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Abstract

Ras/MAPK pathway signaling is a major participant in neurodevelopment, and evidence suggests 

that BRAF, a key Ras signal mediator, influences human behavior. We studied the role of the 

mutation BRAFQ257R, the most common cause of cardiofaciocutaneous syndrome (CFC), in an 

induced pluripotent stem cell (iPSC)-derived model of human neurodevelopment. In iPSC-derived 

neuronal cultures from CFC subjects, we observed decreased p-AKT and p-ERK1/2 compared to 

controls, as well as a depleted neural progenitor pool and rapid neuronal maturation. 

Pharmacological PI3K/AKT pathway manipulation recapitulated cellular phenotypes in control 

cells and attenuated them in CFC cells. CFC cultures displayed altered cellular subtype ratios and 

increased intrinsic excitability. Moreover, in CFC cells, Ras/MAPK pathway activation and 

morphological abnormalities exhibited cell subtype-specific differences. Our results highlight the 

importance of exploring specific cellular subtypes and of using iPSC models to reveal relevant 

human-specific neurodevelopmental events.
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Introduction

Mental health disorders account for 13% of the global burden of disease1. Five major 

psychiatric disorders—autism spectrum disorder (ASD), attention deficit-hyperactivity 

disorder, bipolar disorder, major depressive disorder, and schizophrenia—have substantial 

heritability and shared genetic etiology, indicating common pathophysiologies2. Genome-

wide association studies found that the most significant shared signaling pathway is the Ras/

MAPK pathway3, which regulates cellular proliferation, differentiation, and survival across 

many cell types and is critical in neurodevelopment4, 5.

Germline mutations in the Ras/MAPK pathway cause a class of Mendelian genetic 

syndromes termed RASopathies5, which include cardiofaciocutaneous syndrome (CFC; 

OMIM #115150). CFC individuals have increased risk for behavioral manifestations 

affecting cognitive systems, social processes, and arousal/regulatory systems6, 7, all relevant 

to the symptomology of major psychiatric disorders. CFC is an autosomal dominant disorder 

primarily caused by gain-of-function mutations in the BRAF gene (73% of CFC subjects5), 

which is ubiquitously expressed in the developing human brain with peak expression 

between postconceptional weeks 8 and 128. Individuals with CFC commonly present 

developmental delay, intellectual disability (more than 80%), increased risk for ASD (54–

64%), seizures (45%) and a higher incidence of structural brain abnormalities6, 7, 9–14. A 

systematic study of 66 CFC subjects observed increased ventricular size and cortical 

atrophy14. Other common neurologic manifestations of CFC are abnormal EEG findings 

(including hypsarrhythmia), agenesis of the corpus callosum, abnormal myelination, and 

Chiari malformation7, 9, 14. There are many structural abnormalities in common between 

CFC and major psychiatric disorders: cortical atrophy is observed in schizophrenia15, 16, 

thinner corpus callosum in ASDs17, 18, and enlarged ventricles in both15, 16, 18, 19.

Attempts to mechanistically model CFC in mice have led to mixed results. The ablation of 

Braf in the developing mouse brain led to increased frequency of repetitive movements, 

seizures, hyperactivity, and impairments in sociability and learning20–22. However, mouse 

models with gain-of-function mutations in Braf failed to recapitulate the central nervous 

system (CNS) structural defects found in CFC subjects23, 24 and led to embryonic lethality 

or overall reduced viability. Human induced pluripotent stem cells (iPSCs) have proven to 

comprise a successful platform that allows for the direct examination of human neuronal 

development25–31. Our recent studies on another RASopathy, Costello syndrome32, 33, 

indicated that an activating mutation in HRAS led to an extended progenitor phase and 

subsequent increase in the number of cortical neurons33 as well as excessive astrocyte-to-

neuron signaling32, all of which correlated with the progressive postnatal brain overgrowth 

in Costello syndrome34.

Because Ras/MAPK signaling controls differentiation in most tissues, we hypothesized that 

the BRAF gain-of-function p.Q257R mutation would affect neuronal maturation. We 

generated iPSC lines from four CFC subjects carrying BRAFQ257R (the most common CFC 

mutation5) and differentiated them towards several neuronal lineages. We characterized the 

biochemical consequences of aberrant Ras/MAPK signaling in CFC-derived neural cultures 

Yeh et al. Page 2

Mol Psychiatry. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and revealed cellular properties associated with altered maturation, including morphological 

and physiological features.

Material and Methods

Subjects

All human research was consistent with IRB approved protocols. All participants or their 

parents provided written consent as approved by the UCSF Human Research Protection 

Program (CHR #10-02794). We selected subjects based on the presence of BRAF mutation 

p.Q257R. Recruitment was described previously 6: all CFC subjects were recruited at 

national RASopathy family meetings and two control participants at a UCSF 

Neurofibromatosis Symposium. The third control line used in our study, HS1-11, was kindly 

provided by Dr. Arnold Kriegstein’s lab (UCSF). Control lines were sex- and age-matched 

to the subject lines (Supplementary Table 1; clinical features in Supplementary Table 2).

Generation of pluripotent stem cell lines

Dermal fibroblasts were isolated from skin biopsies as previously described35. When the 

dermal fibroblast culture reached passage 5, they were detached using 0.25% trypsin/EDTA, 

spun at 500xg for 5 minutes, resuspended in DMEM high-glucose media. We used 360,000 

cells per individual per reprogramming. Before electroporation, one μg of each of the 

plasmids pCXLE-hOCT3/4-shp53-F, pCXLE-hSK, pCXLE-hUL, and pCXLE-EGFP 

(Addgene)36 was mixed with 100ul Resuspension Buffer R (Neon™ Transfection System, 

Life Technologies), and added to the cells to be transformed. We pipetted 100μl of the cell 

suspension into the Neon Transfection System chamber (Life Technologies) and 

electroporated the cell suspension with three 1,650V, 10ms pulses. Immediately after 

electroporation, the cell suspension was pipetted directly into a gelatin-coated well 

containing a warmed fibroblast medium (DMEM High Glucose supplemented with 10% 

fetal bovine serum) and incubated in a 37ºC, 5% CO2 incubator. GFP-positive cells were 

examined during the first five days post-electroporation to monitor transfection efficiency. 

After day 5, transfected fibroblasts were detached and plated onto Mitomycin C treated 

Mouse Embryonic Fibroblasts (Millipore) at 10,000 cells/cm2. Until iPS-like colonies were 

ready to be picked and passaged, we fed the cells with hES-KSR Basal Medium - Knockout 

DMEM (Life Technologies), 20% Knockout Serum Replacement (Life Technologies), 5% 

L-glutamine (Life Technologies), 10% Non-essential amino acids (Life Technologies), and 

beta-mercaptoethanol and 10ng/ml bFGF (GlobalStem). Clonal colonies displaying iPSC 

morphology were manually selected and subsequently cultured on a Matrigel substrate (BD 

Biosciences) with mTeSR1 media (Stem Cell Technologies). All lines were shown to be 

pluripotent using a random differentiation protocol37. The presence of the BRAF Q257R 

point mutation in the CFC subjects was confirmed by Sanger sequencing of exon 6 of the 

BRAF gene for all the cell lines before and after reprogramming (forward primer: 5′-
GGGAGAGAAATACTGTCCATTCCA-3′; reverse primer: 5′-
GCTTGAAATCAGTTGCCAGCC -3′; annealing temperature= 58°C). Both DNA 

fingerprinting analysis and genotyping using the Affymetrix Axiom EUR array38 were 

performed by the Genomics Core Facility at UCSF using standard protocols before 

reprogramming, after reprogramming and in one-week old neural differentiation cultures. 
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Subclones utilized for each cell line and independent differentiations performed are listed in 

Supplementary Table 3.

