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Cellular senescence is a tumor suppressor program that is 
activated in response to various stimuli, including DNA damage, 
chromatin reorganization, and elevated oncogene signaling.1-7 
Senescent cells are characterized by arrest of proliferation while 
maintaining metabolic activity and viability. They display a 
number of features including cell hypertrophy and flattening,8 
expression of senescence-associated β-galactosidase (SA-β-
Gal),9 activation of negative cell cycle regulators,2,10 development 
of senescence-associated secretory phenotype (SASP),11,12 and 
chromatin reorganization13 including senescence-associated 
heterochromatic foci (SAHF)14 and DNA segments with 
chromatin alterations reinforcing senescence (DNA-SCARS).15 
DNA-SCARS represent persistent foci that contain DNA 
damage response factors (DDR foci) such as phosphorylated 
histone H2AXSer139 (termed γH2AX), p53-binding protein 
(53BP1), ataxia-telangiectasia mutated (ATM), and Rad3-related 
(ATR) kinases,15 as well as some others.

Mammalian target of rapamycin (mTOR) is a member of 
the phosphoinositide-3-kinase-related kinases (PIKK) family, 
which integrates multiple signaling pathways and serves as a 

central regulator of cellular senescence. mTOR forms 2 distinct 
complexes, mTORC1 and mTORC2,16,17 that negatively regulate 
autophagy.18-20 Autophagy is an evolutionarily conserved 
mechanism that provides cell survival in response to a variety 
of stresses, including exposure to IR. Activation of autophagy 
is required for development and maintenance of senescent 
phenotype.18

Ionizing radiation (IR) is among the factors that induce 
cellular senescence. Exposure to IR generates various DNA 
lesions, among which DNA double-strand breaks (DSBs) 
are the most harmful, as they can lead to mutations, genomic 
instability, and apoptosis when unrepaired. Irradiated cells 
initiate a complex of events resulting in the activation of DDR, 
checkpoint controls, and DNA repair. The initial steps of DDR 
include activation of PIKK family kinases ATM, ATR, and 
DNA-PK followed by phosphorylation and activation of multiple 
downstream targets, among which are histone H2AX and 
53BP1.21-27 Two major mechanisms of DSBs repair in mammals 
are homologous recombination (HR) and non-homologous end 
joining (NHEJ).24 When DNA lesions are severe or irreparable, 
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Cells respond to genotoxic stress by activating the DNA damage response (DDR). When injury is severe or irreparable, 
cells induce apoptosis or cellular senescence to prevent transmission of the lesions to the daughter cells upon cell 
division. Resistance to apoptosis is a hallmark of cancer that challenges the efficacy of cancer therapy. In this work, the 
effects of ionizing radiation on apoptosis-resistant e1A + e1B transformed cells were investigated to ascertain whether 
the activation of cellular senescence could provide an alternative tumor suppressor mechanism. We show that irradiated 
cells arrest cell cycle at G2/M phase and resume DNA replication in the absence of cell division followed by formation 
of giant polyploid cells. permanent activation of DDR signaling due to impaired DNA repair results in the induction of 
cellular senescence in e1A + e1B cells. However, irradiated cells bypass senescence and restore the population by dividing 
cells, which have near normal size and ploidy and do not express senescence markers. Reversion of senescence and 
appearance of proliferating cells were associated with downregulation of mtoR, activation of autophagy, mitigation of 
DDR signaling, and expression of stem cell markers.
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the DDR signaling remains activated, leading to apoptosis or 
cellular senescence.1,11,28-31

Tumor cells often acquire resistance to apoptosis that results in 
the selection of the most malignant cells.32 However, apoptosis-
resistant cells retain the ability to undergo cellular senescence.33 
Although senescence is canonically defined as a terminal arrest 
of cell division, recent works demonstrate that various types of 
senescence can be reversed.34-37

This work aimed to study the effects of IR on apoptosis-
resistant E1A + E1B-transformed cells with special emphasis 
on determining whether an alternative to apoptosis tumor 
suppressor program, such as cellular senescence, can be activated. 
We revealed that in response to IR, E1A + E1B cells undergo 
G

2
/M cell cycle arrest followed by restart of DNA replication, 

which culminates in the formation of polyploid giant mono- 
and multinuclear cells. Irradiated E1A + E1B cells demonstrate 
a delayed DNA repair that leads to a sustained activation of 
DDR signaling and results in the induction of reversible cellular 
senescence. Finally, we show that the giant polyploid cells were 
eventually replaced by a population of proliferating cells that 
did not express SA-β-Gal. Reversion of IR-induced senescence 
in E1A + E1B cells was associated with suppression of mTOR 
activity, induction of autophagy, mitigation of DDR signaling, 
and expression of stem-cell markers Nanog and Oct3/4.

