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Introduction
Childhood acute lymphoblastic leukemia (ALL) is the most 
common malignancy in children.1 It accounts for 80% of all 
newly diagnosed leukemia cases and affects ∼3000 children 
in the United States.2 With five-year event-free survival of 
80% now, current efforts are focusing on optimal risk-
directed treatment.3–5 It is estimated that contemporary use 
of risk-directed effective systemic chemotherapy and central 
nervous system (CNS)-directed treatment protocols may 
further increase the five-year event-free survival rate that is 
currently approaching 90%.3–5 However, this figure is decep-
tive for those children with unfavorable features as defined 
by biology or poor response to treatment and for whom the 
probability of cure is much lower, which is well below 50% in 
some groups.3 This limited progress must be balanced against 
the recognition that patients with CNS disease account for 
30%–40% of initial relapses in some clinical trials.3 Although 
the use of CNS-directed treatment has led to 5%–10% reduc-
tion in CNS relapse in childhood ALL, relapse remains an 
important cause of morbidity and mortality, occurring in 
up to 6% of the patient population.1 Moreover, the obvious 
therapeutic benefit of CNS-directed treatment using either 

cranial radiation, intrathecal methotrexate, or a combination 
thereof has been tempered by the recognition of long-term 
neurotoxicity, which has the potential to impair the quality 
of life in some patients.3 Therefore, there is an urgent need 
for the discovery of molecular markers to stratify patients to 
guide treatment decisions. Precise assessment of CNS disease 
involvement is essential for current treatment planning to 
avoid overtreatment or undertreatment of pediatric patients 
with ALL.5

A major risk factor associated with an increased risk of 
CNS relapse is the presence of leukemic blast cells in the cere-
brospinal fluid (CSF).5 Leukemia patients have been considered 
to be at risk of CNS disease if blast cells are detected in their 
CSF.5–7 Currently, patients are classified as CNS1, CNS2, and 
CNS3.5–7 Under this classification system, CNS1 indicates no 
detectable blast cells in CSF, CNS2 indicates the presence of 
,5 leukocytes per µL with detectable blast cells in cytocentri-
fuged preparation of CSF, and CNS3 indicates the presence of 
overt CNS leukemia, in which is the sample contains .5 white 
blood cell (WBC) counts per µL with identifiable blast cells in 
CSF.5–7 CNS classification determines the intensity of CNS-
directed therapy, which may vary depending on the patient’s 
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risk status. Although this classification scheme is routinely 
used in a clinical setting to stratify patients, the molecular 
mechanisms underpinning this classification scheme have not 
been well characterized. Understanding the molecular mech-
anisms underlying the CNS disease spectrum is essential for 
improving the survival rate of children who relapse and to 
avoid overtreatment and undertreatment of ALL patients.

Advances in transcription profiling using microar-
ray technology have made possible molecular classification 
of ALL subtypes.8–10 Our group recently used transcription 
profiling to stratify pediatric ALL patients according to mar-
ginal residue disease (MRD).11 However, currently, there is a 
knowledge gap about the molecular mechanisms underpinning 
the CNS disease spectrum in pediatric ALL. The objective of 
this study was to identify molecular signatures distinguishing 
patients with CNS disease from those without CNS disease 
and the molecular networks and biological pathways dysregu-
lated in response to CNS disease involvement. Our working 
hypothesis was that molecular perturbation significantly dif-
fers between patients diagnosed with CNS disease and those 
without CNS disease. We further hypothesized that differ-
ences in gene expression levels between patients with and 
without CNS disease affect molecular networks and biological 
pathways associated with ALL.

Materials and methods
Patient population and sources of gene expression 

data. We used publically available gene expression data gen-
erated from a total of 207 pediatric ALL patients diagnosed 
with and without CNS disease.10 Patient samples for this 
study were obtained from the Children’s Oncology Group 
(COG) Clinical Trial P9906. COG P9906 enrolled 272 
eligible high-risk B-precursor ALL patients between March 
15, 2000, and April 25, 2003. All patients were treated uni-
formly with a modified augmented Berlin-Frankfurt-Münster 
Study Group regimen.10 This trial targeted a subset of newly 
diagnosed high-risk ALL patients who had experienced a 
poor outcome in prior studies.10 Patients with CNS disease 
or testicular leukemia were eligible for the trial, regardless of 
age or WBC count at diagnosis. Patients with very high-risk 
features (BCR-ABL1 or hypodiploidy) were excluded, whereas 
those with low-risk features (trisomies of chromosome 4 or 
10; t(12;21) ETV6-RUNX1) were excluded unless they had 
CNS disease or testicular leukemia. We also used previously 
cryopreserved residual pretreatment leukemia specimens that 
were available for a representative cohort of 207 of the 272 
(76%) registered patients. With the exception of differences 
in presenting WBC count, these 207 patients were highly 
similar in all other clinical and outcome parameters to all the 
272 patients accrued to this trial.10 Treatment protocols were 
approved by the National Cancer Institute and COG partici-
pating institutions through their institutional review boards.10 
Informed consent for clinical trial registration, sample submis-
sion, and participation in these research studies was obtained 

from all patients or their guardians in accordance with the 
Declaration of Helsinki.