Immunofluorescence

At the previously described time points, cells were fixed in 4% paraformaldehyde in PBS for 

10 min at room temperature and permeabilized with 90% ice cold methanol in PBS for 10 

min. Nonspecific binding was blocked with IF blocking buffer [2% BSA (Sigma), 1% Fish 

Skin Gelatin (Sigma) and 0.2% Saponin (Sigma) in PBS] for 1h at room temperature. Cells 

were incubated with primary antibody (Supplementary Table 3) overnight at 4°C, followed 

by three 5 minute PBS washes. Cells were incubated with appropriate secondary antibodies 

(Supplementary Table 4) for 1h at room temperature. Slides were mounted with Prolong 

Gold with DAPI mounting solution (Invitrogen). All images in the same set were obtained 

using the same exposure and speed parameters. Images were captured using the EVOS® FL 

imaging system (Life Technologies) and analyzed using the “Cell Counter” plugin in ImageJ 

software.

Protein expression

We prepared total protein extracts using Phosphosafe extraction reagent (EMD Biosciences) 

supplemented with complete protease inhibitors (Roche), according to manufacturer’s 

protocol. 5μg of protein per well was loaded into a gradient 4–12% Bis-Tris SDS-PAGE Bolt 

gel (Invitrogen) under denaturing conditions, along with 4ul of PageRuler prestained protein 

ladder (Thermo Fisher). Proteins were transferred to PVDF membranes (BioRad), blocked 

in 5% BSA in TBS-T (0.1% Tween-20 in TBS), and blots were incubated overnight at 4°C 

using the antibodies specific to proteins of the Ras/MAPK pathway and PI3K pathways in 

Supplementary Table 5. All antibodies targeting phosphorylated proteins recognize the 

activated form of the proteins. The next day, blots were exposed to anti-rabbit IgG–

peroxidase conjugated secondary antibody (1:10,000; Sigma-Aldrich) for 1h at room 

temperature. Following TBST washes, blots were exposed to chemiluminescent detection 

substrate ECL prime (GE Healthcare) for 1 minute at room temperature. Next, they were 

exposed to x-ray film Amersham Hyperfilm ECL (GE Healthcare) for up to 1h. Films were 

scanned with a Canon LiDE210 Flatbed Scanner (Canon) and analyzed using the gel 

analysis method, as outlined in the ImageJ documentation: https://imagej.nih.gov/ij/docs/

menus/analyze.html#gels.

Gene expression

Total RNA was isolated using the RNeasy Mini kit (Qiagen), following manufacturer’s 

instructions. Complementary DNA (cDNA) was produced from 1μg of total RNA using 

High Capacity RNA-to-cDNA Kit (Life Technologies). The qRT-PCR assay was performed 

using 20ng of cDNA and TaqMan gene expression master mix in a QuantStudio™ 6 Flex 

Real-Time PCR System (Applied Biosystems). We determined expression levels by relative 

quantification in comparison to the endogenous control gene GUSB. Expression of each 

target gene was assessed relative to a control sample using the 2−ΔΔCT method39. Samples 

were run in technical triplicates, and the threshold suggested by the instrument’s software 

was used (after visual confirmation) to calculate the Ct. Outlier replicate samples (any data 

point more than 1.5 interquartile ranges below the first quartile or above the third quartile) 
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were excluded from analysis. The TaqMan probes used in this study are summarized in 

Supplementary Table 6.

Neural progenitor cell culture

To induce neural differentiation, free floating iPSC aggregates were formed for 24h in 

mTeSR1 culture medium (Stemcell Technologies). After 24h, the iPSC aggregates were 

switched into a neural induction medium [DMEM/F12 (Invitrogen), N2 supplement 

(Invitrogen), MEM-NEAA (Gibco) and 2μg/ml heparin (Sigma-Aldrich)]40 with media 

exchange every other day. To promote neural induction, we added small molecule TGF-βR 

inhibitor, SB431542 (5μM, Stemgent), and BMP signaling inhibitor, LDN-193189 (0.25μM, 

Stemgent), for 48h. On day 3, aggregates were attached to 6-well plates and cultured in 

neural media for an additional week during which rosettes appeared in the colonies. On day 

11, neuroepithelial cells in the center of the colonies were mechanically removed and kept as 

free-floating aggregates. At day 25 of neural differentiation, neurospheres were dissociated 

into single cells using Accutase (Stem Cell Technologies) and cultured as monolayer neural 

progenitor cells (NPCs). NPCs were maintained at high density, grown on polyornithine/

laminin-coated plates in NPC media (STEMdiff™ Neural Progenitor Medium, Stem Cell 

Technologies) and split ~1:5 every week with Accutase (Millipore, Billerica, MA, USA). All 

subsequent experiments utilized NPCs between passages 4 to 6, when cultures were 80% 

confluent.

Neural differentiation

In this protocol, we obtain not only diverse types of neurons, but glial cells as well40, 

therefore we refer to it as neural differentiation (protocols for differentiation directed 

towards specific neuronal cell types is described below). NPCs were plated into poly-

ornithine/laminin-coated plates at 50,000 cells/cm2 and fed with neural medium [Neurobasal 

medium (Invitrogen), supplemented with N2 supplement (Invitrogen), and B27 supplement 

(Invitrogen)]40. Cells were fed twice a week and analyzed at one-week and five-weeks after 

plating. The neural differentiation protocol was performed in three independent batches for 

each cell line.

Cell cycle exit analysis

A single dose of BrdU (Sigma, 15ng/ml) was added to NPCs for 4h before differentiation 

into forebrain neurons and fixed after 48h of culture in the neural medium. Neural cultures 

were processed for immunostaining with mouse anti-BrdU (1:100, BD Biosciences) and 

rabbit anti-Ki67 antibodies (1:400, Abcam). Cell cycle exit was established by counting all 

BrdU+ but Ki67− cells over the total number of BrdU+ cells per coverslip. The percentage of 

(BrdU+/Ki67−)/BrdU+ cells is reported as the percentage of cells that exited cell cycle.

For analysis of the role of ERK1/2 and AKT phosphorylation in early maturation, DMSO 

(control), MEK inhibitor U0126 (10μM, Cell Signaling Technologies), PI3K inhibitor 

Wortmannin (1μM, Cell Signaling Technologies), a combination of both U0126 (10μM) and 

Wortmannin (1μM), or AKT activator SC79 (10μg/ml, Millipore Sigma) were added to the 

single dose of BrdU for 4h prior to changing the NPC medium to neural medium. The 

following steps were performed as described above.
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Electrophysiology

To label neurons for visual targeting, cultures were infected with a lentivirus that expresses 

Discosoma Red Fluorescent Protein (DsRFP) under the synapsin promoter (Addgene). 