Results

Irradiated E1A + E1B cells arrest cell cycle progression in 
G

2
/M phase and resume DNA replication without cell division 

resulting in the formation of giant polyploid cells
Irreversible arrest of cell cycle progression and proliferation 

is a hallmark of cellular senescence. To evaluate antiproliferative 
effect of IR on apoptosis-resistant cells, the ability of cells to 
arrest cell cycle progression, DNA replication, and proliferation 
was analyzed. The experimental data demonstrate that E1A + 
E1B cells undergo the G

2
/M cell cycle arrest followed by restart 

of DNA replication 24 h after irradiation that leads to the 
accumulation of polyploid cells (Fig. 1A). BrdU incorporation 
assay shows that DNA replication in E1A + E1B cells decreased 
dramatically 1 d post-exposure to IR but resumed already on 
the second day after irradiation and remained active in the 
following days (Fig. 1B). At the same time, the proliferation 
of irradiated cells was completely suppressed until day 7 post-
exposure to IR (Fig. 1C). Importantly, replication of DNA 
in proliferation-arrested cells resulted in the formation of 
giant multi- and mononuclear cells, which often contained 
micronuclei (Fig. 2A). We analyzed the ploidy of giant cells 
by mean of Feulgen DNA staining with the subsequent DNA 
cytometry. Cells with DNA content over 16C were revealed 

Figure 1. Irradiated e1A + e1B cells arrest cell cycle progression in G2/M phase and suppress proliferation while continue to replicate DNA. (A) Cell cycle 
distribution analyzed by flow cytometry of propidium iodide-stained cells. percentage of cells in S phase and percent of polyploid cells are shown. 
(B) Analysis of DNA-replication in cells according to BrdU incorporation. Non-irradiated and IR-treated cells were pulse-labeled with BrdU for 1 h, fol-
lowed by immunofluorescent staining. (C) Growth curves of irradiated and untreated e1A + e1B cells. Cells were seeded in initial density of 3 × 104 cells 
per 30-mm dish and counted daily. Mean data with standard deviation are shown.
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already on the first and second days after exposure to IR, while 
3 d after irradiation, over 60% of cells in the population reached 
a highly polyploid state, with the DNA content up to 60C 
(Fig. 2B). Moreover, giant cells continued DNA replication 
in the following days and reached the ploidy over 1500C 
(Fig. 2B), demonstrating loss of control on the coordination of 
DNA replication and cell division.

Uncontrolled DNA replication in E1A + E1B cells may depend 
on the expression of E1A protein, which can bind to and inactivate 
negative regulators of the cell cycle such as pRb,38,39 leading to the 
release of E2F transcription factors and, therefore, transcription 
of S-phase genes.40-42 According to our data, the expression of 
E1A protein in E1A + E1B cells remained high throughout 
the period of observation also in giant cells (Fig. 2C and D); 

Figure 2. exposure of e1A + e1B cells to IR results in the formation of giant polyploid cells, which are characterized by high level of e1A protein expres-
sion. (A) Microphotographs of cells stained with hematoxylin and eosin. Images were acquired in transmitted light, magnification 10 × 40. (B) Frequency 
distribution of cells according to DNA content was calculated by DNA cytometry of Feulgen-stained samples. Analysis of e1A expression in non-irradi-
ated and IR-exposed cells by western blot (C) and immunofluorescent staining (D).
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Figure 3. Kinetics of γH2AX and 53Bp1 foci formation and resolution in e1A + e1B cells. (A) Colocalization and persistence of γH2AX and 53Bp1 foci in 
e1A + e1B cells after exposure to IR. Cells were irradiated or left untreated and stained with antibodies against γH2AX and 53Bp1. Confocal images are 
shown. (B) Number of γH2AX foci per cell in e1A + e1B cells and ReFs. (C) the percentage of cells with γH2AX foci. (D) Number of 53Bp1 foci per cell in e1A 
+ e1B cells and ReFs. (E) the percentage of cells with 53Bp1 foci. Note for (B) and (D): only cells with foci were included in the analysis. Note for (C) and (E): 
untreated cells contain 0–3 DDR foci per cell; therefore, cells with more than 3 foci were counted. (B–E) Mean data with the standard deviation are shown.
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colocalization with 53BP1 foci (Fig. 4). However, IR-induced 
pATRSer428 was detected neither in early nor in persistent DDR 
foci (Fig. 5). Our data suggest that sustained DDR signaling in 
E1A + E1B cells is mediated by ATM, but not ATR.