For gene expression profiling, RNA was extracted and 
purified from 207 pretreatment diagnostic samples with .80% 
blasts (131 bone marrow and 76 peripheral blood) as previ-
ously described.10 RNA was extracted using Trizol reagent, 
and RNA integrity was assessed using an Agilent 2100 Bio-
analyzer (Agilent). cDNA was synthesized using a T-7 linked 
oligo-dT primer, and cRNA was then synthesized with bioti-
nylated UTP and CTP. The labeled RNA was fragmented and 
hybridized to HG_U133A_Plus2.0 oligonucleotide microar-
rays (Affymetrix) after RNA quantification, cDNA prepara-
tion, and labeling according to Affymetrix protocols. Signals 
were scanned using the Affymetrix GeneChip Scanner. 
The data were processed and normalized using Affymetrix’s 
Microarray Analysis Suite (MAS 5.0). All the data were nor-
malized to log 2.

Data analysis. Consistent with the current treatment 
protocols,5–7 we partitioned the original data set into three data 
sets representing the three disease classes: CNS1 (N = 160), 
CNS2 (N = 16), and CNS3 (N = 20). We analyzed the par-
titioned data by comparing the gene expression levels among 
the patient groups: CNS1 versus CNS2, CNS1 versus CNS3, 
and CNS2 versus CNS3. The significant differences in gene 
expression levels between patient groups were tested using a 
permutation t-test. We applied the false discovery rate (FDR) 
procedure to correct for multiple hypothesis testing.12

One of the goals of this study was to identify genes that 
are predictive of CNS disease. We used four inherent steps 
to this process: identification of genes distinguishing disease 
classes as outlined above, model selection, prediction assess-
ment, and validation. Due to the small sample size in patients 
diagnosed with CNS disease, we did not partition the data 
into test and validation sets, as such an approach would lead 
to bias resulting from sampling errors. Therefore, instead, 
we used the leave-one-out cross-validation as our prediction 
and validation model procedure to identify genes with pre-
dictive power.13 This approach has been successfully used in 
gene expression data analysis to mitigate and eliminate this 
bias.13,14 For each analysis, the genes were ranked based on the 
P-values and the FDR.

To ensure that the results were comparable across the 
three analysis conducted, we used the threshold of P , 0.01 
and an FDR of ,1% to select the most significantly differen-
tially expressed genes in each comparison. Differential expres-
sion analyses were performed using GenePattern15 and Pomelo 
II software packages.16 We performed network and pathway 
analysis and visualization using the Ingenuity Pathway Analy-
sis (IPA) system.17 Gene identifiers/symbols approved by the 
Human Genome Organization’s Nomenclature Committee 
were mapped onto networks and canonical pathways using 
the network and pathway design and analysis modules as 
implemented in the IPA. The probability scores and the log 
P-values were calculated to assess the likelihood and reliability 
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of correctly assigning the genes to the correct networks and 
pathways, respectively. Functional relationships, biological pro-
cesses, and cellular components in which the genes are involved 
were assessed using the Gene Ontology (GO) information as 
implemented in the IPA and Affymetrix databases.

Results
Differences in gene expression levels among patient 

groups. We compared gene expression levels among patients 
with and without CNS disease involvement. First, we com-
pared gene expression levels between patients with CNS1 and 
CNS2. We hypothesized that gene expression levels signifi-
cantly differ between the two patient groups. After correct-
ing for multiple hypothesis testing, this analysis produced a 
signature of 279 highly significant (P , 0.01) differentially 
expressed genes. A signature of 30  most highly significant 

(P  ,  0.0009) differentially expressed genes distinguishing 
the two patient groups is listed in Table  1. The signature 
included the genes ATXN1 and GTF3C3 involved in DNA 
binding; ZNF343, RNASE11, SMC5, and PDPK1 involved 
in nucleotide binding; TCERG1L, VANGL1, FBXO31, 
RIMS3, TGS1, WHSC1L1, PRRC2A, AP3M1, GOLGA2, 
RSF1, CD14, MYH10, and LCAT involved in protein bind-
ing; and ADARB1, ADARB2, RSL1D1, and CUX1 involved 
in RNA binding. In addition, the signature included the 
genes CMKLR1 involved in signal transduction, MAP-
KBP1 involved in translation initiation factor activity, and 
ALDH1L2 involved in catalytic activity. The signature also 
included the genes C19ORF52, LOC645513, and SEL1L3 
with unknown functions. A complete list of all highly signifi-
cant differentially expressed genes between the two patient 
groups is presented in Supplementary Table 1.

Table 1. List of the top most highly significant differentially expressed genes distinguishing patients with CNS1 from patients with CNS2.

