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Abstract: Carbon nanotubes (CNTs) have been widely studied and used for the construction of
electrochemical biosensors owing to their small size, cylindrical shape, large surface-to-volume
ratio, high conductivity and good biocompatibility. In electrochemical biosensors, CNTs serve a
dual purpose: they act as immobilization support for biomolecules as well as provide the necessary
electrical conductivity for electrochemical transduction. The ability of a recognition molecule to
detect the analyte is highly dependent on the type of immobilization used for the attachment
of the biomolecule to the CNT surface, a process also known as biofunctionalization. A variety
of biofunctionalization methods have been studied and reported including physical adsorption,
covalent cross-linking, polymer encapsulation etc. Each method carries its own advantages and
limitations. In this review we provide a comprehensive review of non-covalent functionalization of
carbon nanotubes with a variety of biomolecules for the development of electrochemical biosensors.
This method of immobilization is increasingly being used in bioelectrode development using enzymes
for biosensor and biofuel cell applications.

Keywords: carbon nanotubes; bio-functionalization; non-covalent functionalization; enzyme
immobilization; electrochemical biosensors; aromatic molecules; conjugated polymers

1. Introduction

Biosensors are devices incorporating biological elements with unique binding specificities towards
target analytes. A typical biosensor constitutes of three components as shown in Figure 1, a bio-receptor
also called as the recognition molecule (enzyme, protein, antibody, DNA, virus, etc.), a transducer
element and a signal processor [1]. The interaction between the analyte (target) and the recognition
molecule is captured as a signal by the transducer which is then used for detection through signal
transduction. The signal transduction could be electrochemical, magnetic, optical, colorimetric or
gravimetric. Biosensors could be used in food safety, drug delivery, medical diagnosis and health care,
environmental monitoring and military applications [2–4]. Among the above, healthcare continues
to be the most important application for biosensors. Since the development of the first biosensor for
oxygen detection in 1956, many other types of biosensors including the ground breaking glucose
biosensor for clinic diabetes measurement have been developed [4].
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types of biosensors in terms of sensitivity, cost and real time sampling capability. They can be 
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impedimetric (impedance change) biosensors based on their transduction mechanisms [1]. 
Nanomaterials such as gold nanoparticles, metal oxide nanoparticles, carbon nanotubes and 
quantum dots, etc. are used as immobilization support for recognition molecules in electrochemical 
biosensors. They also aid in enhancing the signal sensitivity during detection [5–9]. Compared to 
other nanomaterials, carbon nanotubes (CNTs) have been recognized as one of the most important 
material for electrochemical transduction in biosensors due to their fast electron transfer capability, 
high surface area for signal amplification and high chemical stability [10]. They possess distinct 
electronic properties resulting from their unique structure [11–13] and are well suited for the 
transduction of electrical signals generated upon recognition of a target [14]. CNTs have been studied 
extensively for their mechanical, thermal and electronic properties and as well as for their interactions 
with molecular, ionic or macromolecular chemical species. The chemical properties of CNTs could be 
changed permanently or reversibly through various chemical modifications of their surfaces to 
impart new functionalities. In this review, a non-covalent functionalization of CNTs is explored and 
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CNTs as well as to establish effective electrical communication between the bioreceptor and the 
transducer in biosensor platforms, that will contribute to signal amplification and transduction. 
Different functionalization strategies for non-covalent functionalization using aromatic compounds, 
polymers and amphiphilic molecules are discussed. Further, the application of CNT-based 
electrochemical biosensors using versatile bio-recognition elements such as DNA, antibodies, 
enzymes, etc. are also discussed in depth [15,16]. 

Carbon nanotubes are made of sp2 carbons arranged as hollow cylindrical tubes, with diameters 
ranging from 1 to 100 nm. Two forms of carbon nanotubes are commonly available, single wall carbon 
nanotubes (SWCNTs) and multiwall carbon nanotubes (MWCNTs). SWCNT is the rolled form of 
graphene sheet, while MWCNT consists of multiple layers of concentric single walled graphene 
cylinders held together by Van der Waals forces with an interlayer spacing of 3.4 Å [17]. CNTs consist 
of hexagonal rings, which define their diameter, curvature and electronic properties. The type of 
carbon hexagonal ring arrangement in a nanotube is called chirality of CNTs. SWCNTs can be either 
semi-conducting or semi metallic depending on their diameter and chirality [18]. As shown in  
Figure 2, SWCNTs can exhibit different chiralities such as armchair, zigzag or chiral depending on 
its rolling direction. The chiral vector Ch, Ch = nα1 + mα2, determines the chirality of a SWCNT, where 
n and m are integers, and α1, α2 are the lattice vectors of graphene. Chirality plays an important role 
in determining the physical properties of SWCNTs such as their electronic conductivity. For instance, 

Figure 1. Components of a typical biosensor.

Electrochemical biosensors such as the glucose biosensors possess many advantages over other
types of biosensors in terms of sensitivity, cost and real time sampling capability. They can be
subclassified into amperometric (current change), potentiometric (potential change) and impedimetric
(impedance change) biosensors based on their transduction mechanisms [1]. Nanomaterials such as
gold nanoparticles, metal oxide nanoparticles, carbon nanotubes and quantum dots, etc. are used
as immobilization support for recognition molecules in electrochemical biosensors. They also aid in
enhancing the signal sensitivity during detection [5–9]. Compared to other nanomaterials, carbon
nanotubes (CNTs) have been recognized as one of the most important material for electrochemical
transduction in biosensors due to their fast electron transfer capability, high surface area for signal
amplification and high chemical stability [10]. They possess distinct electronic properties resulting from
their unique structure [11–13] and are well suited for the transduction of electrical signals generated
upon recognition of a target [14]. CNTs have been studied extensively for their mechanical, thermal
and electronic properties and as well as for their interactions with molecular, ionic or macromolecular
chemical species. The chemical properties of CNTs could be changed permanently or reversibly
through various chemical modifications of their surfaces to impart new functionalities. In this
review, a non-covalent functionalization of CNTs is explored and discussed in detail. The purpose of
non-covalent functionalization is to enhance the bio-affinity of CNTs as well as to establish effective
electrical communication between the bioreceptor and the transducer in biosensor platforms, that
will contribute to signal amplification and transduction. Different functionalization strategies for
non-covalent functionalization using aromatic compounds, polymers and amphiphilic molecules
are discussed. Further, the application of CNT-based electrochemical biosensors using versatile
bio-recognition elements such as DNA, antibodies, enzymes, etc. are also discussed in depth [15,16].

Carbon nanotubes are made of sp2 carbons arranged as hollow cylindrical tubes, with diameters
ranging from 1 to 100 nm. Two forms of carbon nanotubes are commonly available, single wall
carbon nanotubes (SWCNTs) and multiwall carbon nanotubes (MWCNTs). SWCNT is the rolled form
of graphene sheet, while MWCNT consists of multiple layers of concentric single walled graphene
cylinders held together by Van der Waals forces with an interlayer spacing of 3.4 Å [17]. CNTs consist
of hexagonal rings, which define their diameter, curvature and electronic properties. The type of
carbon hexagonal ring arrangement in a nanotube is called chirality of CNTs. SWCNTs can be either
semi-conducting or semi metallic depending on their diameter and chirality [18]. As shown in Figure 2,
SWCNTs can exhibit different chiralities such as armchair, zigzag or chiral depending on its rolling
direction. The chiral vector Ch, Ch = nα1 + mα2, determines the chirality of a SWCNT, where n and
m are integers, and α1, α2 are the lattice vectors of graphene. Chirality plays an important role in
determining the physical properties of SWCNTs such as their electronic conductivity. For instance,
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SWCNT with an armchair structure, when n = m (n, n), has no band gap and is always metallic.
When m = 0, SWCNT takes a zig-zag chirality with either metallic or semi-conductive property.
Chiral-structured SWCNT (n > m > 0) can also be metallic if n = 3q (q is an integer) [14,19–21]. In the
case of MWCNTs, where graphene sheets are rolled up in concentric cylinders, that can be described
by two structural models: Russian Doll model and Parchment model. In the Russian Doll model,
the outer nanotube has a greater diameter than the inner nanotube. In the Parchment model, nanotube
is rolled around itself as a rolled paper. MWCNT is metallic if one sheet has metallic chirality [22].
The electron transport in MWCNTs has also been observed to be comparable to that of SWCNTs since
most of the current passing through is limited to the outermost layer [23,24].
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Figure 2. Diagram showing the various possible rolling directions of graphene that results in single
wall carbon nanotubes with different chiralities [14].