The DDR foci persistent in E1A + E1B cells are the sites of 
DNA lesions

Rodier and colleagues have previously suggested that persistent 
DDR foci are distinct from the transient ones.15 Although they 
share common components, the persistent foci do not contain 
DNA repair factors and are not the sites of unscheduled DNA 
synthesis.15 To reveal whether the DDR foci that persisted in 
E1A + E1B cells are the sites of DNA breaks, we performed 
single-cell gel electrophoresis (comet assay).45,46 Formation of 
comet tails was found in virtually all irradiated cells until day 
5 post-irradiation, when the percentage of cells forming the 
comets started to decrease (Fig. 6A and B). The number of cells 
with DNA breaks and the level of DNA damage as measured 
by comets’ tail length and tail moment remained high within 
5 d after exposure to IR and then declined gradually (Fig. 6C 

therefore, it may provide replicative 
activity in irradiated cells.

Impaired DDR in E1A + E1B 
cells results in the persistence of 
DDR foci

Ionizing radiation induces rapid 
accumulation of DDR factors, 
including γH2AX and 53BP1 at the 
sites of DNA damage, resulting in the 
formation of DDR foci. Typically, 
DDR foci can already be detected 
3 min after irradiation, reaching 
a maximum size and number 
30 min after exposure to IR and 
dissociating within 24 h.43 However, 
the persistence of DDR foci leads to 
apoptosis or cellular senescence.29,44

Therefore we studied the 
kinetics of γH2AX and 53BP1 
foci formation and dissociation in 
E1A + E1B cells. The number of 
γH2AX foci reached the maximum 
30 min after irradiation, whereas 
the maximal level of 53BP1 foci was 
detected only 1 d post-exposure to 
IR (Fig. 3A, B, and D). Notably, the 
translocation of 53BP1 to the sites 
of lesions was delayed, as it retained 
uniform distribution in the nuclei 
30 min after irradiation (Fig. 3A). 
Furthermore, less than 40% of 
E1A + E1B cells showed 53BP1 foci 
formation 30 min post-IR treatment 
followed by a 2-fold increase on 
day 1 after irradiation (Fig. 3E). 
The kinetics of γH2AX and 53BP1 
foci resolution in E1A + E1B cells 
was impaired as they persisted in most of the cells until day 20 
post-exposure to IR (Fig. 3). γH2AX and 53BP1 foci remained 
colocolized until day 20 after IR treatment and increased in size 
(Fig. 3A). We compared the kinetics of γH2AX and 53BP1 foci 
formation and dissociation in E1A + E1B cell and rat embryonic 
fibroblasts (REFs). Unlike E1A + E1B cells, the maximal number 
of both γH2AX and 53BP1 foci in REFs was detected 30 min 
after irradiation and was two- and 10-fold higher respectively 
(Fig. 3B and D). Besides, the DDR foci did not persist in REFs 
and were completely resolved already 1 d post-IR treatment 
(Fig. 3B and D; Fig. S1). Consequently, the kinetics of 53BP1 
foci formation, and kinetics of both γH2AX and 53BP1 foci 
dissociation were impaired in E1A + E1B cells and resulted in the 
persistence of DDR foci.

To reveal whether ATM and ATR kinases are the components 
of DDR foci in E1A + E1B cells, their colocalization with γH2AX 
and 53BP1 was analyzed. IR-activated pATMSer1981 accumulated 
in DDR foci within the minutes after exposure to IR and remained 
persistent showing distribution in the nuclei and micronuclei and 

Figure 4. pAtMSer1981 is a component of early and persistent DDR foci. e1A + e1B cells were irradiated or 
left untreated and stained with the antibodies against pAtMSer1981 and 53Bp1. Colocalization of pAtMSer1981 
and 53Bp1 in giant cell is indicated with arrows. Confocal images are shown.
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and D). Taking into consideration that comets may arise due 
to the apoptotic cell death, we assayed DNA fragmentation and 
investigated cell viability. According to our data, not less than 
94% of irradiated cells remained viable during all the period 
of experiment (Fig. 6E) and did not demonstrate any evidence 
of apoptotic cell death, including morphological features and 
nucleosomal DNA fragmentation (data not shown).