Gene Symbol Chrom Position Gene Title P-Value

SMC5 9q21.11 Structural maintenance of chromosomes 5 4.50 × 10−5

TCERG1L 10q26.3 Transcription elongation regulator 1-like 4.50 × 10−5

RSL1D1 16p13.13 Ribosomal L1 domain containing 1 9.00 × 10−5

ATXN1 6p23 Ataxin 1 1.20 × 10−4

LCAT 16q22.1 Lecithin-cholesterol acyltransferase 1.30 × 10−4

ADARB1 21q22.3 Adenosine deaminase, RNA-specific, B1 1.90 × 10−4

MYH10 17p13 Myosin, heavy chain 10, non-muscle 2.20 × 10−4

GTF3C3 2q33.1 General transcription factor IIIC, polypeptide 3, 102kDa 2.60 × 10−4

AP3M1 10q22.1 Adaptor-related protein complex 3, mu 1 subunit 2.70 × 10−4

ZNF343 20p13 Zinc finger protein 343 3.20 × 10−4

LOC645513 4q26 Uncharacterized LOC645513 3.50 × 10−4

WHSC1L1 8p11.2 Wolf-Hirschhorn syndrome candidate 1-like 1 3.60 × 10−4

CD14 5q31.3 CD14 molecule 3.70 × 10−4

CMKLR1 12q23.3 Chemokine-like receptor 1 3.80 × 10−4

GOLGA2 9q34.13 Golgin A2 3.80 × 10−4

RIMS3 1p34.2 Regulating synaptic membrane exocytosis 3 4.20 × 10−4

C19orf52 19p13.2 Chromosome 19 open reading frame 52 4.30 × 10−4

PHF17 4q26-q27 PHD finger protein 17 4.30 × 10−4

FBXO31 16q24 F-box protein 31 4.70 × 10−4

CUX1 7q22.1 Cut-like homeobox 1 4.70 × 10−4

ADARB2 10p15.3 Adenosine deaminase, RNA-specific, B2 (non-functional) 5.20 × 10−4

RSF1 11q14.1 Remodeling and spacing factor 1 5.20 × 10−4

RNASE11 14q11.1 Ribonuclease, RNase A family, 11 (non-active) 5.20 × 10−4

PRRC2A 6p21.3 Proline-rich coiled-coil 2A 5.40 × 10−4

ALDH1L2 12q23.3 Aldehyde dehydrogenase 1 family, member L2 6.50 × 10−4

SEL1L3 4p15.2 Sel-1 suppressor of lin-12-like 3 (C. elegans) 7.20 × 10−4

MAPKBP1 15q15.1 Mitogen-activated protein kinase binding protein 1 7.70 × 10−4

PDPK1 16p13.3 3-phosphoinositide dependent protein kinase-1 8.70 × 10−4

VANGL1 1p13.1 VANGL planar cell polarity protein 1 9.10 × 10−4

TGS1 8q11 Trimethylguanosine synthase 1 9.90 × 10−4
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Patients with CNS3 require intensified CNS-directed 
therapy. Therefore, the second step in our analysis focused 
on comparing gene expression levels between patients with 
CNS1 and patients with CNS3. This analysis revealed a 
signature of 389 highly significant (P  ,  0.01) differentially 
expressed genes after correcting for multiple hypothesis test-
ing using the FDR procedure. A signature containing 33 most 
highly significant (P , 0.0009) differentially expressed genes 
distinguishing the two patient groups is listed in Table  2. 
The signature included the genes ZNF549, ZNF260, 
GTF2H2, PFKP, PPIP5K1, ACTG1P4, LONP2, DHX33, 
and CAPRIN2 involved in nucleotide-binding activity. Many 
other genes involved in various molecular functions were 

Table 2. List of the top most highly significant differentially expressed genes distinguishing patients with CNS1 from patients with CNS3.

Gene Symbol Chrom position Gene Title P-values

LONP2 16q12.1 Ion peptidase 2, peroxisomal 2.00 × 10−5

ZNF549 19q13.43 Zinc finger protein 549 4.00 × 10−5

PPIP5K1 15q15.3 Diphosphoinositol pentakisphosphate kinase 1 9.00 × 10−5

ACTG1P4 1p21 Actin, gamma 1 pseudogene 4 1.50 × 10−4

MYBBP1A 17p13.3 MYB binding protein (P160) 1a 2.10 × 10−4

PHF2P1 13q11 PHD finger protein 2 pseudogene 1 2.20 × 10−4

SH2B1 16p11.2 SH2B adaptor protein 1 2.20 × 10−4

ST3GAL3 1p34.1 ST3 beta-galactoside alpha-2, 3-sialyltransferase 3 3.10 × 10−4

TCEB3 1p36.1 Transcription elongation factor B (SIII), polypeptide 3 3.10 × 10−4

PURA 5q31 Purine-rich element binding protein A 3.40 × 10−4

TM7SF3 12q11-q12 Transmembrane 7 superfamily member 3 3.70 × 10−4

CAPRIN2 12p11 Caprin family member 2 4.10 × 10−4

OCLN 5q13.1 Occludin 4.20 × 10−4

GRB10 7p12.2 Growth factor receptor-bound protein 10 4.30 × 10−4

ZNF260 19q13.12 Zinc finger protein 260 4.60 × 10−4

ATXN7L1 7q22.1 Ataxin 7-like 1 5.30 × 10−4

PNPLA7 9q34.3 Patatin-like phospholipase domain containing 7 5.90 × 10−4

DHX33 17p13 DEAH (Asp-Glu-Ala-His) box polypeptide 33 6.10 × 10−4

LTBP4 19q13.1-q13.2 Latent transforming growth factor beta binding protein 4 6.50 × 10−4