Coverslips containing cultures differentiated for 5 weeks in neural medium were transferred 

to a recording chamber in an upright light microscope (Nikon Eclipse, Japan). The 

coverslips were immersed in recording solution (in mM: 140 NaCl, 5 KCl, 10 HEPES, 10 D-

glucose, 2 MgCl2, 2 CaCl2, pH 7.4) and maintained at room temperature. Whole-cell patch 

clamp recordings were obtained from DsRFP+ neurons (total neurons analyzed for control 

lines: n=15; CFC: n=18; Wortmannin pre-treated controls: n=7) under visual guidance using 

borosilicate glass pipette electrodes. Electrodes were filled with a K-gluconate based internal 

solution (in mM: 123 K-gluconate, 12 KCl, 10 HEPES-KOH pH 7.2, 1 EGTA, 0.1 CaCl2, 1 

Mg-ATP, 0.2 Na4GTP and 4 D-glucose; adjusted to 320 mOsm with added sucrose). 

Electrophysiological signals were acquired using a patch clamp amplifier (Multiclamp 

700B, Axon Instruments/ Molecular Devices) and digitizer (Digidata 1440A, Axon 

Instruments/ Molecular Devices), and recorded using pCLAMP 10 software (Axon 

Instruments/ Molecular Devices). For current-clamp recordings, signals were filtered at 

10kHz and sampled at 25kHz. In the voltage-clamp recording mode, signals were filtered at 

4 kHz and sampled at 10kHz. Whole cell capacitance and series resistance compensation 

were applied.

Differentiation into glutamatergic cortical neurons

Differentiation of NPCs to an enriched glutamatergic population was adapted from 

previously described protocols 28,40. NPCs between passages 4 and 6 were plated onto poly-

ornithine/laminin-coated wells at a density of 10–20,000 cells/ well on a 24-well plate in 

glutamatergic neuron medium [Neurobasal medium (Invitrogen), supplemented with N2 

supplement (Invitrogen), B27 supplement (Invitrogen) and laminin (Sigma, 1μg/ml), with 

the addition of fresh BDNF and GDNF (PeproTech, 10 ng/mL), cAMP (0.1 μM) (Sigma) 

and ascorbic acid (Sigma, 200μg/ml)]. In order to promote differentiation, γ-secretase 

inhibitor XXI (Millipore, 0.2μM) was added to the culture for the first 24h following plating. 

Cells were fed every other day and were analyzed at one-week and five-weeks after plating.

Differentiation into GABAergic interneurons

To obtain cell populations enriched for GABAergic interneurons from NPCs, we used a 

previously developed protocol41. NPCs between passages 4 and 6 were plated onto 

polyornithine/laminin-coated wells at a density of 10–20,000 cells/well on a 24-well plate in 

GABAergic neuron medium [Neurobasal medium (Invitrogen), supplemented with N2 

supplement (Invitrogen), B27 supplement without vitamin A(Invitrogen) and laminin 

(Sigma, 1μg/ml), with the addition of fresh BDNF, GDNF and IGF1 (all PeproTech, 10ng/

ml)]. SHH (necessary to induce the expression of NKX2.1; Peprotech 500ng/ml) and γ-

secretase inhibitor XXI (to promote differentiation; Millipore, 0.2μM) were added to the 

culture for the first 24h following plating. Cells were fed every other day and were analyzed 

one-week and five-weeks after plating.
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Morphological analysis

Two days before cell fixing, five-week old glutamatergic cortical neurons and GABAergic 

interneuron cultures were transfected with 500ng per well of pCXLE-eGFP plasmid 

(Addgene plasmid 27082), as previously described42. Cells were then fixed in 4% PFA, and 

we proceeded with the immunofluorescence staining protocol described above.

Morphological analysis of glutamatergic neurons was performed in TUJ1+GFP+ neurons (20 

neurons per line, a total of 60 control neurons and 80 CFC neurons analyzed), while analysis 

of GABAergic interneurons was conducted in GABA+GFP+ neurons (20 neurons per line, a 

total of 60 control neurons and 80 CFC neurons analyzed). To measure soma size and count 

the number of neurites and branches, we used the default tools of Image J software. Neurite 

length, branch length, and branching analyses were evaluated using the Sholl analysis plugin 

and Simple Neurite Tracer plugin for ImageJ. Morphological analysis was performed in 

three independent differentiations for all cell lines and each differentiation protocol.

Statistics

Continuous variables are expressed as mean±SD. The different categories were compared by 

repeated measures ANOVA, which accounts for biological and technical replicate 

differences. A p-value ≤ 0.05 was considered statistically significant. In all figures, p≤0.05 

(*), p≤0.01 (**), p≤0.001 (***).

Results

BRAFQ257R does not affect reprogramming efficiency or competency to generate neural 
progenitor cells

To evaluate the effect of the BRAFQ257R mutation in neurodevelopment, we generated 

iPSCs from dermal fibroblasts of 4 unrelated CFC individuals and 3 sex- and age-matched 

controls (Supplementary Table 1 and Supplementary Figure 1a) using electroporation of 

nonintegrating episomal plasmids to express reprogramming factors acutely and avoid viral-

mediated mutagenesis36. For the number of subclones and independent experiments 

performed, as well as individual values for each cell line, refer to Supplementary Table 3 and 

Supplementary Table 7. We tested the pluripotency of the iPSC lines generated 

(Supplementary Table 3 and Supplementary Figure 1b) and observed no differences in their 

ability to proliferate, differentiate into the three germ layers (Supplementary Figure 1c), or 

activate the MAPK and PI3K signaling pathways (Supplementary Figure 1d).

Subsequently, we differentiated each iPSC line towards a neural fate and generated neural 

progenitor cells (NPCs), which can differentiate into all three CNS cell types40 

(Supplementary Figure 1e). All NPC cultures were positive for βIII-tubulin (TUJ1), a 

marker of early postmitotic and differentiated neurons and some mitotically active neuronal 

precursors43, with no significant difference in the proportion of cells expressing this marker 

between CFC and control lines (Supplementary Figure 1f and 1g). Across CFC and control 

lines, most cells were positive for NPC markers: NESTIN, SOX2, and PAX6 

(Supplementary Figure 1h, 1i, and 1j). We detected no difference in the proliferation of CFC 

and control cultures via Ki67 staining (Supplementary Figure 1f and 1k) or population 
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doubling time (Supplementary Figure 1l). Likewise, the cell cycle profile of CFC and 

control NPCs was similar (Supplementary Figure 1m). Therefore, CFC and control NPCs 

showed no apparent proliferation or differentiation differences. Although we observed a high 

inter-individual variation in protein expression, CFC NPCs exhibited a significant decrease 

in the phosphorylation of ERK1 (60.7% decrease, p=0.006, Figure 1a and 1b), ERK2 

(26.9% decrease, p=0.0008, Figure 1a and 1b), and AKT (71.7% decrease, p=0.002, Figure 

1a and 1b). This difference remained significant when analyzing the ratio of activated 

protein over total protein for of p-ERK1/ERK1 and p-AKT/AKT, but not p-ERK2/ERK2 

(Figure 1b). This observation suggests that activation of ERK1 and AKT may play an 

important role in later CFC phenotypes.

