (recall that the ramet classified as bleached
and diseased in genet W first bleached and became diseased only after recovering from
bleaching). Such a pattern suggests that unbleached ramets within these genets later suffered
increased disease susceptibility relative to their clones.

The role of Symbiodinium identity has also been strongly implicated in physiological
response to bleaching and disease (Baker, 2004; Tchernov et al., 2004; LaJeunesse et al.,
2009; Silverstein, Cunning & Baker, 2014; Rouzé et al., 2016). Results from a representative
subset of samples taken from diverse genets indicate that no ramet had greater than a
minimal (<2%) variance from exclusively hosting type A3 Symbiodinium (D Merselis et
al., 2018, unpublished data). Therefore, we suggest that host genetics, not Symbiodinium
identity is responsible for observed significant differences between genets. Not only do
genet dependent differences in physiology inform which genets will do best in response
to one or two focal stressors, but more importantly, which genets we are likely to lose.
Given the precipitous decline of Caribbean reefs, and Acropora cervicornis in particular, we
suggest that surviving genets likely posses anthropogenically robust traits, even if a study on
any one given stressor indicates susceptibility. These differential responses should motivate
not only the crossing of very bleaching or disease resistant genets, but also the inclusion
of genets clearly at risk, but likely possessing unknown resistances to other anthropogenic
stressors.

While increased sample size would have benefited analysis at the genet level and probably
allowed for the detection of more significant differences (1−β = 0.31), physiology must
be studied at the level of the individual (in this case ramet). Without knowledge of the
history of an individual gathered over multiple time points, it is not possible to ascertain
whether an individual was not affected by bleaching or disease, suffered only bleaching,
suffered only disease, or was afflicted by both bleaching and disease. When individuals are
not tracked, but the prevalence of bleaching and tissue loss diseases are followed, it is clear
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that disease and bleaching are linked through time during temperature anomalies. (Fig. 1
of this study; and Muller et al., 2008). However, because both bleaching and many tissue
loss diseases are dependent upon temperature as a common stressor, it is expected that they
should co-occur along spatial and temporal scales (Fig. 1), sharing high incidence where
thermal stress has been severe and low incidence where thermal stress is mild (Muller et al.,
2008). Without data to show that individuals and not just populations are first affected by
bleaching and then disease, a physiological link cannot be supported. As exemplified here,
when data is presented on an individual basis along a time series, it is possible that those
individuals that bleach may be less prone to disease despite temporal co-occurrence within
the population. We suggest it is possible that a negative correlation between bleaching
and tissue loss diseases on an individual basis may have been overlooked by previous
investigations, because individuals were not tracked across multiple time points (Cróquer
& Weil, 2009). Monitoring individual corals (ramets) within a common garden nursery
allowed us to control against co-occurrence of bleaching and tissue loss diseases as a result
of spatial variation in environmental conditions while enabling repeated assessment of
individuals with known bleaching and disease history.

A possible explanatory mechanism for a negative correlation between bleaching and
tissue loss diseases may hinge upon the immuno-suppressive nature of intracellular
symbioses. Intracellular parasites and mutualists modulate host immunological defenses
in order to facilitate their intracellular lifestyles (Oster, Kenyon & Pedersen, 1978; Fytrou
et al., 2006; Douglas, Bouvaine & Russell, 2011; Ratzka, Gross & Feldhaar, 2012; Zheng,
Tan & Xu, 2014). Examples are diverse including Rickettsea (Oster, Kenyon & Pedersen,
1978), Walbachea (Fytrou et al., 2006), Buchnera (Douglas, Bouvaine & Russell, 2011),
Spiroplasma (Herren & Lemaitre, 2011), Sodalis, Wigglesworthia (reviewed in Ratzka, Gross
& Feldhaar, 2012), and Plasmodium (reviewed in Zheng, Tan & Xu, 2014), a distant relative
of Symbiodinium that interferes with cellular processes to prevent apoptosis (Kaushansky
et al., 2013a; Kaushansky et al., 2013b).

Further evidence is apparent within Symbiodinium—Cnidarian symbioses. Cnidarians
hosting Symbiodinium express an altered distribution and expression of Rab proteins when
compared to their apo-symbiotic con-specifics. This alternative regulation of Rab proteins
preserves the symbiosis by preventing the maturation of the symbiosome, the vacuole
where the symbiont resides, into a lysosome (Chen et al., 2004; Riesgo et al., 2014). This
same dysregulation mechanism possibly impairs the ability for phagosomal degradation of
pathogens by cnidarians hosting Symbiodinium. Further, apoptosis, an important immune
response, is down-regulated in symbiotic versus aposymbiotic sea anemones (Rodriguez-
Lanetty, Phillips & Weis, 2006; Oakley et al., 2016; Matthews et al., 2017; E Medrano et al.,
2018, unpublished data), while potential cell adhesion markers facilitating pathogen entry
are upregulated (Rodriguez-Lanetty, Phillips & Weis, 2006; Yuyama, Watanabe & Takei,
2010; Riesgo et al., 2014). This leads us to think that Symbiodinium containing host cells are
immune-suppressed.