HSD17B6 12q13.3 Hydroxysteroid (17-beta) dehydrogenase 6 6.50 × 10−4

MCHR1 22q13.3 Melanin-concentrating hormone receptor 1 6.70 × 10−4

MST1 3p21 Macrophage stimulating 1 7.00 × 10−4

RORA 15q21-q22 RAR-related orphan receptor A 7.20 × 10−4

MAGEL2 15q11-q12 MAGE-like 2 7.70 × 10−4

WFDC10B 20q13.12 WAP four-disulfide core domain 10B 7.80 × 10−4

CLDN19 1p34.2 Claudin 19 7.80 × 10−4

VWA8-AS1 13q14.11 VWA8 antisense RNA 1 (head to head) 8.40 × 10−4

SNHG3 1p35.3 Small nucleolar RNA host gene 3 8.50 × 10−4

PFKP 10p15.3-p15.2 Phosphofructokinase, platelet 9.00 × 10−4

TTLL3 3p25.3 Tubulin tyrosine ligase-like family, member 3 9.10 × 10−4

GTF2H2 5q13.2 General transcription factor IIH, polypeptide 2, 44kDa 9.20 × 10−4

NXN 17p13 Nucleoredoxin 9.60 × 10−4

ZDHHC8 22q11.21 Zinc finger, DHHC-type containing 8 9.60 × 10−4

also identified, including: WFDC10B involved in peptidase 
inhibitory activity; ZDHHC8 with receptor activity; NXN 
involved in serine-type endopeptidase activity; GRB10 SH3/
SH2  involved in adaptor activity; MCHR1 and SH2B1 
with signal transduction activity; CLDN19 and OCLN with 
structural molecular and protein binding activity; RORA 
involved in transcription corepressor binding; LTBP4 hav-
ing transforming growth factor beta-activated receptor activ-
ity; PURA involved in translational repressor activity; and 
MAGEL2 associated with ubiquitin-protein transferase activ-
ity. Other genes in the signature included ARPC4 involved 
in actin binding; ST3GAL3 associated with carbohydrate 
metabolism, HSD17B6 and MST1 with catalytic activity; 
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SNHG3, MYBBP1A, and TCEB3 involved in DNA binding; 
PNPLA7 associated with hydrolase activity; and TTLL3 with 
ligase activity. The signature included four genes ATXN7L1, 
PHF2P1, TM7SF3, and VWA8-AS1 with unknown func-
tions. A complete list of the highly significant (P , 0.01) dif-
ferentially expressed genes between the two patient groups is 
presented in Supplementary Table 2. Interestingly, there was 
little overlap between the genes distinguishing patients with 
CNS1 from patients with CNS2 and genes distinguishing 
patients with CNS1 from patients with CNS3 disease.

One of the challenges faced by clinicians is stratify-
ing patients with CNS disease into a group that may require 
standard treatment and a group that may require intensified 
CNS-directed therapy. This is complicated by the fact that 
CNS2 follows a variable clinical course with some patients 
behaving like those with CNS1, while others behave like those 
with CNS3. To identify a signature that may be predictive of 
CNS3, we compared gene expression levels between patients 
with CNS2 and patients with CNS3. We hypothesized that 
gene expression levels in patients with CNS2  significantly 
differ from patients with CNS3. After correcting for mul-
tiple hypothesis testing, this analysis produced a signature 
of 418 highly significant (P  ,  0.01) differentially expressed 
genes. A signature containing the 40 most highly significant 
(P , 0.0009) differentially expressed genes distinguishing the 
two patient groups is listed in Table 3. The signatures included 
the genes EZH1, MYBBP1A, LYL1, AGFG1, HUWE1, and 
ZNF549 ERCC1 involved in DNA binding; R3HCC1, 
ACTG1P4, LONP2, and PIM2 involved in nucleotide binding; 
and CNOT1, CMIP, PRRC2A, OCLN, and RSF1 involved in 
protein binding. The signature also included other genes with a 
wide range of molecular functions, including LILRA6 involved 
in receptor activity, MCHR1 and SH2B1 involved in signal 
transduction activity, LMAN1L with neurotransmitter trans-
port activity, EFEMP2 involved in transmembrane signaling 
receptor activity, MAGEL2 associated with ubiquitin-protein 
transferase activity, COL24A1 involved in extracellular matrix 
structural constituent, FOXO3 associated with core promoter 
binding, and EYA3 involved in chromatin binding. The sig-
nature also contained a number of genes, including BAALC, 
C11orf21, C19orf52, CCDC85C, KIAA1211L, LOC100130370, 
LOC100288310, LOC100506114, SEL1L3, SOCS2-AS1, and 
TAMM41, whose molecular functions are unknown. A com-
plete list of all the highly significant (P , 0.01) differentially 
expressed genes between the two patient groups is presented 
in Supplementary Table 3. Intriguingly, there was little overlap 
in the genes among the three signatures identified. This dem-
onstrates that molecular classification could be used to stratify 
pediatric ALL patients diagnosed with CNS disease.