Although CNTs can be regarded as the rolled-up form of graphite, substantial differences in
physical and chemical properties exist between the two classes of materials [14,17,23,25,26]. The carbon
atoms in a CNT are pyramidalized due to the curvature of the CNT sidewall. Curvature in the nanotube
also introduces misalignment of the π-orbitals within the graphene sheet. It has been reported as the
diameter of the CNT increases, both pyramidalization and π-orbital misalignment decreases, which
renders lowered chemical reactivity of the carbon bond, eventually approaching planar graphite
properties for large CNT diameters [17,18]. Additionally, rolling the graphene sheet increases the
reactivity of the convex surface while decreasing the reactivity of the concave surface compared to the
planar graphene sheet. The activity of the immobilized molecules on the exterior of the CNT is reported
to be higher compared to that on the interior of the CNT [18]. Although the chemical and electronic
properties of the CNTs are widely reported, the influence of chirality on biomolecule functionalization
is rarely studied [18,27]. Tournus and Charlier theoretically studied the immobilization of benzene on
the exterior surface of chiral and armchair SWCNTs using Discrete Fourier Transform method [28].
They found that the immobilization of benzene on SWCNT was strongest when there was minimal
π-orbital misalignment (i.e., maximum diameter). This implies that the interaction between CNT
and the immobilized molecule is strongly dependent on the π-orbital orientation and CNT curvature.
The main purpose of this review is to present the recent advances in non-covalent functionalization of
CNTs and their applications in the field of electrochemical biosensors.
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2. Functionalization of Carbon Nanotubes

Bio-functionalization is the process of immobilizing biomolecules onto surfaces in order to impart
the surfaces with specific functions such as bio-specificity and/or catalytic activity. The primary intent
of bio-functionalization is to prepare the surface for a specific application such as biosensors. Strategies
for immobilizing various biomolecules such as proteins, enzymes, antibodies and nucleic acids, onto
CNTs have been extensively studied and widely used in numerous biosensor applications [14,29–34].
The high surface-to-volume ratio of CNTs allows high biomolecule loading per unit geometric area
that aids in high signal amplification. Herein, we classify the bio-functionalization of CNTs into two
categories: covalent functionalization and non-covalent functionalization.

2.1. Covalent Functionalization

Covalent functionalization of CNT can be achieved by introducing chemical functional groups
on the CNT sidewalls to result in carboxylated CNTs, amine functionalized CNTs, or sulfhydryl
functionalized CNTs to mention but a few. The functional groups on the CNTs could react with
complementary functional groups present in the biomolecule structure to form a covalent bond
that aids in the attachment (immobilization) of the biomolecule on the CNT surface. For example,
carboxylated CNTs can react with biomolecules using a carbodiimide compound, which could activate
carboxyl groups on CNT for direct reaction with primary amines in biomolecules. The commonly
used water-soluble carbodiimide is N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride
(EDC). EDC reacts with carboxyl groups and form an intermediate o-acylisourea ester, which could be
easily displaced by primary amine in the biomolecule. The scheme of EDC crosslinking chemistry is
shown in Figure 3. Thus, an amide bond is formed between carboxyl group and the primary amine.
For example, Zhang et al. reported immobilization of horseradish peroxidase using poly-L-lysine
as cross-linker and EDC as cross-linking agent [35]. N-hydroxysuccinimide (NHS) or Sulfo-NHS
is often used to facilitate the coupling reaction. The EDC-NHS coupling method forms NHS ester
which is more stable than the intermediate o-acylisourea ester, since o-acylisourea ester is unstable in
aqueous solution.
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Several proteins have been studied using this method of immobilization onto carboxylated CNT
surface. Zeng et al. covalently functionalized CNT with poly(amidoamine) (PAMAM) dendrimer to
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increase the solubility of CNT in water. The resulting CNT was further used for immobilization of
glucose oxidase and horseradish peroxidase (HRP) [36]. Singh et al. developed an electrochemical
immunosensor based on a MWCNT deposited Indium-Tin Oxide (ITO) electrode. Monoclonal
aflatoxin B1 antibody was immobilized onto electrode for detection of aflatoxin-B1. The proposed
immunosensor displayed high sensitivity of 95.2 µA·ng−1·mL·cm−2 with improved detection limit
of 0.08 ng·mL−1. The low value of association constant (0.0915 ng·mL−1) strongly indicates the high
affinity of immunoelectrode towards aflatoxin (Figure 4) [37]. Table 1 summarizes the above examples
of covalently functionalized CNT for biosensor applications.

Table 1. List of applications that use covalent functionalization for biomolecule immobilization on
carbon nanotubes.

Crosslinker Biomolecule Type of CNT Application Reference

EDC/PLL * HRP COOH-SWCNT H2O2 sensing [35]
EDC-NHS GOx and HRP COOH-CNT Glucose biosensor [36]
EDC-NHS Antibody COOH-MWCNT Aflatoxin detection [37]

GA Antibody PEI-MWCNT Carcinoembryonic antigen detection [38]
GA GOx Gelatin-MWCNT Glucose biosensor [39]

* EDC: N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride; NHS: N-hydroxy-succinimide; PLL:
poly-L-lysine; GOx: glucose oxidase; HRP: horseradish peroxidase.
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Carboxylated CNTs can also be further modified to achieve other functionalities. Amine
functionalized CNTs can react with amine groups on biomolecules such as proteins, enzymes,
or antibodies. Amine-active linking agents typically include glutaraldehyde, active ester, or epoxy.
Glutaraldehyde (GA), an amine reactive homo-bifunctional crosslinker, is commonly used in
biochemistry applications. An imide linkage is formed upon glutaraldehyde interacting with amine
containing biomolecules [40]. Viswanathan et al. developed an electrochemical immunosensor for
detection of carcinoembryonic antigen (CEA) in saliva and serum. The bioreceptor monoclonal
anti-CEA antibodies were covalently immobilized onto polyethyleneimine wrapped MWCNT
sidewalls using 2% glutaraldehyde [38]. Similar strategy was performed on covalent immobilization
of glucose oxidase onto gelatin-MWCNT through glutaraldehyde chemistry [39].

Other methods have also been developed to covalently immobilize biomolecules onto CNT surface
without crosslinkers. The copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) “click” reaction
could link alkyne-derivatized CNTs to an azido-derivatives, such as β-cyclodextrin derivative [41].
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Dinesh et al. and Lamanna et al. have carefully reviewed the preparation of multifunctionalized CNTs
through double/triple covalent functionalization [42,43].

Though covalent functionalization enables a strong interaction between the biomolecule and
the CNTs, specific experimental conditions are required for covalent functionalization of carbon
nanotubes in order to alter the surface functionality of carbon nanotubes. It may also lead to
non-homogeneous substitution of multiple bonds per biomolecule that could reduce its activity.
Moreover, the modification of CNT surface by covalent attachment could alter the intrinsic properties,
such as change in hybridization from sp2 to sp3, resulting in possible loss of conjugation properties
which could impact conductivity and mechanical strength [17,24,44,45].

2.2. Non-Covalent Functionalization

Non-covalent functionalization is quite attractive for biomolecule immobilization on CNTs
because of its ability to retain the intrinsic properties of CNT when imparting new functionality.
Non-covalent methods could help preserve the conformational structure of the immobilized
biomolecules after immobilization on to CNT, whereas covalent approaches could affect the sp2

structures of carbon nanotubes, thereby negatively impacting their mechanical and electronic
properties. In general, an ideal method for non-covalent functionalization of CNT should use
biocompatible functionalization agents that are stable without detachment on the CNT surface under
versatile environments and possess suitable functional moieties for linking to various biomolecules.

Non-covalent functionalization of CNT can be achieved by establishing π-π interactions (using
aromatic compounds or polymers), electrostatic interactions, and CH-π interactions between CNTs
and biomolecules [45–47]. Non-covalent functionalization could retain the biocompatibility of CNT
without compromising its electrical or mechanical capabilities. The applications of CNTs in biosensors
have been hindered for a long time due to their poor dispersion in aqueous solutions. CNTs have
tendency to aggregate into bundles and ropes due to Van der Waals forces making it difficult to
disperse them in many solvents. Functionalization of CNTs with high affinity molecules, such as
surfactants, conjugated aromatic molecules and polymers is widely used to increase the solubility of
CNTs in solvents which could enhance the adsorption of biomolecules on their surfaces. An effective
functionalization method must not only introduce versatile and homogeneous surface functional
groups, but also minimize its impact on the electronic properties of CNTs.

2.2.1. Π-Π Interactions with Aromatic Molecules

Molecules containing aromatic groups are capable of achieving non-covalent functionalization of
CNTs. The functionalization is achieved by forming specific and directional π-π stacking interactions
between aromatic molecules and the graphitic surface of nanotubes. Researchers have investigated
the interactions between aromatic compounds and CNTs using field-effected transistor devices [48].
Woods et al. studied the adsorption of small aromatic molecules, benzene derivatives, on SWCNT
using density-functional theory and found that the adsorption was achieved mainly through the
interaction of π orbitals of the benzene ring and those of the CNT [49]. This interaction not only
enhances the solubility of CNTs in the solvents, but also plays an important role in non-covalent
functionalization of CNTs. Certain aromatic compounds, such as anthracene, pyrene, ferrocene and
phthalocyanine derivatives, have been used for immobilization of biomolecules onto CNTs. Figure 5A
shows a pyrene molecule functionalized SWCNT [45]. Table 2 displays the structures of aromatic
compounds that have been explored for the development of electrochemical bioelectrodes.

Chen et al. reported for the first time, a simple and general approach to non-covalent
functionalization of side-walled carbon nanotubes using 1-pyrenebutanoic acid, succinimidyl
ester (PBSE). The anchored PBSE molecules on the sidewalls of SWCNT were highly resistant
to desorption in aqueous solution as shown in Figure 5B, and promote the reaction between
succinimidyl ester groups and primary or secondary amines of proteins. Ferritin, streptavidin
and biotinyl-3,6-dioxaoctanediamine were successfully immobilized with high specificity onto
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SWCNT. This approach could be extended beyond biomolecules and could be utilized in various
applications [27,45,50–54]. In our previous work, we have reported the benefit of using pyrene
derivatives to non-covalently functionalize CNTs for designing enzymatic biosensors, microbial
biosensors and biofuel cells [55–59]. We demonstrated a successful functionalization of MWCNTs
with PBSE for immobilization of multicopper oxidase enzymes as catalysts on electrode surfaces for
bioelectrochemical oxygen reduction reaction as shown in Figure 5C.