Further, we examined HR and NHEJ DNA repair by 
activation of Rad51 recombinase and DNA-dependent protein 
kinase catalytic subunit (DNA-PKcs) and their accumulation 
within the DDR foci. According to our results, E1A + E1B 
cells failed to activate HR repair immediately after exposure 
to IR (Fig. 7A–C), as revealed by the absence of Rad51 in the 
nuclei 30 min after irradiation. A weak activation of Rad51 was 
detected in 40% of cells only 1 d post-IR treatment (Fig. 7A–C), 
which correlated with accumulation of 53BP1 in the DDR foci 
(Fig. 3A, D and E). In contrast, REFs already demonstrated 
activation of HR repair 30 min after irradiation and completed 
DNA repair 1 d post-exposure to IR, as revealed by analysis of 
Rad51 accumulation within the DDR foci and measurement of 
its fluorescence intensity (Fig. 7B; Fig. S2A). Interestingly, the 
intensity of Rad51 fluorescence in E1A + E1B cells increased more 

than 50 times on day 5 after irradiation 
compared with day 1, and remained at 
this level until day 20 (Fig. 7B). Rad51 
foci persisted in a significant number 
of E1A + E1B cells until day 20 post-
irradiation (Fig. 7A and C). They were 
colocolized with γH2AX both in giant 
nuclei and micronuclei (Fig. 7A and D).

The DDR-dependent activation of 
DNA-PKcs by autophosphorylation 
on Ser2056 (pDNA-PKcsSer2056) and 
accumulation in the DDR foci were 
observed in all irradiated E1A + E1B cells 
already within the minutes after exposure 
to IR (Fig. 8A and C). They persisted 
and colocolized with γH2AX over the 
following 20 d (Fig. 8A). In addition, 
the number of pDNA-PKcsSer2056-positive 
cells did not decrease until day 10 post-
exposure to IR (Fig. 8C). In contrast, 
in REFs, the pDNA-PKcsSer2056 foci 
appeared within minutes after treatment 
with IR and were not detected 1 d after 
irradiation, thus demonstrating that 
DNA repair is completed (Fig. S2B). 
The intensity of pDNA-PKcsSer2056 
fluorescence 30 min post-irradiation 
was approximately twice lower in E1A 
+ E1B cells than in REFs (Fig. 8B). It 
increased on day 5 after exposure of E1A 
+ E1B cells to IR and remained at this 
level until day 20 (Fig. 8B). The number 
of cells positive for Rad51 and pDNA-
PKcsSer2056 remained high until day 10 

after irradiation then showed a dramatic decrease on day 20 post-
treatment (Figs. 7C and 8C).

Despite the accumulation of pDNA-PKcsSer2056 in the DDR 
foci in E1A + E1B cells, already within minutes upon irradiation, 
only few γH2AX foci showed colocalization with EdU (Fig. 9). 
A time-course study revealed that both DNA replicating and 
non-replicating giant polyploid cells contained γH2AX foci 
(Fig. 9). In addition, we did not observe a difference in the 
intensity of γH2AX foci formation in EdU-incorporating and 
non-incorporating cells. A vast majority of γH2AX foci in giant 
polyploid cells did not colocolize with EdU, indicating the lack 
of DNA replication at the sites of lesions (Fig. 9).

Irradiated E1A + E1B cells undergo reversible senescence
It was previously discussed that sustained DDR signaling 

tightly correlates with the establishment of senescence.47 
Persistent DDR foci may arise from unrepaired lesions induced 
by genotoxic agents and stalled DNA replication, as well as may 
reflect a modified chromatin structure.28,44,48,49 The essential 
requirement for senescence is an irreversible arrest of cell cycle 
and proliferation. According to the growth curve assay, E1A + 
E1B cells did not proliferate until day 7 after treatment (Fig. 1C). 
However, they did not arrest DNA replication, which eventually 

Figure 5. pAtRSer428 does not colocolize with DDR foci in e1A + e1B cells. Irradiated and untreated 
cells were stained with the antibodies against pAtRSer428 and γH2AX. Confocal images are shown.
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resulted in the formation of polyploid cells (Figs. 1B and 2B). 
Polyploid cells showed the characteristic features of senescence, 
including enlarged flattened morphology (Fig. 2A), persistence of 
DDR foci (Figs. 3 and 4), and expression of SA-β-Gal (Fig. 10A 
and B). Therefore, we conclude that E1A + E1B cells activate 
senescence program.