CFC neural cultures display early maturation and imbalance of neural cell types

We first investigated the cell cycle exit of differentiating NPCs to determine if the BRAF 
mutation affects the neural progenitor cell population. We added BrdU to the culture 

medium of NPCs for 4h before the neural differentiation protocol, changed the NPC media 

to neural media and assayed for the original pool of progenitor cells (BrdU+) and progenitor 

cell pool depletion [(%BrdU+Ki67−)/%BrdU+] after 48h. Control and CFC lines exhibit the 

same percentage of progenitor cells prior to the neuronal differentiation protocol (%BRDU+; 

Figure 1c). Yet, we observed an increase in post-mitotic cells, indicating a depletion of the 

progenitor cell pool in CFC cultures (BRAFWT= 48.44±16.71%, vs. BRAFQ257R= 

76.23±10.46%, p=0.002; Figure 1c). By probing these cells for the apoptosis marker cleaved 

caspase 3, we confirmed that the loss of progenitor cells is unlikely to be due to cell death 

(Figure 1d). Altogether, our results suggested that cells in the CFC cultures were leaving the 

mitotic progenitor state more rapidly compared to controls.

The increased percentage of progenitor cells exiting the cell cycle is suggestive of premature 

maturation of the CFC neural cultures. We sought to determine whether other evidence 

supported the rapid cellular maturation phenotype observed in CFC. Thus, we matured the 

NPCs into neural cultures for up to 5 weeks40. This protocol allows for the generation of a 

mixed neural culture containing diverse types of neurons, as well as glial cell types40. We 

confirmed the onset of increasing expression of BRAF, MAPK3 (which encodes ERK1), 

and MAPK1 (which encodes ERK2) genes in both CFC and control lines, as well as the 

onset of increase in the protein levels of BRAF and ERK1/2 (Supplementary Figure 2).

At week 1 of differentiation, both CFC and control cells were positive for TUJ1, and there 

was no significant difference in the expression of TUJ1 (Figure 1e and 1f). At this early time 

point, the expression of mature neuronal markers, such as MAP244 and NEUN45, is not 

expected. Yet, one-week old CFC neural cultures were significantly enriched for both MAP2 

(BRAFWT= 3.57±3.06%, vs. BRAFQ257R= 17.91±7.99%, p=0.0005; Figure 1e and 1g) and 

NEUN (BRAFWT=6.76±6.7%, vs. BRAFQ257R= 22.778±11.23%, p=0.0005, Figure 1e and 

1h). Moreover, we observed that CFC TUJ1+ cells displayed morphology associated with 

more mature neurons46: more neurites (neurites/cell: BRAFWT=2.87±0.92, vs. 

BRAFQ257R=3.87±1.17; p=0.003; Figure 1e and 1j) and longer neurites 

(BRAFWT=79.30±57.13 μm, vs. BRAFQ257R=170.74±139.72 μm; p=0.0009; Figure 1e and 

1i),
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Primate corticogenesis involves a variety of different lineage precursors in the subventricular 

zone47. This niche contains distinct glutamatergic neuronal precursors, GABAergic neuronal 

precursors, and glial precursors47. To confirm the observation of premature differentiation of 

CFC NPCs, we expected an increase in those cell types formed earlier in development, such 

as deep layer glutamatergic neurons, while the depletion of progenitors would cause a 

decrease in late-born cells, such as upper layer cortical neurons and glia, including astroglial 

cells. Therefore, we further characterized the different neural cellular subtypes in CFC and 

control cultures. We generated a consistent population of glutamatergic cortical neurons, 

confirmed by the expression of the subtype-specific cortical marker, TBR1 (Figure 1e). One-

week old CFC cultures were significantly enriched for early-born deep layer cortical cell 

marker TBR1 (cortical layers 5 and 6 marker; BRAFWT=13.68±9.52%, vs. 

BRAFQ257R=52.91±24.00%, p=0.0034; Figure 1e and 1l). We also detected an increase in 

the proportion of cells expressing the inhibitory neurotransmitter GABA in CFC cultures 

(BRAFWT=0.16±0.34%, vs. BRAFQ257R=4.87±4.60%, p=0.029; Figure 1e and 1k). We 

additionally confirmed the imbalance in CFC neural cell types through mRNA levels of 

MAP2, deep layer markers TBR1, CTIP2 and FEZF2, upper layer markers CUX1and 

SATB2, and GABA precursors GAD1 and GAD2 (Figure 1m).

After five weeks of differentiation, we measured the expression of the mature neuron 

marker, MAP2, and observed that its expression was equivalent between control and CFC 

neural cultures (Figure 1n and 1p). At this time point, we assessed the proportions of late-

born neural cells, such as upper layer glutamatergic neurons (CUX1+, cortical layer 2/3 and 

4 marker) and astroglial cells (GFAP+, CD44+, and S100+), compared to early born deep 

layer cortical neurons (FOXP2+). Overall, for both control and mutant lines, most of the 

cells produced were neurons (%MAP2+ cells: 59.5±7.5%). Among these, the cells were 

mostly glutamatergic from layer VI and layer II/III (%(FOXP2+/MAP2+) +%(CUX1+/

MAP2+)= 19.97±4.3%), while very few were GABAergic (%GABA+/MAP2+ = 1.53%±0.6) 

(data not shown). As we predicted, there was an increase in deep layer cortical neurons 

(FOXP2+ cells; BRAFWT=4.44±0.78%, vs. BRAFQ257R=10.83±1.92%; p<0.0001, Figure 

1n and 1q), depletion of upper layer cortical neurons (CUX1+ cells; BRAFWT=3.56±3.35%, 

vs. BRAFQ257R=1.39±0.91%; p=0.039; Figure 1n and 1r), and depletion of GFAP+, CD44+ 

or S100+ astroglial cells in the CFC-derived cultures (GFAP+ cells; BRAFWT=9.83±6.14%, 

vs. BRAFQ257R=1.93±1.74, p=0.0006 Figure 1n and 1o). We further confirmed the 

imbalance of cell types in five-week old CFC neural culture through mRNA level analysis of 

astroglial cell markers GFAP, S100B, CD44, deep layer markers TBR1, CTIP2 and FEZF2, 
and upper layer markers CUX1and SATB2, (Figure 1s). Overall, our results indicate that 

under neural differentiation conditions, CFC neural cultures undergo a depletion of 

progenitor cells and early maturation.

CFC-derived neurons have increased intrinsic excitability

The bona fide marker of cortical neuronal functional maturation is the ability to maintain 

moderate frequency action potential (AP) firing48. We hypothesized that if CFC-derived 

neural cultures do mature faster, they would display an increase in the frequency of AP 

firing. To this end, we utilized whole-cell patch-clamp electrophysiology to examine various 

measures of intrinsic excitability in CFC and control neurons. To specifically target neurons 

Yeh et al. Page 9

Mol Psychiatry. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



within the mixed neural cultures, we transduced five-week old neural cultures with SYN1-

DsRFP lentivirus to label mature neurons at four days before recording (Figure 2a).

In order to elicit AP firing, in current-clamp configuration, a series of positive current steps 

of successively increasing amplitude (200ms, 10–190pA) were delivered to neurons 

maintained at a holding potential of −70mV. We found that the overwhelming majority of 

DsRFP+ neurons fired APs (49/52 cells), illustrating the usefulness of SYN1-DsRFP 

lentiviral transduction to label neurons. The amount of current to elicit a single AP was 

similar in control and CFC (Figure 2b). CFC-derived neurons had markedly distinct AP 

firing behavior at higher amplitude stimuli (Figure 2c and 2d). Control neurons fired a 

maximum of 2 AP in response to a 70-pA step current, on average, with a decrease in the 

average number of APs fired using higher amplitude stimuli. In contrast, in CFC-derived 

neurons, although higher amplitude current was required to reach maximal AP firing rates 

(~110–160pA), the maximal rate was superior to that of controls (BRAFWT: 2.87±1.51 APs 

vs. BRAFQ257R: 4.12±2.34 APs). Moreover, CFC-derived neurons could maintain this 

maximal firing rate even at the highest amplitude stimuli. When we assayed other metrics of 

intrinsic excitability, including potassium/sodium currents and input resistance (Figure 2e, 

2f, and 2g), we did not observe further significant differences except for an increased 

potassium current at the highest tested voltage step (Figure 2e), suggestive of neurons with a 

larger area. Our results showed that CFC neural cultures exhibit accelerated functional 

neuronal maturation, which was associated with 2.5-fold increase in the number of SYN1+ 

puncta in dendrites of CFC neurons (p= 0.0016; Figure 2h and 2i).