Table 2. List of aromatic compounds used for non-covalent functionalization of carbon nanotubes.

Compound Name Structure CNT Structure Application References

1-Pyrenebutanoic acid,
succinimidyl ester (PBSE)
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Figure 5. (A) SWCNT functionalized with pyrene-based molecular tether, 1-pyrenebutanoic acid, 
succinimidyl ester (PBSE) (adapted with permission from Zhao et al. Copyright (2018) American 
Chemical Society) [45]; (B) Anchored PBSE for immobilization of proteins on SWCNT (adapted with 
permission from Chen et al. Copyright (2018) American Chemical Society) [50]; (C) Multicopper 
oxidase immobilized on MWCNT using PBSE [55]. 

The PBSE being a hetero-bifunctional cross-linker, conjugates with both MWCNT and multi-
copper oxidase effectively and thus facilitating the direct electron transfer between the MWCNT 
electrode and the enzyme for bio-electrocatalytic oxygen reduction. Giroud et al. also investigated 
the use of anthracene grafted pyrene derivatives to achieve direct electron transfer of laccase in 
oxygen reduction [64]. Multiple functionalization of SWCNTs through π-π stacking was achieved by 
Holzinger et al. via simple dip coating process. The functionalization was established by attaching 
three different pyrene derivatives onto CNTs sidewalls for the construction of glucose biosensors, 
including adamantane–pyrene, biotin–pyrene, and nitrilotriacetic acid (NTA)–pyrene. The prepared 
multifunctional electrodes were then immobilized with β-cyclodextrin modified glucose oxidase (β-
CD-GOx), biotinylated glucose oxidase (B-GOx) and histidine modified glucose. The functionalization 
method could be applied to any kind of nanotube modified surface and nanotube fibers [61]. Wei et 
al. developed an impedance sensor for determination of polychlorinated biphenyl based on SWCNT/ 
pyrenecyclodextrin hybrid [79]. With the aid of pyrenyl group, CD could attach to the sidewalls of 
CNTs by means of π-π stacking. The established system is highly sensitive and selective to 
polychlorinated biphenyl. 

SWCNT Trichloroacetic acid
biosensor [78]
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The PBSE being a hetero-bifunctional cross-linker, conjugates with both MWCNT and
multi-copper oxidase effectively and thus facilitating the direct electron transfer between the MWCNT
electrode and the enzyme for bio-electrocatalytic oxygen reduction. Giroud et al. also investigated
the use of anthracene grafted pyrene derivatives to achieve direct electron transfer of laccase in
oxygen reduction [64]. Multiple functionalization of SWCNTs through π-π stacking was achieved
by Holzinger et al. via simple dip coating process. The functionalization was established by
attaching three different pyrene derivatives onto CNTs sidewalls for the construction of glucose
biosensors, including adamantane–pyrene, biotin–pyrene, and nitrilotriacetic acid (NTA)–pyrene.
The prepared multifunctional electrodes were then immobilized with β-cyclodextrin modified
glucose oxidase (β-CD-GOx), biotinylated glucose oxidase (B-GOx) and histidine modified glucose.
The functionalization method could be applied to any kind of nanotube modified surface and nanotube
fibers [61]. Wei et al. developed an impedance sensor for determination of polychlorinated biphenyl
based on SWCNT/ pyrenecyclodextrin hybrid [79]. With the aid of pyrenyl group, CD could attach
to the sidewalls of CNTs by means of π-π stacking. The established system is highly sensitive and
selective to polychlorinated biphenyl.

Basiuk et al. studied the reversible modification of SWCNT with metal complexes, Ni (II) and Cu
(II) complexes of 5,7,12,14-tetramethyldibenzo-1,4,8,11-tetraazacyclotetradeca-3,5,7,10,-12,14-hexaene
(TMTAA). The aromatic annulene is distorted from the plane in the presence of four methyl substitutes
interfering with the benzene ring. The resulting saddle-shaped conformation, with methyl and
benzene groups turned away from MH4 coordination plane, resulting in the suitable curvature
match of small diameter SWCNT sidewalls as shown in Figure 6. The complexes allow reversible
attachment of modifying moieties. It interacts strongly with the nanotube sidewalls due to π-π
interaction and remains stable in aqueous solutions. The unique feature of TMTAA makes it a suitable
candidate as tethering agent for biomolecule immobilization in biosensor applications [60]. Ferrocene
functionalized CNT was also studied and electrochemical systems for biosensor applications [80–82].
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Yang et al. first reported the preparation of non-covalent nanohybrid of ferrocene functionalized
SWCNT with enhanced electrochemical properties [62]. They have hypothesized that ferrocene
could be immobilized on the SWCNT surface through π-π stacking and Van der Waals interactions
between ferrocene molecules. The hybrid Fc/SMCNT showed enhanced catalytic property in hydrogen
peroxide reduction, demonstrating its potential as an electrode material for biosensing applications.
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Huang et al. have used the ferrocene non-covalent functionalized SWCNT for L-glutamate
detection [63]. The functionalized ferrocene/SWCNTs demonstrated high stability not only in water
but also in organic solvents, such as acetone and ethanol. Electrodes fabricated with ferrocene/SWCNT
exhibited high catalytic activity and sensitivity for the detection of L-glutamate (1 µM). Recently,
Cluff et. al. demonstrated that ferrocene could be adsorbed onto carbon nanotube surfaces in the
absence of solvent at room temperature. The interaction between ferrocene and carbon nanotube is
based on Van der Waals interaction [83].

Anthracene derivatives can also be used as linking agents for non-covalent immobilization.
Anthracene molecule has been substituted by different groups with various electrophilic capability to
form anthrarobin, 9,10-dibromoanthracene, 9,10-anthracenedicarbonitrile and 9-anthracene-methanol.
Zhang et al. studied the interaction between anthracene derivatives and SWCNTs using fluorescence
and UV spectroscopy [65]. The author hypothesized that the π-π interaction between SWCNTs and
aromatic adsorbate is accompanied by an electron donor-acceptor charge transfer interaction. Thus,
the adsorption effectiveness of anthracene derivatives to SMCNTs is determined by its electron affinity:
-CN > -Br > -CH2OH > -H > -OH. Anthracene-modified multi-walled carbon nanotubes as direct
electron transfer scaffolds for enzymatic oxygen reduction was reported by Meredith et al. The results
revealed the increase of sp2 hybridized carbons, giving evidence for the attachment of anthracene on
CNT surface [84]. Song et al. reported the use of anthracene–tetrathiafulvalene (TTF) derivative for
non-covalent functionalization of SWCNT. The new anthracene-TTF encapsulated SWCNT composites
were then used for the detection of DNA [65,85].
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Thionine is a small planar molecule with phenothiazine core and two amine groups symmetrically
distributed on each side. It could interact with CNT in both covalent and non-covalent manners [66,67].
In solution, thionine in protonated form (Thi+) could be non-covalently adsorbed onto MWCNT
sidewalls through π-π stacking [66]. Wang et al. prepared thionine functionalized MWCNT/gold
nanocomposites, where Thi+ was first adsorbed onto MWCNT through π-π interaction, followed by
the subsequent binding of gold nanoparticles onto the cationic MWCNT surface (Figure 7) [67]. A red
shift of the main peak in the UV-Vis spectrum (Figure 7B) suggests the strong interaction between
MWCNTs and the thionine molecules.
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Electrochemical investigations of the composite showed enhanced stability and electrocatalytic
activity towards oxygen reduction. Furthermore, thionine was also used as mediator in biosensors,
which facilitated electron transfer between biological element and electrode [68–70]. Hashemnia
et al. investigated the use of thionine-functionalized MWCNT for immobilization of catalase (Ct)
enzyme [71]. The prepared electrodes were then used for hydrogen peroxide detection with a detection
limit of 8.7 µM and a sensitivity of 6.051 µA·µM−1·cm−2.

Yan et al. introduced the non-covalent adsorption of electro-active methylene blue (MB), an
aromatic electro-active dye, onto SWCNT to build a functional nanostructure. The adsorption of
MB onto SWCNT revealed that the MB interacted with SWCNT through charge transfer and π-π
interaction. The functional nanocomposite MB-SWCNT could be useful in many electronic applications
like biosensors and photovoltaics [86]. Other organic dyes, such as Prussian blue and Congo red (CR),
were also used for non-covalent functionalization of MWCNT through strong π-π interaction [72,73].
Yang et al. developed an electrochemical sensor using Congo red-functionalized MWCNT for detection
of ofloxacin in human urine. The prepared soluble CR-MWCNT had high stability up to two months.
The CR-functionalized CNT was also reported to form uniform and stable CNT films on different
substrates which possess excellent electrochemical properties towards various substances (redox
proteins, small biomolecules, hormones and so on) [87–90].