To identify genes uniquely distinguishing patient 
groups and those which overlap, we used a Venn diagram. 
The results showing genes uniquely differentially expressed 
and genes that overlap among the patient groups are shown 
in Figure  1. Comparison of CNS1 versus CNS2  revealed 

229 uniquely differentially expressed genes. Comparison of 
CNS1 versus CNS3 revealed 254 genes, whereas comparison 
of CNS2 versus CNS3 revealed 251 genes (Fig. 1). A total of 
eight genes were significant in both CNS1 versus CNS2 and 
CNS1 versus CNS3. Another 40  genes were significant in 
both CNS1 versus CNS2 and CNS2 versus CNS3. The largest 
overlap involving a signature of 125 genes was found in the 
comparisons of CNS1 versus CNS3 and CNS2 versus CNS3. 
This was expected because CNS2 follows a variable clinical 
course in which some patients tend to behave like those having 
CNS1 and others like those having CNS3. Overall, only two 
genes were found to be significantly differentially expressed 
among all the three comparisons, demonstrating that tran-
scription profiling could be used to stratify patients to guide 
treatment decisions.

Functional relationships among identified genes. To 
determine whether the identified genes are functionally related, 
we performed GO analysis for each set of significantly differen-
tially expressed genes discovered in each of the three compari-
sons. GO analysis allows characterization of genes according 
to the GO nomenclature. The GO Consortium has developed 
three separate ontologies, namely, biological process, molecular 
function, and cellular component, to describe the attributes of 
the gene products. Biological process describes the contribu-
tion of a gene product to a biological objective, molecular func-
tion defines what a gene product does at the biochemical level 
without specifying where or when the event actually occurs, 
and cellular component refers to where in the cell a gene prod-
uct functions. Here, we characterized the genes according to 
all three GO categories. Because many genes are involved in 
multiple biological processes, have multiple overlapping mol
cular functions, and are involved in many cellular components, 
we have listed these results in Supplementary Tables  4–6 to 
accommodate all the three pieces of information. The results 
showing the biological processes, molecular functions, and cel-
lular components in which the genes distinguishing patients 
with CNS1 from CNS2 are involved are presented in Supple-
mentary Table 4. Results for the genes distinguishing patients 
with CNS1 from CNS3 and CNS2 from CNS3 are presented 
in Supplementary Tables 5 and 6, respectively. In each case, we 
identified sets of functionally related genes with multiple over-
lapping molecular functions, suggesting that the genes act in 
concert rather than individually to drive the CNS phenotype.

Network and pathway analysis. To gain insights about 
the broader biological context in which the genes identified 
operate, we performed network and pathway analysis separately 
for each comparison. The rationale for separate analysis is that 
different treatments are used in treating patients with CNS 
disease involvement. For example, while standard treatment is 
used for patients with CNS2, intensified CNS-directed treat-
ment is used for patients with CNS3, suggesting that different 
pathways may be targeted by each treatment regimen. Thus, 
we sought to identify molecular networks and biological path-
ways dysregulated in response to CNS involvement in different 
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Table 3. List of the top most highly significant differentially expressed genes distinguishing patients with CNS2 from patients with CNS3.

Gene Symbol Chr Position Gene Title P-value

SEL1L3 4p15.2 Sel-1 suppressor of lin-12-like 3 (C. elegans) 1.00 × 10−5

LONP2 16q12.1 Lon peptidase 2, peroxisomal 1.00 × 10−5

C19orf52 19p13.2 Chromosome 19 open reading frame 52 4.50 × 10−5

ZNF549 19q13.43 Zinc finger protein 549 1.00 × 10−4

MCHR1 22q13.3 Melanin-concentrating hormone receptor 1 1.15 × 10−4

LOC100130370 17q25.3 Uncharacterized LOC100130370 1.20 × 10−4

ERCC1 19q13.32 Excision repair cross-complementing rodent repair deficiency, complementation group 1 1.45 × 10−4