Decreased phosphorylation of AKT leads to progenitor cell pool depletion in CFC

Because the first noticeable differences between CFC and control cultures were the 

reduction in the levels of phosphorylation of ERK1/2 and AKT (Figure 1a and 1b) and early 

cell cycle exit during neural differentiation (Figure 1c), we sought to test whether these two 

observations were related. First, we added either DMSO only, the MEK inhibitor U0126 

only (10μM in DMSO), the PI3K inhibitor Wortmannin only (1μM in DMSO), or a 

combination of both U0126 and Wortmannin to the media of control NPCs for 1h. We then 

compared the ratio of phosphorylation of ERK1/2 and AKT to DMSO-treated control and 

CFC NPCs (Supplementary Figure 3a and 3b). Western blot analysis revealed that U0126 

inhibited the phosphorylation of ERK1/2 while increasing that of AKT. On the other hand, 

Wortmannin decreased the phosphorylation of AKT and ERK1/2, similar to our observations 

in CFC NPCs (Supplementary Figure 3a and 3b). Next, we tested whether these pathways 

are associated with the accelerated cell cycle exit by pre-treating control NPCs with DMSO, 

U0126, Wortmannin, or U0126+Wortmannin, to simulate the phosphorylation profile of 

CFC NPCs. After 48h in neural differentiation medium, double staining for BrdU and Ki67 

revealed that exposure to Wortmannin is sufficient to mimic the CFC phenotype in control 

cells (Supplementary Figure 3c and 3d). Simultaneous pre-exposure to both the U0126 and 

Wortmannin did not produce effects beyond those of the Wortmannin exposure alone 

(Supplementary Figure 3c and 3d). Therefore, this observation indicated that the accelerated 

cell-cycle exit of CFC cultures was associated with the inhibition of the AKT pathway 

accompanied by decreased activation of the ERK pathway before neural differentiation.
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To corroborate the role of decreased AKT activation in the progenitor pool depletion of CFC 

lines, we tested whether increasing AKT phosphorylation in CFC cultures would rescue this 

phenotype. We added the AKT activator SC7949 (10μg/ml) to the media of CFC NPCs for 

1h and compared the levels of phosphorylation of ERK1/2 and AKT in SC79 pre-treated 

CFC NPCs to both DMSO-treated control and CFC NPCs (Supplementary figure 3e and 3f). 

SC79 pre-treated CFC cells showed an increased level of AKT activation compared to the 

same cells exposed to DMSO only (Supplementary figure 3e and 3f). Following the same 

cell cycle exit assay described above, we observed that AKT inhibition (Wortmannin 

treatment) in control cells recapitulated the increase in post-mitotic cells of the CFC lines, 

while AKT activation (SC79 treatment) in CFC cells prevented the depletion of progenitor 

cells to levels similar to the observed in control lines (Figure 3b and 3c).

Moreover, to assess whether decreased phosphorylation AKT in CFC NPCs and subsequent 

depletion of progenitor cells was driving the neural maturation phenotype, we compared 

neural differentiation of control NPCs pre-treated with Wortmannin to CFC NPCs, and we 

compared CFC NPCs pre-treated with SC79 to control NPCs), all four conditions 

undergoing the same protocol. We were able to recapitulate early neural maturation of CFC 

cultures in the control cultures pre-treated with Wortmannin, while mitigating the phenotype 

in CFC cultures with SC79 pre-treatment (Figure 3d–h), evidenced by MAP2 expression and 

TUJ1+ cell morphology at one-week old neural differentiation cultures. At week 5, even 

though control lines pre-treated with Wortmannin showed increased number of deep layer 

cortical neurons and decreased number of astroglial cells (Figure 3i–n), CFC lines displayed 

a more accentuated and significant difference compared to untreated control lines (Figure 3i 

and 3j). On the other hand, pre-treatment of CFC lines with SC79 was able to attenuate the 

increase in the number of CUX1+ cells and decrease in astroglial cells (Figure 3i–n). These 

observations could be due to the sustained effect of SC79 in AKT phosphorylation even after 

its removal from cell culture or in vivo49.

BRAFQ257R causes cellular subtype-specific phenotypes

To explore potential differences between CFC and control specific neuronal subtype 

populations that are independent of the progenitor pool depletion, we used previously 

established protocols to differentiate CFC and control NPCs into two distinct neuronal cell 

lineages: cortical glutamatergic neurons28 and GABAergic interneurons41. In both protocols, 

NPCs were first treated with Compound E (γ-secretase inhibitor XXI) during the first 24h of 

the neuronal induction protocol to inhibit Notch signaling. The Notch signaling pathway 

suppresses differentiation and promotes proliferation: ligand-receptor binding activates the 

pathway through the cleavage and subsequent nuclear translocation of Notch intracellular 

domain by γ-secretase50. Consequently, by adding Compound E, we overcame the initial 

progenitor cell pool depletion observed in the CFC neural cultures (Figure 4a). To confirm 

that these protocols generated subtype specific enriched populations, these methodologies 

were directly compared. Five-week old GABAergic cultures on average displayed 

5.99±3.85% FOXP2+ cells and no expression of CUX1+ cells, compared to 29.49±12.33 

FOXP2+ cells and 25.52±20.28% CUX1+ cells in five-week old glutamatergic cultures 

(Supplementary Figure 4a–f). Conversely, in five-week old glutamatergic cultures, an 

average of 0.82±1.07% cells was positive for both GAD65/GAD67, and showed no 
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expression of GABA, compared to 70.37±14.86% GAD65+GAD67+ and 81.28±15.78% 

GABA+ cells in five-week old GABAergic cultures (Supplementary Figure 4g–l).

First, we differentiated the NPCs towards enriched cortical glutamatergic cultures28, 

confirmed by expression of TBR1, FOXP2, and CUX1 (Figure 4b and 4e). One-week old 

CFC cultures had no significant difference in the expression of neuronal marker TUJ1 

(Figure 4b and 4c) or the layer 5/6 marker TBR1 (Figure 4b and 4d). Five-week old CFC 

cultures also showed no significant difference in expression of the mature neuronal marker 

MAP2 (Figure 4e and 4f) or of deep layer glutamatergic neuronal markers TBR1 (Figure 4e 

and 4g), FOXP2 (Figure 4e and 4h), and upper layer CUX1 (Figure 4e and 4i). These results 

suggested that the imbalance in different glutamatergic neurons subtypes in the CFC mixed 

neural cultures is associated with the depletion of the progenitor cell pool (Figure 1c and 

4a). On the other hand, the morphometric analysis showed that CFC glutamatergic neurons 

exhibited more neurites per cell (BRAFWT=1.93±1.28, vs. BRAFQ257R=2.67±1.43, 

p=0.0078; Figure 4j and 4l), as well as shorter branches (BRAFWT=100.42±226.4 μm, vs. 