Li et al. reported a facile functionalization of SWCNT with naphthalen-1-ylmethylphosphonic acid
(NYPA) through π-π stacking for biosensing applications. The resulting NYPA-SWNT hybrids were
observed with negative zeta potential, confirming that the negatively charged phosphonate groups
are exposed on the sidewalls of SWCNT. Positively charged myoglobin was then immobilized on the
phosphonate-functionalized SWCNTs through electrostatic interaction. The fabricated biosensor showed
excellent bioelectrocatalytic activity towards H2O2 reduction with a detection limit of 1.5 × 10−7 M [74].

Mao et al. used 1,10-phenanthroline-5,6-dione (PD) to endow CNT with redox properties that
could mediate the oxidation reaction of NADH. PD was adsorbed onto CNT sidewall through π-π
interactions. The PD-derived redox CNT demonstrated excellent electrocatalytic activity toward
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NADH oxidation and it was further applied for alcohol detection [75]. Zhang et al. reported a novel
electrochemical method for sensitive detection of 2,4,6-trinitrotoluene (TNT) based on electrodes
modified with non-covalent triphenylene (TP) functionalized MWCNT. TP molecule possesses
π-conjugate structure, which interacts with CNT sidewalls through π-π interaction. TP-MWCNT
was then used as a sensing platform for TNT detection with higher sensitivity and rapid response than
that of pristine MWCNT [76].

Porphyrins are important conjugated organic molecules, which could also be used for
functionalization of CNT via non-covalent routes. Murakami et al. reported the preparation
of porphyrin non-covalently functionalized SWCNT-porphyrin nanocomposites for the first time.
Increased solubility of SWCNT-porphyrin was observed in organic solutions as shown in Figure 8A [77].
Non-covalent functionalization of CNT with porphyrins also facilitates electron transfer, leading to
better performance of biosensors. Tu et al. reported the use of hydroxyferriprotoporphyrin (hematin)
functionalized SWCNT in the presence of 1-butyl-3-methylimidazolium hexafluoro-phosphate
([BMIM][PF6]) ionic liquid for detection of trichloroacetic acid (TCA) as shown in Figure 8B.
The porphyrin dissolved in ionic liquid can be self-assembled onto SWCNT by π-π interaction, leading
to a direct electrochemical response. The porphyrin/SWNTs–[BMIM][PF6]-modified GCE showed
excellent electrocatalytic activity towards the reduction of TCA, producing a highly sensitive biosensor
for TCA [78].
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2.2.2. Π-Π Interaction with Polymers

Polymers provide three-dimensional nanostructures with large electro-active area, which can also
be used to non-covalently functionalize CNTs for biosensor applications. Polymers such as cellulose
derivatives, polypyrroles, glycolipids, and redox polymers have been engineered for functionalization
of CNTs to explore and develop its applications [91–93]. CNT/polypyrrole films have been well
studied since the resulting complex could enhance conductivity and stability, and improve electron
transfer reactions of biomolecules [94]. SWCNT/polypyrrole composite used as working electrode
dramatically increases the direct electron transfer of multihemic nitrite reductase by 10-fold increase in
catalytic current compared to bare glassy carbon electrode. The polymer layers also help to preserve the
electroenzymatic activity of the working electrode for several months [95]. Table 3 shows the structure
of polymers that have been applied in electrochemical biosensors discussed in this review. Zhu et al.
reported an amperometric biosensor using electropolymerized pyrrole functionalized SWCNT
with glucose oxidase entrapped in the matrix. Direct electron communication was established by
non-covalent functionalized SWCNT between enzyme and electrode [96]. Electropolymerization was
performed at optimal range between −0.8 V and +0.8 V in electrochemical cell containing pyrroles [97].
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Holzinger et al. reported the synthesis and electropolymerization of an adamantane-pyrrole derivative
as a new affinity binding polymer for construction of an amperometric glucose biosensor (Figure 9).

Table 3. List of polymers used for non-covalent functionalization of carbon nanotubes.

Compound Name Structure CNT Structure Application References

Polypyrrole (PPy)
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The biosensor was based on interactions between polymerized adamantane and β-cyclodextrin
conjugated molecules mimicking the biological avidin-biotin interaction. SWCNT was firstly
functionalized with electropolymerized adamantane-pyrrole, followed by the layering with
β-cyclodextrin gold nanoparticles as intermediates. Adamantane-tagged glucose oxidase was then
anchored onto gold nanoparticles leading to an efficient amperometric glucose biosensor [98].
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The combination of SWCNT, polymers and gold nanoparticles offer a specific surface for
protein immobilization and could be applied for development of various biosensors. Ping
et al. developed an amperometric biosensor for glucose detection using conjugate polymer
poly[3-(3-N,N-diethylaminopropoxy) thiophene] (PDAOT). The synthesized PDAOT was employed
in functionalization of SWCNT. The complex PDAOT-SWCNT is highly stable in aqueous solutions
and the non-covalent functionalization did not change the nanotube structure and properties based
on UV-Vis and Raman spectroscopy studies [99]. Polyaniline (PANI) has also been studied due to its
extended π-conjugated system. The 3D-structure of the polymer allows the adsorption of enzymes with
promoted interaction between the carboxyl groups of the enzyme and the amino groups in the polymer
chain. Cesarino et al. developed a sensitive electrochemical biosensor using PANI modified-MWCNT
for detection of carbamate pesticides in fruits and vegetables based on the enzymatic inhibition of
acetylcholinesterase (AChE). PANI modified MWCNT generated cavities where enzymes could be
properly immobilized [93]. Recently, glycoconjugate-functionalized CNTs have been shown to possess
great potential for biosensor applications [53,106]. For example, glycolipids, which are amphiphilic
molecules, composed of both carbohydrate polar head and a lipid hydrophobic tail, could interact
with SWCNTs providing a multi-functional sensor platform. Researchers have also synthesized and
investigated neutral pyrene functionalized glycolipids that could interact with CNT surface, offering
opportunities for specific ligand-lectin interaction similar to glycoconjugates on the cell membrane [52].
For example, Wu et al. synthesized glycodendrimers as homogeneous bioactive coating for CNT.
The pyrene tail of the glycodendrimer could bind onto SWCNT surface though π-π interaction and the
promising complex can be readily adapted to biosensors for carbohydrate-binding proteins [27].
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surface; (C) β-CD-tagged GOx and adamantane-modified electrodes [98].

2.2.3. Electrostatic Interaction with Polymers

Electrostatic interaction also plays an important role in the adsorption of biomolecules
onto CNT surface. Positively charged myoglobin protein was immobilized on phosphonate
functionalized SWCNTs through electrostatic interaction. The resulting electrode showed excellent
bioelectrocatalytic activity toward hydrogen peroxide reduction [74]. The electrostatic interactions
have also been observed between polymer-functionalized CNTs and biomolecules. Polymers coated
on CNTs are either negatively charged or positively charged which could interact with opposite
charged biomolecules.
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Sartori et al. developed a biosensor for determination of sulfite using MWCNT-gold nanoparticle
(AuNP)-modified glassy-carbon electrode. The AuNPs were anchored onto the nanotubes through
electrostatic interaction provided by the polymer. Poly(allylamine hydrochloride) was used to
achieve electrostatic interaction between MWCNT and AuNPs [107]. Zhan et al. prepared
poly(methacrylic acid-co-acrylamide) (P(MAA-co-AAM)) for immobilization of myoglobin on
MWCNTs. P(MAA-co-AAM) could be non-covalently attached to MWCNTs through hydrophobic
interaction, resulting in the increase of solubility and stability of MWCNTs (Figure 10) [100]. In this
work, myoglobin was immobilized onto the negative charged P(MAA-co-AAM)/MWCNTs surface
through electrostatic interaction. Liu et al. developed a flow injection amperometric CNT based glucose
biosensor using cationic polydiallyldimethylammonium chloride (PDDA). The CNT was firstly treated
to achieve negative charged surface. Two layers of PDDA were then applied on CNT surface with
layer-by-layer process. Glucose oxidase (GOx) was immobilized onto CNT surface by alternative
assemble with PDDA layer and GOx layer. The sandwich structure formed by ionic interaction
provided a favorable condition to keep bioactivity of GOx. The PDDA/GOx/PDDA/CNT/GC
biosensor displayed excellent sensitivity towards H2O2 with a detection limit of 7 µM [105].
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Polyethylenimine (PEI) is a cationic polymer with high density of amines in its structure, which
makes it a good candidate for biomolecule immobilization through electrostatic interactions [101].
Ivnitski et al. developed a glucose biosensor using a MWCNT-modified electrode. A PEI-
functionalized MWCNT was used as binder for immobilization of negatively charged glucose
oxidase [102]. Liu et al. also applied PEI functionalization for immobilization of DNA onto
MWCNT surface. PEI was grafted onto MWCNT in the presence of amine functionalized
MWCNT by cationic polymerization. The resulting PEI-MWCNT demonstrated good stability and
biocompatibility. DNA was securely immobilized onto PEI-MWCNT surface through electrostatic
interaction. The amount of PEI on MWCNT surface was characterized by thermogravimetric analysis
(TGA) [103]. Viswanathan et al. developed an electrochemical immunosensor for the detection of
carcinoembryonic antigen (CEA) saliva and serum. Monoclonal anti-CEA antibodies (αCEA) were
immobilized onto polyethyleneimine-wrapped MWCNT. The positively charged imine polymer chain
attracted the molecules onto electrode surface, which facilitated electron transfer and resulting in
higher peak current [38,104].
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2.2.4. CH-Π Interactions

Another approach of non-covalent functionalization of CNTs is to use amphiphilic molecules,
which could interact with both hydrophilic and hydrophobic specie, where the hydrophobic side would
interact with the nanotube surface [18]. Researchers have investigated that natural polysaccharides,
such as amylose, alginate sodium, and chitosan could wrap onto CNTs sidewalls through non-covalent
interaction, endowing different surface properties for CNT composites to interact with biological
systems [108]. Kumar et al. studied the three electrode surfaces with deposition of CNTs, chitosan
covalently functionalized CNTs, and chitosan non-covalently functionalized CNTs. As shown in
Figure 11, the diameter of CNTs increases from 10 to 20 nm to up to 70–100 nm (non-covalent)
and then to 50–80 nm (covalent). The authors concluded that chitosan have packed more densely
when covalently linked to CNTs surface than in the non-covalent functionalized CNTs. Atomic force
microscopy (AFM) could be used to characterized the effectiveness of coating of macromolecules [109].