PIM2 Xp11.23 Pim-2 oncogene 1.60 × 10−4

C11orf21 11p15.5 Chromosome 11 open reading frame 21 1.80 × 10−4

PRRC2A 6p21.3 Proline-rich coiled-coil 2A 1.90 × 10−4

LOC100288310 8q13.3 Uncharacterized LOC100288310 2.15 × 10−4

FLJ10489 8q22.3 Uncharacterized protein FLJ10489 2.45 × 10−4

MYBBP1A 17p13.3 MYB binding protein (P160) 1a 2.75 × 10−4

ACTG1P4 1p21 Actin, gamma 1 pseudogene 4 3.20 × 10−4

COL24A1 1p22.3-p22.2 Collagen, type XXIV, alpha 1 3.20 × 10−4

EYA3 1p36 Eyes absent homolog 3 (Drosophila) 3.35 × 10−4

KIAA1211L 2q11.2 KIAA1211-like 4.25 × 10−4

EZH1 17q21.1-q21.3 Enhancer of zeste homolog 1 (Drosophila) 4.55 × 10−4

RAI2 Xp22 Retinoic acid induced 2 5.05 × 10−4

HUWE1 Xp11.22 HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase 5.34 × 10−4

LILRA6 19q13.4 Leukocyte immunoglobulin-like receptor, subfamily A, member 6 5.55 × 10−4

BAALC 8q22.3 Brain and acute leukemia, cytoplasmic 5.56 × 10−4

FOXO3 6q21 Forkhead box O3 5.75 × 10−4

EFEMP2 11q13 EGF containing fibulin-like extracellular matrix protein 2 5.89 × 10−4

CMIP 16q23 c-Maf-inducing protein 5.89 × 10−4

LMAN1L 15q24.1 Lectin, mannose-binding, 1 like 6.25 × 10−4

RSF1 11q14.1 Remodeling and spacing factor 1 6.35 × 10−4

MAGEL2 15q11-q12 MAGE-like 2 6.75 × 10−4

SOCS2-AS1 12q22 SOCS2 antisense RNA 1 6.85 × 10−4

OCLN 5q13.1 Occludin 7.29 × 10−4

LOC158863 Xq13.1 Uncharacterized LOC158863 7.79 × 10−4

LYL1 19p13.2 Lymphoblastic leukemia derived sequence 1 7.99 × 10−4

LOC100506114 19q13.33 Uncharacterized LOC100506114 8.05 × 10−4

CNOT1 16q21 CCR4-NOT transcription complex, subunit 1 8.15 × 10−4

R3HCC1 8p21.3 R3H domain and coiled-coil containing 1 8.25 × 10−4

SH2B1 16p11.2 SH2B adaptor protein 1 8.45 × 10−4

AGFG1 2q36 ArfGAP with FG repeats 1 8.60 × 10−4

SLC25A24 1p13.2 Solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 24 9.50 × 10−4

TAMM41 3p25.2 TAM41, mitochondrial translocator assembly and maintenance protein, homolog  
(S. cerevisiae)

9.55 × 10−4

CCDC85C 14q32.31 Coiled-coil domain containing 85C 9.60 × 10−4

 

patient groups as potential therapeutic targets. The results of 
network and pathway analysis based on significantly differently 
expressed genes between patients with CNS1 and those with 
CNS2 are shown in Figure 2.

Network analysis revealed genes with multiple overlapping 
functions. Among the genes responsive to CNS involvement 
found in the network included the genes involved in gene 
expression, cancer, cellular development, cell morphology, 
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cell-to-cell signaling and interaction, nervous system develop
ment and function, and cell cycle. Also identified were genes 
involved in hematological system development and function, 
hematopoiesis, cell morphology, cardiovascular system devel-
opment and function, organ morphology, carbohydrate meta
bolism, lipid metabolism, and posttranslational modification. 

The analysis revealed biological pathways dysregulated by 
CNS involvement. The most highly significant biological 
pathways included the ILK (P = 3.1 × 10−5), Wnt/beta-catenin 
(P  =  7.6  ×  10−5), ERBB2-ERBB3 (P  =  8.9  ×  10−5), DHA 
(P = 1.3 × 10−4), and the B-cell receptor (P = 2.2 × 10−4) sig-
naling pathways. Additionally, the analysis revealed highly 
significant (P  ,  1.0  ×  10−4) upstream regulators, which 
included HTT (P = 2.5 × 10−5), TP53 (P = 1.0 × 10−4), XBP1 
(P = 1.2 × 10−4), and KLC1 (P = 1.3 × 10−4), suggesting that 
the identified genes may be regulated by other genes.

The results of network analysis using the set of genes iden-
tified from a comparison of expression levels between patients 
with CNS1 and CNS3 are shown in Figure 3. The analysis 
revealed genes with multiple overlapping functions, which 
included genes involved in DNA replication, recombination 
and repair, molecular transport, cellular assembly, and organi-
zation. In addition, we identified genes involved in endocrine 
system development and function, carbohydrate and lipid 
metabolism, gene expression, cell-to-cell signaling and inter-
actions, amino acid metabolism, cell cycle, and small molecule 
biochemistry. The analysis revealed biological pathways dys-
regulated in response to CNS3 disease involvement, including 
the glycosaminoglycan-protein linkage region biosynthesis 
pathway (P = 2.3 × 10−4), assembly of RNA polymerase III 
complex (P  =  1.1  ×  10−3), heme biosynthesis from uropor-
phyrinogen-III I pathway (P = 1.6 × 10−3), AMPK signaling 
pathway (P = 1.8 × 10−3), and heme biosynthesis II pathway 
(P = 1.1 × 10−2). The analysis also revealed upstream regulators, 
including BRD4 (P = 2.7 × 10−5), FOLR1 (P = 8.1 × 10−4), 
TFDP2 (P = 2.5 × 10−3), SLC2A1 (P = 3.7 × 10−3), and TFAM 
(P = 3.8 × 10−3).