BRAFQ257R=50.17±96.47 μm, p=0.0089; Figure 4j and 4o). Analysis by western blot 

revealed that CFC cortical glutamatergic neuronal cultures have a decrease in the 

phosphorylation of serine 445 of BRAF (56.2% decrease, p=0.02), but no difference in the 

phosphorylation levels at site T202/Y204 of ERK1/2 or T308 of AKT (Figure 4q and 4r).

Next, using a previously published protocol41, we performed GABAergic inhibitory 

neuronal differentiation of CFC and control NPCs, confirmed by positive GABA, NKX2.1, 

and GAD65/GAD67 (the two isoforms of the enzymes that catalyze the decarboxylation of 

glutamate to GABA) staining (Figure 5a). Of note, this protocol requires exposure of the 

NPCs to SHH to generate ventral identity progenitors that correspond to medial ganglionic 

eminence interneuron progenitors41, which account for 35% of the human cortical 

interneurons51. CFC and control cultures displayed similar expression of the GABAergic 

progenitor markers GABA, NKX2.1, and GAD65/67 (Figure 5b, 5c, and 5d), corroborating 

the hypothesis that an increase in the number of GABA+ cells in the CFC mixed neural 

cultures is associated with the depletion of the progenitor cell pool (Figure 1c and 4a). In the 

morphology analysis of GABA+GFP+ cells (Supplementary Figure 4m), CFC GABAergic 

interneurons had a significant decrease in the number of neurites per cell 

(BRAFWT=2.94±1.45, vs. BRAFQ257R=2.44±1.25, p=0.045; Figure 5e and 5g), in contrast 

to the morphology of the glutamatergic neurons. Unlike what was observed in CFC 

glutamatergic neurons, the CFC GABAergic interneurons showed an increase in the 

phosphorylation of residue S445 of BRAF (1.55-fold increase expression of p-BRAF, 

p=0.01) accompanied by a decrease in the activation of PI3K (83% reduction in the 

expression of p-AKT, p=0.03) (Figure 5l and 5m).

Overall, by performing two distinct neuronal type specific differentiations and analyses, our 

results suggested that imbalance in the number of different types of neural cells in CFC is 

associated with the depletion of progenitor cells. Moreover, BRAF could have additional cell 

type specific regulation during neurodevelopment, as we observed that CFC glutamatergic 

neurons and GABAergic interneurons had opposite morphological changes compared to the 

respective control neurons, as well as different levels of phosphorylation of BRAF.
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Discussion

The earliest difference we established between CFC and control iPSC derived cultures was 

the decrease in the progenitor cell pool not associated with cell death. The depletion of the 

progenitor cell pool in CFC cultures was followed by early expression of mature neuronal 

markers (Figure 2a–i), imbalance in different neural populations (Figure 2j–o), and 

increased excitability in CFC cultures (Figure 3). Taken together, these results imply that the 

BRAFQ257R mutation is associated with accelerated maturation. Moreover, the loss of 

progenitor cells was followed by the disproportionate representation of glutamatergic 

cortical layer neurons, increase in the number of GABAergic interneurons, and marked 

decrease in the number of astroglial cells, all of which can be paralleled to clinical 

observations in CFC. In a few CFC patients, white matter atrophy (1.5%) and defects of 

myelination (7.5%) have been reported. However, these findings are only discernible upon 

completion of myelination, and only a limited number of CFC subjects have undergone a 

brain MRI. Therefore it is possible that these abnormalities are more common than reported 

in literature14, 52. We observed an increase in glutamatergic cortical layer VI neurons and a 

decrease in layer II/III neurons, where cortical projection neurons primarily reside (Figure 

2j)53, which could result in a decline in the proportion of callosal projection neurons and 

increase in the number of cells that project to subcortical structures. Accordingly, corpus 

callosum abnormalities, including agenesis of corpus callosum, are found in CFC subjects14. 

The high prevalence of seizure and ASD traits in CFC6, 11 suggests an imbalance of 

excitation and inhibition, which could be due to a decrease in glutamatergic excitatory 

signaling, or to increased GABAergic signaling. CFC neural cultures showed an increase in 

GABA+ neurons, favoring the latter hypothesis.

Our neuronal type-specific results show that without progenitor pool depletion and with 

specific cues, CFC and control lines give rise to similar percentages of different subtypes of 

glutamatergic neurons as well as GABAergic interneurons. Even so, the CFC glutamatergic 

and GABAergic neurons differed in morphology and Ras/MAPK and PI3K/AKT pathway 

activation profiles, implying that the BRAFQ257R mutation affects cell type specification and 

cell type morphological development independently. However, we cannot rule out that the 

differences in the percentage of GABAergic interneurons in the neural and directed 

differentiation could be because we are looking at different populations of interneurons. In 

humans, there is a dual origin of cortical interneurons: 65% of cortical GABAergic 

interneurons are derived from the Dlx1/2+/Mash1+ lineage situated in the neocortical 

ventricular and subventricular zones, whereas 35% have a ventral origin from the ganglionic 

eminence51. The neural differentiation protocol40 could enrich for interneurons of the 

ventricular and subventricular zones, while the directed differentiation generates the 

progenitors corresponding to the ganglionic eminence41. Of note, the dual origin of cortical 

interneurons is not present in rodents, so further human-derived cell studies will be needed 

to investigate this possibility.

We also observed cell context dependent Ras/MAPK and PI3K/AKT pathway activation 

profiles in CFC. It is thought that the cysteine rich domain of BRAF – where mutation 

p.Q257R resides – inhibits basal catalytic RAF activity and mediates membrane docking 

upon activation54. While BRAFQ257R led to enhanced activation of ERK signaling in 
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NIH3T3 cells upon transient transfection25, the function of this mutation for Ras/MAPK 

signaling in NPC and neural maturation is unknown. Although RASopathies are usually 

described as syndromes with overactivation of the Ras/MAPK pathway5, 55, 56, the study of 

the BRAF phosphorylation and dimerization suggest that RASopathy BRAF mutations can 

cause impaired kinase activity57, 58. Our data support that abnormal activation of the Ras/

MAPK pathway is cell context dependent; e.g., the same mutation in BRAF is associated 

with decreased phosphorylation of BRAF in glutamatergic neurons and increase in p-BRAF 

in GABAergic interneurons. The cell type dependent role of BRAF is in line with recent 

work that several RASopathy-associated MEK mutations both increased and reduced the 

levels of Ras pathway activation in vivo; furthermore, the divergent effects were dependent 

on cellular context59.

By exposing control NPCs to a PI3K inhibitor, phosphorylation of AKT and ERK1/2 were 

decreased, and we were able to emulate the progenitor cell depletion and partially 

recapitulate the imbalance in cell types observed in CFC lines. Conversely, activation of 

AKT by SC79 in CFC lines was able to attenuate the CFC phenotypes of the cell lines with 

the BRAF mutation. Therefore, we supported that loss of the progenitor pool in CFC is 

associated with the decreased activation of AKT. The progenitor pool size determines the 

eventual size and morphology of the brain. Rapid depletion of the neural progenitor cell pool 

can contribute to reduced cortical thickness60, which could be linked to cortical atrophy in 

CFC subjects14, and might also be relevant to cortical atrophy in schizophrenia15, 16. 