However, the population of senescent cells showed an 
increase of the cell number starting from day 7 after irradiation 
(Fig. 1C). In turn, the percent of SA-β-Gal-positive cells 
dropped significantly in the period of 10–20 d after exposure 
to IR (Fig. 10B). Importantly, the expression of SA-β-Gal 
20 d after IR-treatment was predominantly observed in giant 
cells, but not in the cells of near-normal size, which arose in 
the population (Fig. 10A). Notably, while the number of SA-β-
Gal-positive cells decreased after day 10 post-exposure to IR, the 
population of irradiated cells demonstrated a fast proliferation 
starting at day 17 after irradiation (Fig. 1C). Moreover, the 
percent of cells with DDR foci (Fig. 3C and E) and DNA 
breaks, as well as the degree of DNA damage (Fig. 6B, C,  
and D) decreased significantly by day 20.

Cellular program switching is often accompanied by 
changes in chromatin organization. For example, enhanced 
heterochromatization, such as SAHF, is a characteristic of several 
types of senescence and reflects the silencing of proliferation 

genes.50 We revealed that irradiated E1A + E1B cells demonstrate 
alterations of chromatin organization such as formation of 
heterochromatin structures contrasted with the overall week 
DAPI staining (Fig. 2D), which, however, was distinct from 
the typical SAHF. Besides that, several nuclei of multinuclear 
cells showed the lack of DAPI staining, suggesting chromatin 
decompaction (Figs. 2D and 3A).

Reversion of senescence in E1A + E1B cells is associated 
with decrease of mTOR activity, induction of autophagy, and 
expression of stem cell markers Nanog and Oct3/4

mTOR is a master regulator of cellular senescence and 
autophagy. It is considered that elevated mTORC1 activity 
underlies the establishment of irreversible cellular senescence. 
Since irradiated E1A + E1B cells were shown to bypass the 
senescence, we examined the activity of mTOR by analyzing 
the phosphorylation of mTORC1 and mTORC2 downstream 
targets.

The suppression of mTORC1 activity was revealed in 
irradiated cells by analysis of phosphorylation of S6 ribosomal 
protein and repressor of translation initiation factor 4E-BP1. The 
phosphorylation of S6 ribosomal protein and 4E-BP1 remained 
high during 2 d post-irradiation and showed a 5-fold decrease 
on day 3 post-exposure to IR (Fig. 11A). Similarly, the activity 
of mTORC2 was also downregulated in cells exposed to IR 

Figure 6. Analysis of DNA breaks persistence in e1A + e1B cells. (A) Untreated and irradiated cells were subjected to single-cell gel electrophoresis at the 
indicated time intervals after exposure to IR. Magnification 10 × 20. (B) Quantification of percentage of cells with DNA breaks in untreated and irradiated 
cells. Measurement of comet tail length (C), and comet tail moment (D), performed with CaspLab software. (E) Quantification of percentage of viable 
cells based on acridin orange and ethidium bromide staining. Mean data with standard deviation are shown for (B–E).
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as follows from a 5-fold decrease of the mTORC2-dependent 
phosphorylation of Akt on Ser473 (Fig. 11B).

Downregulation of mTOR leads to activation of autophagy.19 
Indeed, autophagy was observed in irradiated E1A + E1B cells 
simultaneously with suppression of mTORC1 and mTORC2. 
Activation of autophagy was analyzed according to conversion 
of cytosolic MAP1-light chain protein LC3-I to LC3-II isoform, 
and colocalization of lysosomal-associated membrane protein 
LAMP1 with LC3. As a confirming evidence, both LC3-I to 
LC3-II conversion (Fig. 11C) and LAMP1/LC3 colocalization 
(Fig. 11D) were revealed in irradiated E1A + E1B cells 
simultaneously with a decrease of mTOR activity.