Figure 2. Molecular networks of highly significant differentially expressed genes between patients classified as CNS1 and CNS2 and other functionally 
related genes. 
Note: Differentially expressed genes are shown in red color font and other genes in black font.

CNS1 vs CNS2
279

CNS2 vs CNS3
41840

2

1258

CNS1 vs CNS3
389

Figure 1. Distribution of significantly differentially expressed genes 
based on comparison of gene expression levels between the three 
patient groups. Each quadrant of the Venn diagram represents 
comparison between the two disease classes and the total number of 
highly significant (P , 0.01) differentially expressed genes resulting from 
that comparison after controlling for the FDR of ,1%. The numbers in 
the intersections represent the number of genes that were significantly 
expressed in either two or all three comparisons.
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The results of network analysis using the set of genes  
distinguishing CNS2 from CNS3 are shown in Figure  4. 
This analysis revealed molecular networks containing genes 
involved in gene expression, cell cycle, embryonic development,  

hereditary disorder, cardiovascular disease, cell death and 
survival, cellular development, hematological system develop-
ment and function, cell morphology, inflammatory response, 
humoral immune response, protein synthesis, and cancer. 

Figure 3. Molecular networks of highly significant differentially expressed genes between patients classified as CNS1 and CNS3 and other functionally 
related genes. 
Note: Differentially expressed genes are shown in red color font and other genes in black font.

Figure 4. Molecular networks of highly significant differentially expressed genes between patients classified as CNS2 and CNS3 and other functionally 
related genes. 
Note: Differentially expressed genes are shown in red color font and other genes in black font.
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Many biological pathways of clinical significance were also 
identified, including the assembly of RNA polymerase III 
complex (P = 1.5 × 10−3), dendritic cell maturation (1.7 × 10−3), 
ERK5 (P = 6.4 × 10−3), B-cell receptor (P = 9.4 × 10−3), and the 
role of JAK1, JAK2, and TYK2 (P = 9.4 × 10−3) in interferon 
signaling pathways. Among the identified pathways were the 
AKT, NF-κB, and UBC pathways, which have been previ-
ously implicated in pediatric ALL. The analysis also revealed 
upstream regulators, including NLRP12 (P  =  1.9  ×  10−4), 
DARC (P = 2.6 × 10−4), RAET1A (P = 2.8 × 10−4), RAET1D 
(P = 2.8 × 10−4), and PSMB9 (P = 5.3 × 10−4) genes. In all, 
differential expression and network and pathway analysis 
revealed that genetic alteration in transcript levels leads to 
measurable changes distinguishing patients with CNS dis-
ease from those without the disease. Furthermore, the results 
revealed that genomic alterations affect the entire molecular 
networks and biological pathways. This is a significant find-
ing in that such pathways could serve as targets for the devel-
opment of novel CNS-directed therapeutics as discussed in 
the next section.

Discussion and clinical implications
This study was undertaken to identify the molecular signa-
tures distinguishing patients without CNS from those with 
CNS disease and to discover molecular networks and biologi-
cal pathways dysregulated in response to CNS involvement. 
In this section, we discuss the potential clinical implication of 
the results.

The differences in gene expression levels between patients 
with and without CNS disease demonstrates that transcrip-
tion profiling could be used to stratify ALL patients to guide 
treatment decisions. Similarly, the differences in gene expres-
sion levels between patients with CNS2 and CNS3  show 
that patients with CNS involvement could be substratified. 
This is a significant finding in that patients with CNS dis-
ease could be substratified into those requiring standard treat-
ment and those requiring intensified CNS-directed treatment 
to avoid overtreatment and undertreatment of ALL patients. 
In practice, patients with CNS3 require intensified CNS-
directed therapy.18–20 This has significant clinical implications 
since a significant proportion of ALL patients are diagnosed 
with CNS2.18,19

Under the current treatment protocols, predicting 
whether a newly diagnosed patient with CNS2 will have a 
clinical course that resembles patients with CNS1 or patients 
with CNS3 remains challenging. Transcription profiling as 
demonstrated in this study has the promise to identify subsets 
of patients with good and bad prognosis and the molecular 
trajectories that are predictive of clinical course. The impor-
tance of discovering potential clinically actionable biomark-
ers for the CNS disease spectrum using transcription profiling 
as demonstrated in this study is further amplified by accu-
mulating evidence that cranial radiation currently used for 
treating patients with CNS disease is a source of long-term 

mortality and morbidity, as well as long-term endocrine and 
neurological sequelae.21