Decreasing activation of the kinases AKT, ERK1, and ERK2 also recapitulates the early 

increase in MAP2+ and NEUN+ cells in CFC cultures. However, in the longer term, brief 

one-time initial Wortmannin treatment of control lines is not sufficient to fully recapitulate 

the CFC cellular phenotype. On the other hand, SC79 may activate AKT irreversibly49 and 

was able to reduce the progenitor pool depletion and the early expression of MAP2, alleviate 

the decrease in GFAP+ cells, increase in FOXP2+ neurons and decrease in CUX1+ neurons 

(Figure 3), which suggests that a sustained decrease in activation of AKT, rather than at a 

particular time point in development, is associated with an observable phenotype. Our 

results imply that, besides the ERK pathway (which is most commonly associated with 

RASopathies5, 59), AKT activation also has a role as a mediator of the CFC neuronal 

phenotype. That is not surprising, given that there are several cross-feedback loops between 

Ras/MAPK and PI3K pathways58, 61.

The morphological and biochemical phenotype of glutamatergic neurons and GABAergic 

interneurons harboring the BRAFQ257R mutation was also cell type dependent. Compared to 

the same control neuronal types, glutamatergic CFC neurons had more neurites and 

branching per cell accompanied by a decrease in p-BRAF, while GABAergic CFC 

interneurons had fewer neurites per cell, increase in p-BRAF, and decrease in p-AKT. This 

difference could enhance the excitation-inhibition imbalance in CFC. Moreover, it has been 

shown that the same gene can cause ASD or schizophrenia by affecting distinct neuronal 

populations62. This difference highlights the importance of taking the cellular context into 

consideration when studying neurodevelopmental disorders.

Mutation p.G12S in the HRAS gene causes Costello syndrome, also a RASopathy, and in 

iPSC-derived neurons, it extended the progenitor phase33. This observation is the opposite of 
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the phenotype observed in CFC iPSC-derived neurons. HRASG12S is a constitutively active 

form of HRAS63. Therefore, the BRAFQ257R mutation decreases activation of ERK 1/2 in 

NPC cells while the HRASG12S mutation increases phosphorylation of ERK1/2 32, 33, 

explaining the different neuronal phenotypes. Moreover, the neuronal phenotype in each 

case corresponds to the clinical phenotype: Costello syndrome shows postnatal progressive 

overgrowth of the brain 34 that could be due to the extended progenitor phase; cortical 

atrophy found in some CFC subjects can be linked to the rapid depletion of the progenitor 

pool. These results call for caution when proposing a general drug therapy or treatment for 

neurodevelopmental disorders, even when the mutations are in the same pathway.

In conclusion, our results provide insight into ways that the BRAFQ257R mutation may 

contribute to common neurological and psychiatric symptoms of CFC. Our findings at a 

cellular level – progenitor pool depletion, decrease in layer II/III neurons, and increase in 

GABAergic interneurons – can be correlated with neurological findings in the CFC subjects 

– cortical atrophy, corpus callosum abnormalities, and ASD and seizures, respectively. 

Hence, our data indicate that iPSC-derived cells are an informative model to study human 

neurodevelopment and underlying cellular pathologies resulting from abnormal signaling. 

Through directed differentiation into specific neuronal lineages, we showed morphological 

differences of BRAFQ257R neurons, which are cell type dependent. Although the use of 

iPSCs as a platform to study neurodevelopment has become widespread, most of the effort 

to date has focused on specific neuronal lineages and failed to investigate different neuronal 

types simultaneously. This traditional narrow focus could generate seemingly contradictory 

or non-comparable results across studies examining different lineages. Finally, our results, 

alongside a growing body of evidence in the literature, suggest a complex and intertwined 

crosstalk between two signaling pathways associated with major psychiatric disorders: Ras/

MAPK and PI3K/AKT pathways. Our study suggests that for future screening of potential 

therapeutic agents to be successful, these pathways must be considered in depth and that 

cellular context should be taken into account.
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Figure 1. CFC neural cultures show progenitor pool depletion, early maturation, and imbalance 
of neural cell types
(A) Western blot analysis of the components of the Ras/MAPK pathway and its 

phosphorylation status, and quantification of the blots (B) from protein lysates extracted 

from CFC and control NPC cultures. The results were normalized with their corresponding 

α-tubulin values (assigned a value of 1) and are mean ±SD of two independent experiments 

(C) Double immunostaining for BrdU (green) and Ki67 (red) of early neuronal progenitors 

within 48h of differentiation; progenitors that exited the cell cycle, %(BrdU+Ki67−)/BrDU+ 

cells (orange arrows) were quantified. (D) Cleaved caspase 3 staining for cell death of the 

same NPCs and subsequent quantification. (E) Immunostaining of TUJ1, MAP2, NEUN, 

GABA, and TBR1 of CFC lines and control lines at week 1 of neural differentiation. 

Quantification of these stainings are shown as percentage of TUJ1+ cells (F), MAP2+ cells 

(G), NEUN+ cells (H), average neurite length of TUJ1+ cells (I), average number of neurites 

per TUJ1+ cell (J), percentage of GABA+ cells (K), and TBR1+ cells (L). (M) mRNA levels 

of MAP2, deep layer markers TBR1, CTIP2, and FEZF2, upper layer markers CUX1 and 

SATB2, and GABA precursors GAD1 and GAD2 in one-week old neural cultures. ΔCt 

values were calculated by normalizing the average Ct value of each cell line by the average 

Ct value of GUSB of the same cell line; ΔΔCt was calculated by normalizing the ΔCt value 

of each line to the average ΔCt value of the control lines. (N) Immunostaining of TUJ1, 

GFAP, CD44, S100, MAP2, FOXP2, and CUX1 at week 5 of neural differentiation. 

Quantification of these stainings is shown as a percentage of cells expressing GFAP (O), 

MAP2 (P), FOXP2 (Q) and CUX1 (R). (S) mRNA level analysis of astroglial cell markers 

GFAP, S100B, CD44, neuronal marker MAP2, deep layer markers TBR1, CTIP2, and 

FEZF2, upper layer markers CUX1 and SATB2 in five-week old neural cultures. ΔCt values 

were calculated by normalizing the average Ct value of each cell lines by the average Ct 

value of GUSB of the same cell line; ΔΔCt was calculated by normalizing the ΔCt value of 

each line to the average ΔCt value of the control lines. For all immunostainings depicted, at 

least three fields per coverslip from three independent experiments were counted. For all 

Yeh et al. Page 20

Mol Psychiatry. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scatter plots illustrated, values represent mean±SD per condition, calculated with repeated 

measures ANOVA, accounting for biological and technical replicate values. Number of 

subclones and independent experiments performed are detailed in Supplementary Table 3. 

Values for mean and standard deviation of each control and CFC subject for each experiment 

are detailed in Supplementary Table 7. p≤0.05 (*), p≤0.01 (**), p≤0.001 (***).
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Figure 2. Increased intrinsic excitability in CFC-derived neurons
(A) Overlaid dsRFP fluorescence and phase-contrast images depicting a SYN1−DsRFP+ 

neuron. For the patch clamp experiments (B–G), we performed two independent blind 

experiments, with one subclone per cell line. (B) The average current per individual required 

to elicit a single AP in neurons from control-derived neurons (blue), CFC-derived neurons 

(red). (C) The quantified AP response evoked by step currents of increasing amplitude. (D) 

Example current-clamp recordings from control-derived and CFC-derived neurons. 