Though autophagy was reported to be an effector mechanism 
for senescence,18 recent data indicate that suppression of mTOR 
and activation of autophagy may facilitate reprogramming and 
favor the reversion of cellular senescence.51 The increasing body 
of evidence demonstrates that reversion of senescence in cancer 
cells and normal embryonic fibroblasts associates with expression 
of stem cell markers such as Oct3/4, Nanog, and Sox2.52,53 
Therefore, we checked whether the establishment of reversible 
senescence in E1A + E1B cells correlates with the expression of 
stem cell markers. We revealed that both untreated and irradiated 
E1A + E1B cells expressed Nanog that localized in the nucleus 
and cytoplasm (Fig. 12). Unlike untreated cells, the vast majority 

Figure 7. Irradiated e1A + e1B cells show delayed accumulation and persistence of Rad51 within the DDR foci. (A) Cells were left untreated or irradi-
ated followed by staining with antibodies against Rad51 and γH2AX. Confocal images are shown. (B) Fluorescence intensity of Rad51 in untreated and 
irradiated cells was calculated as ratio of raw density to the cell surface measured with ImageJ software. only cells expressing Rad51 were included in 
the analysis. (C) the percentage of cells containing Rad51 foci. (B and C) Mean data with standard deviation are shown. (D) Colocalization of Rad51 and 
γH2AX in the micronuclei indicate elimination of damaged DNA. Confocal images are shown.
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of irradiated cells showed positive staining for Oct3/4 in the 
nuclei starting day 5 post-exposure to IR (Fig. 12).

Discussion

Here we studied the activation of senescence in apoptosis-
resistant cells exposed to IR. We show that irradiation of 
E1A + E1B cells leads to the persistence of unrepaired DNA 
lesions and results in the induction of reversible senescence. A 
large number of works demonstrate that establishment and 
maintenance of various types of cellular senescence are associated 
with the activation of DDR signaling and persistence of DDR 
foci.1,11,15,28,54,55 The foci persistent in senescent cells may also 
reflect the chromatin rearrangement in the absence of DNA 
breaks48 or represent unrepaired DNA lesions.30,44 We revealed 
that in apoptosis-resistant E1A + E1B cells the sustained DDR 
signaling is provided by DNA breaks. The persistence of DNA 
lesions in E1A + E1B cells can be caused by delay in DNA repair, 
which, in turn, results from the impaired kinetics of DDR 
components activation. More precisely, the delayed accumulation 

of 53BP1 adaptor protein at the sites of DNA lesions may alter the 
recruitment of other DDR proteins and assembly of DNA repair 
molecular machinery. In addition, chromatin reorganization 
in irradiated E1A + E1B cells may impact the constitutively 
activated DDR signaling. As previously reported, chromatin 
relaxation in cells lacking histone H1 or treated with histone 
deacetylase inhibitors leads to enhanced H2AX phosphorylation 
in IR-exposed cells.56 From the other side, unrepaired lesions are 
probably not the only source of persistent DDR foci in E1A + E1B 
cells. As the DNA replication was not arrested in irradiated cells, 
and even the giant highly polyploid cells were able to replicate 
DNA, it may cause DNA replication stress. More specifically, 
the formation of multiple stalled replication forks could lead to 
DNA breaks.28

Irradiation of E1A + E1B cells induced the formation of giant 
highly polyploid cells due to ongoing DNA replication upon 
suppressed cell division. It was previously shown that increased 
DNA amount complicates the maintaining of genomic material, 
impairs DDR and DNA repair due to altered spatial chromatin 
organization,57 and thereby may contribute to the sustained DDR 
activation in E1A + E1B cells. Alternatively, polyploidy causes 

Figure 8. pDNA-pKcsSer2056 colocolizes with DDR foci within the minutes after irradiation and remains persistent. (A) Cells were irradiated or left untreated 
and stained with antibodies against pDNA-pKcsSer2056 and γH2AX. Confocal images are shown. (B) Fluorescence intensity of pDNA-pKcsSer2056 in untreated 
and irradiated cells was calculated as ratio of raw density to the cell surface measured with ImageJ software. only cells that express pDNA-pKcsSer2056 
were included in the analysis. (C) the percentage of cells containing pDNA-pKcsSer2056 foci. (B and C) Mean data with standard deviation are shown.
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vast epigenetic changes57,58 and promotes overexpression of DNA 
repair genes upon replicative stress.59 Indeed, activation of DNA 
repair in E1A + E1B cells was observed only when the majority of 
cells in the population reached a highly polyploid state, thereby 
suggesting a new role for polyploidy in survival of apoptosis-
resistant cells upon genotoxic stress.