Sensors 2019, 19 FOR PEER REVIEW  16 

 

of PEI on MWCNT surface was characterized by thermogravimetric analysis (TGA) [103]. 
Viswanathan et al. developed an electrochemical immunosensor for the detection of 
carcinoembryonic antigen (CEA) saliva and serum. Monoclonal anti-CEA antibodies (αCEA) were 
immobilized onto polyethyleneimine-wrapped MWCNT. The positively charged imine polymer 
chain attracted the molecules onto electrode surface, which facilitated electron transfer and resulting 
in higher peak current [38,104]. 

2.2.4. CH-Π Interactions 

Another approach of non-covalent functionalization of CNTs is to use amphiphilic molecules, 
which could interact with both hydrophilic and hydrophobic specie, where the hydrophobic side 
would interact with the nanotube surface [18]. Researchers have investigated that natural 
polysaccharides, such as amylose, alginate sodium, and chitosan could wrap onto CNTs sidewalls 
through non-covalent interaction, endowing different surface properties for CNT composites to 
interact with biological systems [108]. Kumar et al. studied the three electrode surfaces with 
deposition of CNTs, chitosan covalently functionalized CNTs, and chitosan non-covalently 
functionalized CNTs. As shown in Figure 11, the diameter of CNTs increases from 10 to 20 nm to up 
to 70–100 nm (non-covalent) and then to 50–80 nm (covalent). The authors concluded that chitosan 
have packed more densely when covalently linked to CNTs surface than in the non-covalent 
functionalized CNTs. Atomic force microscopy (AFM) could be used to characterized the 
effectiveness of coating of macromolecules [109]. 

 
Figure 11. Schematic representations of Chit-f-CNT preparation (top), corresponding AFM height 
images (middle) and profile measurements (bottom) for pure CNT (left), Chit non-covalent 
functionalized CNT (center) and Chit covalently linked CNT (right). 

Cyclodextrins (CD), for example, are groups of cyclic oligosaccharides with hydrophobic 
interior environments in their cavity structure [110]. Yang et al. successfully immobilized glucose 
oxidase on the film of polycyclodextrin and CNT, where the enzyme maintained its bioactivity due 
to the biocompatibility of cyclodextrin. The modified electrode was prepared by mixing CNT with 
solution of cyclodextrin and cyclodextrin prepolymer (pre-CD). CD can be adsorbed on CNT via Van 
der Waals forces along CNT structure. The synthesized composite was further used for 
immobilization of glucose oxidase. The electrochemical measurement showed that the CD/CNT film 
maintained the electrocatalytic activity of CNT and showed high sensitivity to glucose with a 
detection limit of 3.5 μM under pH 5.6–7.8 [111]. Although CH-π interaction provides only a tenth of 
the strength provided by hydrogen bonds, long molecules containing CH linkages could be 

Figure 11. Schematic representations of Chit-f-CNT preparation (top), corresponding AFM height
images (middle) and profile measurements (bottom) for pure CNT (left), Chit non-covalent
functionalized CNT (center) and Chit covalently linked CNT (right).

Cyclodextrins (CD), for example, are groups of cyclic oligosaccharides with hydrophobic interior
environments in their cavity structure [110]. Yang et al. successfully immobilized glucose oxidase
on the film of polycyclodextrin and CNT, where the enzyme maintained its bioactivity due to the
biocompatibility of cyclodextrin. The modified electrode was prepared by mixing CNT with solution
of cyclodextrin and cyclodextrin prepolymer (pre-CD). CD can be adsorbed on CNT via Van der
Waals forces along CNT structure. The synthesized composite was further used for immobilization of
glucose oxidase. The electrochemical measurement showed that the CD/CNT film maintained the
electrocatalytic activity of CNT and showed high sensitivity to glucose with a detection limit of 3.5 µM
under pH 5.6–7.8 [111]. Although CH-π interaction provides only a tenth of the strength provided by
hydrogen bonds, long molecules containing CH linkages could be sufficiently adsorbed onto CNTs and
form stable complex under certain conditions. The CH-π multiple interactions significantly influence
several chemical and biological phenomena. Baskaran et al. explored the effect of CH-π interaction in
several polymer-MWCNT composites, such as polybutadiene-MWCNT, polystyrene-MWCNT and
poly(methyl mechacrylate) (PMMA)-MWCNT, etc. The interaction was confirmed by IR and Raman
frequencies of the composites [112]. Su et al. studied the controllable adsorption of MWCNTs onto
C18H37SH deposited Au electrode via CH-π interaction. The surface coverage of MWCNTs could be
easily controlled by adjusting the immersion time of MWCNTs onto C18H37SH. The modified electrode
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was observed with reduced interfacial capacitance compared with direct adsorption of MWCNT onto
electrode surface. This approach offers opportunities for modified electrode preparation in biosensor
applications [113]. Similar strategy was adopted by Zhang et al. for detection of Ag+ in aqueous
solution using gold electrode coated with self-assembled 1-dodecanethiol (SC12H25). SWCNTs could
attach to alkane groups through hydrophobic interaction. The detection limit of the biosensor is 1.5 nM
which is much better than the required concentration limit from US Environmental Protection Agency
for drinking water (0.46 µM) [114].

2.2.5. Non-Covalent Functionalization without Coupling Agent

In addition to the functionalization methods introduced above, non-covalent functionalization
of CNTs could also be achieved without coupling agent. Direct physical adsorption is simple and
easy to establish by incubating the support materials in a solution containing the biomolecules such
as enzymes [115]. Karajanagi et al. examined structure and function of enzyme soybean peroxidase
(SBP), and α-chymotrypsin (CT), adsorbed onto SWCNT. CT only retained about 1% of its original
activity upon adsorption [116]. This study was the first in-depth investigation of interaction between
protein structure and carbon nanotubes, which is key criteria for successful biosensor development.
The interaction between CNTs and enzymes could influence the enzyme secondary structure and
function. Although many enzyme-based biosensors utilizing carbon nanotubes were developed using
physical adsorption, the physical bonding is generally too weak to keep the biomolecule immobilized
on CNTs surface and is prone to enzyme leakage from the matrix [117–121].

In all, non-covalent immobilization of CNTs could help improve the biocompatibility of CNTs for
a variety of different applications, such as DNA assays, enzymatic biosensors, or bacterial detection, etc.
The major advantage of non-covalent immobilization of CNTs using aromatic molecules or polymers
is resulting increase in CNT solubility, while retaining the conjugate structure of CNTs which plays an
important role in the electrochemical activity of the electrodes. The functionalization processes are
generally straightforward and easy to conduct using various coupling agents as discussed previously.
A variety of different characterization techniques could be applied to characterize the effectiveness of
the functionalization, such as UV-Vis spectroscopy, Raman spectroscopy, AFM, SEM, and TEM, etc.
However, in non-covalent immobilization of CNTs, the bonding between the coupling agent and CNTs
is relatively weaker compared to covalent linkage, which may affect the stability of the established
systems. This trade-off must be considered in determining the choice of functionalization methods of
CNTs for specific applications.

3. Applications of Non-Covalent Functionalization of CNT Using Different Bio-Recognition
Elements for Electrochemical Biosensors

Carbon nanotubes have been extensively studied and used as transducers for electrode
construction in electrochemical biosensors, due to their high electrical conductivity, biocompatibility,
and high surface area. Carbon nanotubes transducers are used for the detection of molecules of
biological significance through surface modification with analyte-specific molecules (recognition
element), such as protein, enzyme, antibody, virus and DNA, etc. The recognition element is able to
bind targets specifically and cause physical/chemical change, resulting in shifts in electronic signals.
Herein, we discuss the examples of carbon nanotube based electrochemical biosensors that were
developed by using non-covalent functionalization of CNT with recognition molecule.

3.1. Proteins

Many proteins have been utilized in biosensor applications due to their excellent biocompatibility
and abundant surface groups. The employment of proteins has not only been used as recognition
molecule in detection of target molecules, but also as amphiphilic biomolecule for CNT surface
functionalization. Chen et al. reported for the first time, a simple and general approach to
non-covalently functionalize side-walled carbon nanotubes using PBSE. The functionalized SWCNT
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was then used for immobilization of ferritin and streptavidin, which were successfully observed
under TEM. This approach could be extended beyond biomolecules, and could be utilized in various
applications, such as polymerizable molecules or small molecules with desired properties [50].