Symbiodinium may also promote immunological tolerance of their cnidarian hosts.
Exogenous application of tolerogenic factors both decreases immune response of Exaiptasia
pallida and prevents it from bleaching under elevated temperatures, while the treatment
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with an anti-tolerogenic factor prevents symbiosis establishment and stimulates host
immune function (Detournay et al., 2012; Berthelier et al., 2017). Recently, anthozoan
TGFβ receptor and other modulators of immune response were proven to be regulated
by Symbiodinium produced miRNAs in hospite (Baumgarten et al., 2017). Likewise, many
immunological processes lead to the generation of ROS, a primary trigger of coral bleaching
(Lesser, 1996), suggesting that corals with high capacity for immunological response may
be more susceptible to bleaching. Therefore, corals with the highest immunological activity
at the onset of thermal stress may be at an elevated risk of bleaching ( Brandt & McManus,
2009). A host previously lacking in Symbiodinium may be better prepared to confront
invading pathogenic microbes. Conversely, corals better prepared to confront invading
microbes may be more likely to expel their symbionts as a side effect of an immune
response.

Under our proposed model (see Fig. 4), bleaching corals gain a transient immunological
advantage as a result of shedding their symbionts. Despite disparate thermal bleaching
thresholds both between and amongst species, genotypes, and geographic locations, little
is known about the ‘‘trade-off’’ or ecological cost for increased bleaching resistance ,
although a slower growth rate for bleaching resistant genotypes has been supported for
Acropora cervicornis (Ladd et al., 2017). We suggest that our proposed model is a trade-off
of decreased bleaching resistance in exchange for enhanced immunological function and
vise versa.

It is important to note that immunological responses are metabolically costly. Bleaching
reduces or completely stops the assimilation of Symbiodinium derived nutrition. Therefore,
the immunological capacity of a bleached coral would eventually be hindered by decreasing
energetic reserves. The model, which assumes that Symbiodinium density is directly
related to immune-suppression, illustrates that corals would have evolved to consider
immunological capacity when setting a bleaching threshold, alongside tolerance for
oxidative and thermal stress. By setting a high bleaching threshold, corals forego the putative
immunological advantages of bleaching, but retain Symbiodinium until their antioxidant
protections against thermal stress become overwhelmed. This strategy would maintain
higher energetic reserves and may prove more successful under long term thermal stress
scenarios where energetic reserves may become limiting to the maintenance of homeostatic
processes and immunological capacity. Conversely, coralsmay set a low bleaching threshold
to protect against infectious disease in the short term at the risk of susceptibility to starvation
if thermal stress is long term and prevents the re-population of Symbiodinium. Corals
exploiting this latter strategy suffer ongoing pathogen exposures or thermal stress and may
be forced to recover symbiont populations in order to prevent starvation. Resultantly,
these corals simultaneously suffer the onset of Symbiodinium mediated immunological
suppression and depleted energetic stores. In congruence with field observations, this
is perhaps why disease outbreaks may intensify upon the onset of bleaching recovery
(Brandt & McManus, 2009). In further agreement with field observations, those corals
which bleach and are still unable to prevent the onset of disease outbreaks would be
expected to suffer the greatest tissue loss (Muller et al., 2008; Brandt & McManus, 2009).
These corals lack both the immunological competency to prevent infectious disease and the
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Figure 4 Predicted relative immunological vulnerability assuming Symbiodinium have an immuno-
suppressive affect on the coral host. (A) A coral which does not bleach in response to a stress event may
see immunological vulnerability increase until the stress event subsides. (B) A coral which bleaches and
does not recover is free from symbiont immunosuppression, but eventually becomes immunologically
vulnerable because of energy store deprivation. (C) A coral which bleaches and recovers may minimize
Symbiodinium immunosuppression in the short term, but suffer from reduced energy stores and immuno-
suppression of returning Symbiodinium upon recovery.

Full-size DOI: 10.7717/peerj.4494/fig-4
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energetic stores to mount a sustained response. Also in agreement with field observations,
Symbiodinium densities are greater on eutrophied reefs which also have greater tissue loss
disease prevalence (Muscatine et al., 1989; Shantz & Burkepile, 2014; Vega Thurber et al.,
2014). It is worth noting that reefs with more frequent thermal anomaly are known both
for their bleaching resistance and white syndrome susceptibility, although it should also be
noted that they are more susceptible to brown spot disease (Hume et al., 2013; Fine, Gildor
& Genin, 2013; Palumbi et al., 2014; Randall et al., 2014).

Here, in addition to proposing a new model for infectious disease susceptibility in the
context of coral bleaching, we establish a testable hypothesis: Coral bleaching confers a
transient immunological advantage to the coral host. While the present study’s sample size
is limited and canonical logic has historically supported a causal and positive relationship
between bleaching and tissue loss diseases, our proposed hypothesis is supported by
molecular work and alternative interpretations of several field studies. Further testing is
warranted, especially as reefs are exposed to increasingly frequent and intense thermal
anomalies. Beyond our proposed hypothesis, this study adds further support to numerous
works demonstrating the importance of coral host genotype in determination of diverse
physiological traits.
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