The discovery of biological pathways dysregulated in 
response to CNS disease involvement is of particular interest. In 
this study, the WNT, WNT/beta-catenin, and B-cell receptor 
signaling pathways were found to be dysregulated in response 
to CNS2 disease involvement. Activation of WNT signaling in 
ALL cells is involved in marrow stem cell-mediated drug resis-
tance and improved chemosensitivity in pediatric ALL.22–24  
In addition, activation of the WNT/beta-catenin pathway has 
been shown to mediate cell growth and survival in B-cell pro-
genitor ALL.25 Therefore, targeting either the WNT signal-
ing pathway or the WNT/beta-catenin signaling pathway may 
be an innovative approach to the treatment of pediatric ALL. 
The discovery of the B-cell receptor signaling pathway in this 
study is consistent with other studies.26 Given that the major-
ity of B-cell malignancies are dependent on B-cell receptor 
signaling,27 and since all ALL typically originates from pro- 
and pre-B-cells during B-cell development,28 targeting the 
B-cell receptor signaling pathway may have therapeutic ben-
efits. Additionally, since pre-B-cell receptor signaling has been 
shown to jam the WNT/beta-catenin pathway and induce cell 
death in B-cell ALL cell lines,29 targeting both pathways may 
be an effective approach.

The discovery of the AKT, JAK, and NF-κB signal-
ing pathways in response to CNS3  involvement is of great 
clinical importance. Since patients with CNS3 require 
intensified CNS-directed therapy, these pathways could be 
targeted. For example, the phosphatidylinositol 3-kinase 
(PI3K), AKT, mammalian target of rapamycin (mTOR) 
signaling pathway (PI3K/AKT/mTOR signaling pathway) 
is abnormally activated in childhood ALL.30 This abnormal 
activation occurs as a consequence of constitutive activation 
of AKT,30 providing a compelling rationale for targeting this 
pathway. The AKT regulates apoptosis by inhibition of Fas 
ligand, BCL2-associated death promoter, BCL2-interacting 
mediator of cell death, BCL2-associated X-protein (BAX), 
or degradation of P53.30 This reinforces the potential use of 
this pathway as a therapeutic target. The NF-κB discovered 
in this study has clinical significance, because apoptosis resis-
tance to ionization radiation in pediatric B-precursor ALL 
frequently involves increased NF-κB.31 Due to lack of clini-
cal information, we did not correlate clinical variables with 
the discovered pathways. However, it has been shown in the 
literature that high activation of NF-κB is associated with 
elevated WBC count and may be responsible for treatment 
failure in childhood ALL.32 Taken together, these results 
suggest that the identified pathways could serve as potential 
therapeutic targets.

There is very little information in the published litera-
ture on the use of transcription profiling to stratify patients 
with CNS disease spectrum in high-risk pediatric patients 
with ALL. Cario et al.33 reported the results of gene expres-
sion characterizing ALL with CNS involvement focusing 
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on overexpression of IL−15. Their study evaluated leukemic 
gene expression profiles from the bone marrow of 17 CNS-
positive and 26 CNS-negative patients who were matched for 
risk factors associated with CNS disease involvement. The 
main differences between our study and theirs are that our 
study examined the entire CNS disease spectrum and dis-
covered pathways dysregulated in response to CNS disease 
involvement. These issues were not fully addressed in their 
study. Moreover, our study used a much larger sample size 
compared to theirs.

This study provides insights into the molecular mecha-
nisms underlying the CNS disease spectrum. However, limi-
tations of the study must be acknowledged. As noted earlier, 
the sample sizes for CNS2 and CNS3 were small compared 
to CNS1. We undertook precautionary measures by applying 
the appropriate methods in data analysis to reduce biases that 
could arise from sampling errors.13,14 We did not consider 
racial and subtype-specific differences. We have previously 
shown in pediatric ALL that gene expression levels vary and 
differ between ethnic populations.34 We have also previously 
shown that gene expression levels and patterns in patients 
with MRD can be subtype specific.11 In this study, we did 
not examine these variables for two reasons. First, informa-
tion on these variables was not available, and second, sam-
ples sizes for patients with CNS2 and CNS3 were too small 
to permit substratification of the data. Given these limita-
tions that we readily acknowledge, the findings in this study 
cannot be generalized to different racial or ethnic groups or 
to specific subtypes of ALL. In addition, we did not inves-
tigate the relationship between CNS disease spectrum and 
other prognostic factors such as MRD and testicular or 
WBC count because these variables were not available in the 
data set used. Due to these limitations, we view this study as 
exploratory. Further studies that correlate CNS disease with 
other clinical prognostic variables are recommended.

Conclusions
This study demonstrates that transcription profiling could be 
used to stratify pediatric patients with and without CNS dis-
ease to guide treatment decisions, identify potential clinically 
actionable biomarkers, and target biological pathways for the 
development of novel therapeutics.
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