Zhan et al. reported a facile method of myoglobin immobilization on MWCNTs using
poly(methacrylic acid-co-acrylamide) (P(MAA-co-AAM)), for H2O2 detection. The resulting
P(MAA-co-AAM)/MWCNTs composites provide active ligands like carboxyl and amine groups
for protein/enzyme immobilization and facilitate electron transfer during electrochemical reaction.
The fabricated electrochemical biosensor displayed a detection limit as low as 0.76 µM towards H2O2

under optimal experimental conditions [100]. Another class of biomolecules called hydrophobins,
which are small proteins that have both hydrophobic and hydrophilic parts which realize easy
self-assembling at various interfaces. In contrast to regular surfactant, the surface activity of
hydrophobin depends on the change of molecule conformation during self-assembly rather than
on a diffusion-limited adsorption to the interface. Wang et al. demonstrated a simple way of
non-covalent functionalization of MWCNTs with hydrophobin (HFBI) through hydrophobic interaction
to increase the solubility of MWCNT. The performance of the hybrid structure was evaluated using
an amperometric biosensor for detection of glucose. The resulting nanocomposite exhibit excellent
electron transfer ability and electrocatalytic activity with low detection limit of 8.2 µM and a sensitivity
of 116 µA·mM−1·cm−2 [122].

3.2. Enzymes

The nanowire structure of CNTs enables the approach to the active center of redox enzyme,
resulting in fast and efficient electron transfer. In some cases, enzyme spontaneously physisorbs
onto CNTs surface based on hydrophobic interaction and achieves direct electron transfer [93].
Appropriate functionalization of CNTs helps anchor biomolecules with its active site close enough
to electrode surface or with redox active species to establish mediated electron transfer. Besteman et
al. demonstrated the use of semiconducting SWCNTs via the same linking molecule PBSE reported
previously for detection of glucose. The sensor was also found to act as a pH sensor with reversible
changes in conductance upon changes in pH [31].

Bourourou et al. reported a non-covalently functionalized MWCNT with anthraquinone
derivatives bearing pyrene groups to enhance the direct electron transfer between electrode
and T1 copper site of laccase. The enzyme was immobilized with high stability based on
the hydrophobic interaction between pyrene-MWCNT sidewalls and anthraquinone- laccase [54].
Goff et al. reported a synthesized complex tris[4,4-bis(4-pyren-1-ylbutyloxy)bipyridinyl] iron (II)
complex, containing six pyrene groups, that help the functionalization of MWCNTs as well as the
immobilization of β-cyclodextrin tagged glucose oxidase for detection of glucose. The formation
of pyrene/β-cyclodextrin linkage during enzyme immobilization provides maximum quantity of
immobilized enzyme onto electrode surface while ensuring the diffusion of H2O2. The limit of detection
for glucose was 1.5 µM·L−1 and the sensitivity was determined to be 13.5 mA·L·M−1·cm−2 [123].

Haddad et al. studied the non-covalent functionalization of SWCNTs with biotin for the
construction of glucose biosensors (Figure 12). The functionalization of SWCNTs was achieved
either by electropolymerization of biotinylated pyrrole derivatives or formation of π-π stacking using
biotinylated pyrene derivatives. The resulting SWCNTs were used for successive immobilization of
avidin and biotin labelled glucose oxidase through avidin-biotin affinity interaction. A reduced H2O2

diffusivity was observed for electropolymerized film functionalized biosensor, whereas an optimal
permeability of H2O2 was observed for the pyrene-functionalized CNTs. The highest sensitivity was
found to be 5.2 mA·M−1·cm−2 with a maximum current density of 33.5 µA·cm−2 for 60 µL of the
carbon nanotube deposits [124].
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A similar glucose biosensor was developed using poly[3-(3-N,N-diethylaminopropoxy)
thiophene] (PDAOT), a conjugate polymer. Glucose oxidase was entrapped within PDAOT-SWCNT
film. The fabricated Au/PDAOT-SWCNT/GOx biosensor exhibited fast current response with
detection limit of 5 µM and a sensitivity of 700 ± 26 µA·mM−1·cm−2 [99]. Zhu et al. reported
a bi-enzyme amperometric biosensor for selective and sensitive detection of glucose. SWCNT,
non-covalently functionalized with electropolymerized pyrrole, was used as the substrate for
enzyme immobilization. The bi-enzyme system, consisting of glucose oxidase (GOx) and
horseradish peroxidase (HRP), was entrapped in the electropolymerized pyrrole film. Direct
electron communication was established by SWCNT between HRP and electrode. The detection
limit of the biosensor was 0.50 ± 0.14 µM (S/N = 3) and the sensitivity was found to be
430 ± 13.4 µA·mM−1·cm−2 [96].

Silveira et al. reported amperometric nitrite biosensor based on the heterogeneous electron
exchange between nitrite reductase (ccNiR) and SWCNT modified electrode. SWCNT was modified
with polypyrole and the carbon coating offered enlarged surface area and higher active sites
for immobilization of ccNiR. At optimal condition, the biosensor sensitivity towards nitrite was
2.4 ± 0.1 A·L·M−1·cm−2. The prepared SWCNT/ccNiR with additional polymer layer preserved
high stability for about 90% after 20 days [95]. Periasamy et al. developed an amperometric
glucose biosensor using gelatin-MWCNTs modified glassy-carbon electrode. Non-polar amino acid
chain of gelatin was immobilized on the sidewall of MWCNTs through hydrophobic interaction.
GOx was further immobilized onto gelatin-MWCNTs through glutaraldehyde chemistry. A rapid
electron transfer was observed between GOx and the glassy-carbon electrode with a sensitivity of
2.47 µA·mM−1·cm−2. In addition to the monoenzymatic biosensors introduced above, our recent
researches developed bi-enzymatic biosensors for the detection of methyl salicylate (Figure 13).
Salicylate hydroxylase and tyrosinase were immobilized onto MWCNTs using PBSE as cross-linker,
and the sensitivity and limit of detection were 30.6 µA−1·cm−2·µM−1 and 13 nM [125,126].
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3.3. Antibodies

Antibody-antigen interaction is the most common affinity interaction in biosensor applications.
Other types of affinity interactions include biotin-streptavidin interaction, avidin-biotin and host-guest
complex (adamantane-cyclodextrin) [61,98]. The paratope of antibody could interact with the epitope
of antigen by spatial complementarity, which could be utilized in the development of immunosensors
by incorporating antibody or antigen with different transducers. CNTs are also increasingly being used
in immunosensor fabrication. CNTs could function as transducers, carriers or labels of immunoassays
since they could transfer large amount of electroactive species to amplify the electrochemical signals
as well as stabilizing the bioactive species [127]. Tam et al. investigated immunosensor using
CNT/antibody doped polypyrrole (Ppy). The CNT/Ppy/Antibody composite was synthesized
through electrochemical deposition. Pyrrole polymer and antibody goat-IgGs were slowly polymerized
onto CNT coated electrode. The detection limit of the immunosensor was as low as 0.05 µg·mL−1

with fast response time [97]. Chen et al. proposed an approach for antibody immobilization using
polyethylene oxide functionalized SWCNT. The selective antibody was then conjugated with the
functionalized SWCNT for detection of human autoimmune diseases [47]. Similarly, Sánchez et al.
developed electrochemical immunosensor using a nanotube/ polysulfone/RIgG composite. Screen
printed electrode modified with polysulfone functionalized CNTs was used as working electrode.
Rabbit IgG was then used as the model antibody labeled with horseradish peroxidase (HRP), and it was
incorporated into polysulfone membrane/MWCNT hybrid and incubated with anti-RIgG-HRP. Direct
electrochemical response of HRP was achieved by addition of H2O2 in solution. The detection limit
was determined to be 1.66 µg·mL−1 and the linear range of anti-RIgG was from 2 to 5 µg/mL [128].

Cui et al. investigated an electrochemical immunosensor using gold nanoparticles (GNPs) and
CNTs with HRP for detection of human IgG as model protein using glass carbon electrode. Upon
absorption of GNPs onto CNTs surface, antibody was immobilized onto GNPs due to the strong
interaction between GNPs and mercapto or primary amine groups in biomolecules. A linear response
range was achieved between 0.125 and 80 ng/mL with a detection limit of 40 pg/mL. The developed
method offers enhanced performance and could be extended to other protein detection schemes [129].

3.4. Viruses

Viruses have also been used as recognition elements integrated with CNT for detection of the
target cells. In our previous publications, we have reported a phage-based electrochemical biosensor
for detection of Escherichia coli using polyethylenimine (PEI)-functionalized carbon nanotube as shown
in Figure 14 [130,131]. An electrostatic interaction can be achieved by using positively charged
polyethylenimine-functionalized carbon nanotube (PEI-CNT) as supporting material, which enables
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the positioning of phage particle in the right orientation on the electrode. The PEI-CNT showed
increased surface energy and made the surface more hydrophilic. A reliable and selective detection
of E. coli was achieved using the T2 phage-based biosensor with a linear response range between
103 CFU·mL−1 and 107 CFU·mL−1 and a detection limit of 103 CFU·mL−1. The interaction between
virus and carbon nanotubes have been studied via phage display technology. Yu et al. applied phage
display technology for selecting phage peptides having affinity towards different chiral structures of
SWCNTs. A virus-based biological template, M13 bacteriophage, for selecting single-walled CNTs’
chirality was developed and reported in 2011, based on the premise that interaction between the
peptide and CNTs is sensitive to amino acid sequences [132].
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Figure 14. Schematic of the charge-directed orientation and immobilization of bacteriophages onto
PEI-functionalized CNT on electrode surface, and the SEM images of CNT before and after PEI
modification [130].