Additional measures of intrinsic excitability: IK (E), Peak INa (F), Rin (G). (H) 

Immunostaining of Synapsin1+ puncta on MAP2+ control- and CFC-derived neurons at 

week 5 of differentiation. (I) Quantification of Synapsin1+ puncta per 50 μm neurite length 

Yeh et al. Page 22

Mol Psychiatry. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in control- and CFC-derived neurons. For all immunostainings depicted, at least ten MAP2+ 

neurons per coverslip from three independent experiments were counted. For all scatter plots 

illustrated, values represent mean±SD per condition, with significance calculated using 

repeated measures ANOVA, accounting for biological and technical replicates. Number of 

subclones and independent experiments performed are detailed in Supplementary Table 3. 

Values for mean and standard deviation of each control and CFC subject for each experiment 

are detailed in Supplementary Table 7. p≤0.05 (*), p≤0.01 (**), p≤0.001 (***).
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Figure 3. Decreased phosphorylation of AKT is associated with progenitor cell pool depletion in 
CFC
(A) Crosstalk between the Ras/Raf/MEK/ERK and Ras/PI3K/AKT pathway, and the targets 

of Wortmannin and SC79 (adapted from64). (B) Double immunostaining for BrdU (red) and 

Ki67 (green) of early neuronal progenitors within 48h of differentiation in control NPCs, 

control NPCs pre-treated with Wortmannin, CFC NPCs, and CFC NPCs pre-treated with 

SC79; progenitors that exited the cell cycle, %(BrdU+Ki67−)/BrdU+ cells (orange arrows) 

were quantified and graphed in (C). (D) Immunostaining of MAP2 in control one-week old 

neural cultures, control one-week old neural cultures pre-treated with Wortmannin, CFC 

one-week old neural cultures, and CFC one-week old neural cultures pre-treated with SC79. 

(E) Quantification of the percentage of MAP2 positive DAPI in these stainings. (F) 

Immunostaining of TUJ1 in control one-week old neural cultures, control one-week old 

neural cultures pre-treated with Wortmannin, CFC one-week neural cultures, and CFC one-

week old neural cultures pre-treated with SC79. Quantification of the average number of 

neurites per TUJ1+ cell (G). (H) Immunostaining of GFAP and TUJ1 in control five-week 

old neural cultures, control five-week old neural cultures pre-treated with Wortmannin, CFC 

five-week old neural cultures, and CFC five-week old neural cultures pre-treated with SC79. 

(I) Quantification of the percentage of GFAP positive DAPI in these stainings. (J) 

Immunostaining of MAP2 and FOXP2 in control five-week old neural cultures, control five-

week old neural cultures pre-treated with Wortmannin, CFC five-week old neural cultures, 

and CFC five-week old neural cultures pre-treated with SC79. (K) Quantification of the 

percentage of FOXP2 positive DAPI in these stainings. (L) Immunostaining of MAP2 and 

CUX1 in control five-week old neural cultures, control five-week old neural cultures pre-

treated with Wortmannin, CFC five-week old neural cultures, and CFC five-week old 

cultures pre-treated with SC79. (M) Quantification of the percentage of CUX1 positive 

DAPI in these stainings. For all immunostainings depicted, at least three fields per coverslip 

from three independent experiments were counted. For all scatter plots illustrated, values 

represent mean±SD per condition, calculated with repeated measures ANOVA, accounting 

for biological and technical replicates. Number of subclones and independent experiments 

performed are detailed in Supplementary Table 3. Values for mean and standard deviation of 

each control and CFC subject for each experiment are detailed in Supplementary Table 7. 

p≤0.05 (*), p≤0.01 (**), p≤0.001 (***).
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Figure 4. CFC cortical glutamatergic neuronal cultures show increased number of neurites per 
cell and decreased phosphorylation of BRAF
(A) Double immunostaining for BrdU and Ki67 in early neuronal progenitors within 48h of 

differentiation with and without the addition of Compound E; progenitors that exited the cell 

cycle, %(BrdU+Ki67−)/BrDU+ cells were quantified. (B) Immunostaining of TUJ1 and 

TBR1 at week 1 of glutamatergic cortical neuron differentiation, and (E) of MAP2, TBR1, 

CUX1, and FOXP2 at week 5 of glutamatergic cortical neuron differentiation. Quantification 

of these staining is shown in (C–I). For the above immunostainings depicted, at least three 

fields per coverslip from three independent experiments were counted. (J) Fluorescent 

microscopy analysis of GFP-labelled five-week old control-derived and CFC-derived 

neurons. For the morphometric analysis, 20 GFP+TUJ1+ neurons per coverslip from three 

independent experiments were counted. Image J analysis of soma size (K), neurites per cell 

(L), neurite length (M), branches per neurite (N), branch length (O), and Sholl analysis of 

the number of intersecting neurites (P). Western blot analysis of the components of the Ras/

MAPK pathway and its phosphorylation status (Q), and quantification of the blots (R) from 

protein lysates extracted from five-week old CFC and control glutamatergic cortical neuron 

cultures. The results were normalized with their corresponding α-tubulin values (assigned a 

value of 1) and are mean±SD of two independent experiments. For all immunostainings 

depicted, at least three fields per coverslip from three independent experiments were 

counted. For all scatter plots illustrated, values represent mean±SD per condition, calculated 

with repeated measures ANOVA, accounting for biological and technical replicates. Number 

of subclones and independent experiments performed are detailed in Supplementary Table 3. 

Values for mean and standard deviation of each control and CFC subject for each experiment 

are detailed in Supplementary Table 7. p≤0.05 (*), p≤0.01 (**), p≤0.001 (***).
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Figure 5. CFC GABAergic interneuron cultures show decreased number of neurites per cell and 
increased phosphorylation of BRAF
(A) Immunostaining of GABA and NKX2.1 at week 1 of GABAergic interneuron 

differentiation. Quantification of these stainings is shown as the percentage of cells 

expressing GABA (B), NKX2.1 (C). (D) Immunostaining of GABA and GAD67 at week 5 

of GABAergic interneuron differentiation and quantification of these stainings shown as the 

percentage of cells expressing GAD65/GAD67. For the above immunostainings depicted, at 

least three fields per coverslip from three independent experiments were counted. (E) 

Fluorescent microscopy analysis of GFP-labelled GABA+ cells in five-week old control-

derived and CFC-derived neurons. For the morphometric analysis, 20 GFP+GABA+ neurons 

per coverslip from three independent experiments were counted. Image J analysis of soma 

size (F), neurites per cell (G), neurite length (H), branches per neurite (I), branch length (J), 

and Sholl analysis of the number of intersecting neurites (K). Western blot analysis of the 

components of the Ras pathway and its phosphorylation status (L), and quantification of the 

blots (M) from protein lysates extracted from five-week old CFC and control GABAergic 

interneuron cultures. The results were normalized with their corresponding α-tubulin values 

(assigned a value of 1) and are mean±SD of two independent experiments. For all 

immunostainings depicted, at least three fields per coverslip from three independent 

experiments were counted. For all scatter plots illustrated, values represent mean±SD per 

condition, calculated with repeated measures ANOVA, accounting for biological and 

technical replicates. Number of subclones and independent experiments performed are 

detailed in Supplementary Table 3. Values for mean and standard deviation of each control 
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and CFC subject for each experiment are detailed in Supplementary Table 7. p≤0.05 (*), 

p≤0.01 (**), p≤0.001 (***).
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