3.5. DNA

Biosensors for detection of DNA are rapidly developing as an alternative to the classical genetic
assays. For the detection of target DNA sequence, DNA biosensors are designed with a transducer
combined with DNA, which is called the probe, acting as the recognition element. A variety of DNA
could interact with CNTs including single stranded DNA (ssDNA) and short double stranded RNA
(dsRNA), while there is no evidence for double stranded DNA (dsDNA) wrapping on SWCNTs [133].
It was reported that ssDNA either small oligonucleotides consisting of tens of bases or complete
sequence, can wrap around SWCNTs [134,135]. Zhang et al. fabricated a DNA hybridization biosensor
based on interaction between ssDNA and SWCNT. SWCNT array electrode was prepared by wrapping
with ssDNA via hydrophobic interaction without any bridging agent as shown in Figure 15. Differential
pulse voltammetry (DPV) response was recorded during DNA hybridization process. Such biosensor
was reported to be reusable for 3000 times to detect different types of DNA with a good linear response
between 40 and 110 nM with a detection limit of 20 nM [136]. Aravind et al. reported a hybrid
nanocomposite consisting of Pt decorated MWCNT immobilized with ssDNA for selective detection
of dopamine. The established hybrid nanocomposite biosensor exhibits a linearity response up to
∼315 µM, with a detection limit 0.8 µM towards dopamine [33]. Moreover, DNA can be removed from
SWCNTs via hybridization, in order to detect target DNA sequence. One of the most recent DNA
sensor applications is to detect genetically modified organisms (GMO) in food. DNA recognition is
used to hybridize the target DNA sequence with GMO-specific probes that are immobilized on the
surface of the sensor [137].
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The use of non-covalent functionalized CNT renders the cationic groups available for negatively
charged DNA binding via ionic interaction. Sanz et al. reported a bilayer approach for non-covalent
functionalization of SWCNT using RNA-wrapping method. However, RNA-wrapping conferred
negative charges on CNT, which made it unsuitable for DNA binding. By using cationic polymer as
bridging molecule, such as polyethyleneimine (PEI), poly(Lys:Phe, 1:1) and polylysine, CNT surface
was positively charged and ready for DNA binding [104].
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Ensafi et al. developed a sensitive MWCNT-based biosensor for detection of amitrole in water
and soil sample. The working electrode was modified with MWCNT and positively charged chitosan
with negatively charged DNA immobilized on the electrode surface through electrostatic interaction.
It was claimed that amitrole interacted with dsDNA mainly through an intercalation mode, which
increased the differential pulse oxidation wave of amitrole 20 times higher than that of a bare
electrode. The sensor demonstrated satisfactory selectivity and sensitivity with a detection limit
of 0.017 ng·mL−1 [138].

4. Conclusions and Outlook

Carbon nanotubes possess unique properties that are different from conventional materials, such
as large surface area, excellent electronic properties and high conductivity, which make them suitable
for biosensor applications. This article reviews different strategies for non-covalent functionalization
of CNT. Unlike covalent functionalization, non-covalent functionalization of CNT helps retain pristine
mechanical and electronic properties of CNTs and preserve the intrinsic properties with desirable
functionality. Non-covalent functionalization of CNT for biosensors provides an ideal strategy for
biomolecule immobilization with high biocompatibility. Although non-covalent functionalization of
CNTs using aromatic molecules has attracted attention recently, only few comprehensive studies have
been carried out so far on the effect of interaction mechanisms and CNT properties (length, curvature,
chirality, etc.) on the effectiveness of non-covalent functionalization. This versatile and multifunctional
CNTs nanostructures could be potentially employed for diagnostic and therapeutic applications.
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Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2019, 19, 392 23 of 29

References

1. Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors Sensor Principles and
Architectures. Sensors 2008, 8, 1400–1458. [CrossRef] [PubMed]

2. Pangule, R.C.; Brooks, S.J.; Dinu, C.Z.; Bale, S.S.; Salmon, S.L.; Zhu, G.; Metzger, D.W.; Kane, R.S.; Dordick, J.S.
Antistaphylococcal Nanocomposite Films Based on Enzyme−Nanotube Conjugates. ACS Nano 2010, 7,
3993–4000. [CrossRef] [PubMed]

3. Senthil Kumar, A.; Gayathri, P.; Barathi, P.; Vijayaraghavan, R. Improved Electric Wiring of Hemoglobin with
Impure-Multiwalled Carbon Nanotube/Nafion Modified Glassy Carbon Electrode and Its Highly Selective
Hydrogen Peroxide Biosensing. J. Phys. Chem. C 2012, 116, 23692–23703. [CrossRef]

4. Turner, A.P. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [CrossRef] [PubMed]
5. Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front. Chem.

2014, 2, 63. [CrossRef] [PubMed]
6. Zhou, Y.; Umasankar, Y.; Ramasamy, R.P. Laccase-TiO2 nanoconjugates as catalysts for oxygen reduction

reaction in biocathodes. J. Electrochem. Soc. 2015, 162, H911–H917. [CrossRef]
7. Guo, X. Surface plasmon resonance based biosensor technique: A review. J. Biophotonics 2012, 5, 483–501.

[CrossRef]
8. Solanki, P.R.; Kaushik, A.; Agrawal, V.V.; Malhotra, B.D. Nanostructured metal oxide-based biosensors.

NPG Asia Mater. 2011, 3, 17–24. [CrossRef]
9. Fang, Y.; Umasankar, Y.; Ramasamy, R.P. Electrochemical detection of p-ethylguaiacol, a fungi infected fruit

volatile using metal oxide nanoparticles. Analyst 2014, 139, 3804–3810. [CrossRef]
10. Mundra, R.V.; Wu, X.; Sauer, J.; Dordick, J.S.; Kane, R.S. Nanotubes in biological applications. Curr. Opin.

Biotechnol. 2014, 28, 25–32. [CrossRef]
11. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [CrossRef]
12. Balasubramanian, K.; Burghard, M. Chemically functionalized carbon nanotubes. Small 2005, 1, 180–192.

[CrossRef] [PubMed]
13. Zhao, Q.; Gan, Z.; Zhuang, Q. Electrochemical sensors based on carbon nanotubes. Electroanalysis 2002, 14,

1609–1613. [CrossRef]
14. Tilmaciu, C.M.; Morris, M.C. Carbon nanotube biosensors. Front. Chem. 2015, 3, 59. [CrossRef]
15. Lawal, A.T. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors.

Mater. Res. Bull. 2016, 73, 308–350. [CrossRef]
16. Ahn, J.H.; Kim, J.H.; Reuel, N.F.; Barone, P.W.; Boghossian, A.A.; Zhang, J.; Yoon, H.; Chang, A.C.;

Hilmer, A.J.; Strano, M.S. Label-free, single protein detection on a near-infrared fluorescent single-walled
carbon nanotube/protein microarray fabricated by cell-free synthesis. Nano Lett. 2011, 11, 2743–2752.
[CrossRef] [PubMed]

17. Crescenzo, A.D.; Ettorre, V.; Fontana, A. Non-covalent and reversible functionalization of carbon nanotubes.
Beilstein J. Nanotechnol. 2014, 5, 1675–1690. [CrossRef]

18. Britz, D.A.; Khlobystov, A.N. Noncovalent interactions of molecules with single walled carbon nanotubes.
Chem. Soc. Rev. 2006, 35, 637–659. [CrossRef]

19. Kanoun, O.; Muller, C.; Benchirouf, A.; Sanli, A.; Dinh, T.N.; Al-Hamry, A.; Bu, L.; Gerlach, C.; Bouhamed, A.
Flexible carbon nanotube films for high performance strain sensors. Sensors 2014, 14, 10042–10071. [CrossRef]

20. Trojanowicz, M. Analytical applications of carbon nanotubes: A review. TrAC Trends Anal. Chem. 2006, 25,
480–489. [CrossRef]

21. Yang, W.; Ratinac, K.R.; Ringer, S.P.; Thordarson, P.; Gooding, J.J.; Braet, F. Carbon nanomaterials in
biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. Engl. 2010, 49, 2114–2138.
[CrossRef] [PubMed]

22. Yoon, Y.-G.; Delaney, P.; Louie, S.G. Quantum conductance of multiwall carbon nanotubes. Phys. Rev. B 2002,
66, 073407. [CrossRef]

23. Bachtold, A.; Strunk, C.; Salvetat, J.P.; Bonard, J.M.; Forró, L.; Nussbaumer, T.; Schönenberger, C.
Aharonov–Bohm oscillations in carbon nanotubes. Nature 1999, 397, 673–675. [CrossRef]

24. Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.;
Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications.
Nanoscale Res. Lett. 2014, 9, 393. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s80314000
http://www.ncbi.nlm.nih.gov/pubmed/27879772
http://dx.doi.org/10.1021/nn100932t
http://www.ncbi.nlm.nih.gov/pubmed/20604574
http://dx.doi.org/10.1021/jp3064933
http://dx.doi.org/10.1039/c3cs35528d
http://www.ncbi.nlm.nih.gov/pubmed/23420144
http://dx.doi.org/10.3389/fchem.2014.00063
http://www.ncbi.nlm.nih.gov/pubmed/25221775
http://dx.doi.org/10.1149/2.0261514jes
http://dx.doi.org/10.1002/jbio.201200015
http://dx.doi.org/10.1038/asiamat.2010.137
http://dx.doi.org/10.1039/C4AN00384E
http://dx.doi.org/10.1016/j.copbio.2013.10.012
http://dx.doi.org/10.1038/354056a0
http://dx.doi.org/10.1002/smll.200400118
http://www.ncbi.nlm.nih.gov/pubmed/17193428
http://dx.doi.org/10.1002/elan.200290000
http://dx.doi.org/10.3389/fchem.2015.00059
http://dx.doi.org/10.1016/j.materresbull.2015.08.037
http://dx.doi.org/10.1021/nl201033d
http://www.ncbi.nlm.nih.gov/pubmed/21627102
http://dx.doi.org/10.3762/bjnano.5.178
http://dx.doi.org/10.1039/b507451g
http://dx.doi.org/10.3390/s140610042
http://dx.doi.org/10.1016/j.trac.2005.11.008
http://dx.doi.org/10.1002/anie.200903463
http://www.ncbi.nlm.nih.gov/pubmed/20187048
http://dx.doi.org/10.1103/PhysRevB.66.073407
http://dx.doi.org/10.1038/17755
http://dx.doi.org/10.1186/1556-276X-9-393
http://www.ncbi.nlm.nih.gov/pubmed/25170330


Sensors 2019, 19, 392 24 of 29

25. Wang, Z.; Dai, Z. Carbon nanomaterial-based electrochemical biosensors: An overview. Nanoscale 2015, 7,
6420–6431. [CrossRef] [PubMed]

26. Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of Carbon Nanotubes. Chem. Rev. 2006, 106,
1105–1136. [CrossRef] [PubMed]

27. Wu, P.; Chen, X.; Hu, N.; Tam, U.C.; Blixt, O.; Zettl, A.; Bertozzi, C.R. Biocompatible Carbon Nanotubes
Generated by Functionalization with Glycodendrimers. Angew. Chem. 2008, 120, 5100–5103. [CrossRef]

28. Tournus, F.; Charlier, J.C. Ab initiostudy of benzene adsorption on carbon nanotubes. Phys. Rev. B 2005, 71,
165421. [CrossRef]

29. Blanford, C.F.; Foster, C.E.; Heath, R.S.; Armstrong, F.A. Efficient electrocatalytic oxygen reduction by the
‘blue’ copper oxidase, laccase, directly attached to chemically modified carbons. Faraday Discuss. 2009, 140,
319–335. [CrossRef]

30. Bellino, M.G.; Soler-Illia, G.J.A.A. Nano-Designed Enzyme–Functionalized Hierarchical Metal–Oxide
Mesoporous Thin Films: En Route to Versatile Biofuel Cells. Small 2014, 10, 2834–2839. [CrossRef]

31. Besteman, K.; Lee, J.-O.; Wiertz, F.G.M.; Heering, H.A.; Dekker, C. Enzyme-Coated Carbon Nanotubes as
Single-Molecule Biosensors. Nano Lett. 2003, 3, 727–730. [CrossRef]

32. Jain, S. Development of an Antibody Functionalized Carbon Nanotube Biosensor for Foodborne Bacterial
Pathogens. J. Biosens. Bioelectron. 2012, 11. [CrossRef]

33. Aravind, S.S.J.; Ramaprabhu, S. Noble metal dispersed multiwalled carbon nanotubes immobilized ss-DNA
for selective detection of dopamine. Sens. Actuators B Chem. 2011, 155, 679–686. [CrossRef]

34. Bianco, A.; Kostarelos, K.; Partidos, C.D.; Prato, M. Biomedical applications of functionalised carbon
nanotubes. Chem. Commun. 2005, 5, 571–577. [CrossRef] [PubMed]

35. Zhang, Y.; Li, J.; Shen, Y.; Wang, M.; Li, J. Poly-L-lysine Functionalization of Single-Walled Carbon Nanotubes.
J. Phys. Chem. B 2004, 108, 15343–15346. [CrossRef]

36. Zeng, Y.-L.; Huang, Y.-F.; Jiang, J.-H.; Zhang, X.-B.; Tang, C.-R.; Shen, G.-L.; Yu, R.-Q. Functionalization
of multi-walled carbon nanotubes with poly(amidoamine) dendrimer for mediator-free glucose biosensor.
Electrochem. Commun. 2007, 9, 185–190. [CrossRef]

37. Singh, C.; Srivastava, S.; Ali, M.A.; Gupta, T.K.; Sumana, G.; Srivastava, A.; Mathur, R.B.; Malhotra, B.D.
Carboxylated MWCNT based biosensor for aflatoxin detection. Sens. Actuators B 2013, 185, 258–264.

38. Viswanathan, S.; Rani, C.; Vijay Anand, A.; Ho, J.A. Disposable electrochemical immunosensor
for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode.
Biosens. Bioelectron. 2009, 24, 1984–1989. [CrossRef]

39. Periasamy, A.P.; Chang, Y.J.; Chen, S.M. Amperometric glucose sensor based on glucose oxidase immobilized
on gelatin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 2011, 80,
114–120. [CrossRef]

40. Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in aqueous solution,
reaction with proteins, and application to enzyme crosslinking. BioTechniques 2004, 37, 790–802. [CrossRef]

41. Calcio Gaudino, E.; Tagliapietra, S.; Martina, K.; Barge, A.; Lolli, M.; Terreno, E.; Lembo, D.; Cravotto, G.
A novel SWCNT platform bearing DOTA and beta-cyclodextrin units. “One shot” multidecoration under
microwave irradiation. Org. Biomol. Chem. 2014, 12, 4708–4715. [CrossRef] [PubMed]

42. Dinesh, B.; Bianco, A.; Menard-Moyon, C. Designing multimodal carbon nanotubes by covalent
multi-functionalization. Nanoscale 2016, 8, 18596–18611. [CrossRef] [PubMed]

43. Lamanna, G.; Battigelli, A.; Ménard-Moyon, C.; Bianco, A. Multifunctionalized carbon nanotubes as
advanced multimodal nanomaterials for biomedical applications. Nanotechnol. Rev. 2012, 1, 17–29. [CrossRef]

44. Tuncel, D. Non-covalent interactions between carbon nanotubes and conjugated polymers. Nanoscale 2011, 3,
3545–3554. [CrossRef] [PubMed]

45. Zhao, Y.-L.; Stoddart, J.F. Noncovalent Functionalization of Single-Walled Carbon Nanotubes. Acc. Chem.
Res. 2009, 42, 1161–1171. [CrossRef]

46. Gao, C.; Guo, Z.; Liu, J.H.; Huang, X.J. The new age of carbon nanotubes: An updated review of
functionalized carbon nanotubes in electrochemical sensors. Nanoscale 2012, 4, 1948–1963. [CrossRef]

47. Chen, R.J.; Bangsaruntip, S.; Drouvalakis, K.A.; Kam, N.W.S.; Shim, M.; Li, Y.; Kim, W.; Utz, P.J.; Dai, H.
Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad.
Sci. USA 2003, 100, 4984–4989. [CrossRef]

http://dx.doi.org/10.1039/C5NR00585J
http://www.ncbi.nlm.nih.gov/pubmed/25805626
http://dx.doi.org/10.1021/cr050569o
http://www.ncbi.nlm.nih.gov/pubmed/16522018
http://dx.doi.org/10.1002/ange.200705363
http://dx.doi.org/10.1103/PhysRevB.71.165421
http://dx.doi.org/10.1039/B808939F
http://dx.doi.org/10.1002/smll.201302616
http://dx.doi.org/10.1021/nl034139u
http://dx.doi.org/10.4172/2155-6210.S11-002
http://dx.doi.org/10.1016/j.snb.2011.01.029
http://dx.doi.org/10.1039/b410943k
http://www.ncbi.nlm.nih.gov/pubmed/15672140
http://dx.doi.org/10.1021/jp0471094
http://dx.doi.org/10.1016/j.elecom.2006.08.052
http://dx.doi.org/10.1016/j.bios.2008.10.006
http://dx.doi.org/10.1016/j.bioelechem.2010.06.009
http://dx.doi.org/10.2144/04375RV01
http://dx.doi.org/10.1039/C4OB00611A
http://www.ncbi.nlm.nih.gov/pubmed/24872207
http://dx.doi.org/10.1039/C6NR06728J
http://www.ncbi.nlm.nih.gov/pubmed/27805213
http://dx.doi.org/10.1515/ntrev-2011-0002
http://dx.doi.org/10.1039/c1nr10338e
http://www.ncbi.nlm.nih.gov/pubmed/21796303
http://dx.doi.org/10.1021/ar900056z
http://dx.doi.org/10.1039/c2nr11757f
http://dx.doi.org/10.1073/pnas.0837064100


Sensors 2019, 19, 392 25 of 29

48. Star, A.; Han, T.-R.; Gabriel, J.-C.P.; Bradley, K.; Gruner, G. Interaction of Aromatic Compounds with CN
Correlation to the Hammett Parameter of the Substituent and Measured Carbon Nanotube FET Response.
Nano Lett. 2003, 3, 1421–1423. [CrossRef]
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