The persistence of DNA lesions in irradiated E1A + E1B cells 
resulted in the activation of senescence program, which, however, 
was reversible. The sustained DDR activation is believed to 
be a driving force for the establishment and maintenance of 
senescence.47 Therefore, the question arises whether attenuation 
of DDR signaling reverses this process. Indeed, the escape of 
senescence in E1A + E1B cells was associated with a gradual 
decrease in the number of cells with DNA breaks and the degree 
of DNA damage as was shown by comet assay. The possible 
mechanisms for that may include the elimination of damaged 
DNA in the micronuclei and a delayed activation of DNA repair.

It should be noted that in E1A + E1B cells, initiation of the 
senescence program occurs upon high activity of mTOR, which 
then decreases. We do not know the mechanisms that regulate 
mTOR activity in E1A + E1B cells in response to irradiation; 

however, it was previously shown that IR treatment induces 
transient induction of mTOR via activation of ERK1/2 stress 
kinase.60 The subsequent downregulation of mTOR can be 
mediated by p53- or ATM-dependent activation of AMPK and 
mTOR inhibitor complex TSC1/2.61-64 The mTOR activity 
is involved in irreversible senescence, namely in conversion 
from quiescent to senescent state (geroconversion) associated 
with hypertrophic flattened phenotype.20 Inhibition of 
mTOR decelerates geroconversion, maintaining quiescence 
instead.35,36,65,66 Quiescent cells are able to resume proliferation 
later.36,65 Notably, proliferation restarts within a certain lag 
period upon removal of senescence-inducing factor. Similarly, 
the recovery of proliferation in IR-treated senescent E1A + E1B 
cells was also delayed. Besides, it was reported that suppression 
of mTOR and activation of autophagy potentiate somatic cells 
reprogramming.51,67 Therefore, we suggest that downregulation of 
mTOR in E1A + E1B cells exposed to IR predisposes the reversion 
of senescence and acquisition of stem cell-like characteristics.

Chromatin reorganization in E1A + E1B cells may facilitate 
cellular reprogramming. It was described that usage of 
chemical agents that cause chromatin modification enhances 

Figure 9. Analysis of colocalization of DDR foci with the sites of DNA replication. Non-irradiated and IR-exposed cells were subjected to edU incorpora-
tion assay by “click-it” method and stained with antibodies against γH2AX. Confocal images are shown.
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reprogramming.68 Besides that, recent findings demonstrate the 
important role of DNA repair factors in cellular reprogramming. 
For example, the components of HR repair, including BRCA1, 
BRCA2, and Rad51, are crucial for iPSCs generation,69 among 
which Rad51 is required not only for the induced pluripotent 
stem cells (iPSCs) conversion, but also for the maintenance of 
pluripotency in embryonic stem cells (ESCs).70 Moreover, cells 
deficient in NHEJ component DNA-PKcs show a decreased 
efficiency of iPSCs generation.71 Notably, untreated and 
irradiated E1A + E1B cells expressed the stem cell factor Nanog. 
However, the increase of pDNA-PKcsSer2056, and especially Rad51 
protein level in polyploid E1A + E1B cells correlated with the 
expression of Oct3/4, thereby may imply a cross-talk between 
self-renewal and reversion of senescence.

The transcription factors Oct3/4 and Nanog are the key 
regulators of self-renewal and pluripotency of stem cells.72 
Activation of stem cell factors in somatic cells promotes 
malignant transformation and acquirement of cancer stem cells 
properties.73-75 While the role of stem cell transcription factors in 
senescent cells remains unclear, their elevated expression is often 
observed in various types of tumors and associates with cancer 
progression, resistance to therapy, and poor prognosis.74,76-79

The survival of the irradiated population was provided by cells 
with the size and ploidy close to untreated E1A + E1B cells. We 
did not identify the source of those cells, but several hypothesis 
of their origin can be provided. For example, a small fraction of 
cells may be resistant to initial treatment with IR and provide 
regrowth of population. A number of observations also suggest 
that the novel cells may arise from the giant polyploid cells by 
multipolar division or depolyploidization caused by autophagic 
degradation of genetic material.80-82 Apparently, the resistance 
to apoptosis, provided by adenoviral E1B 19 kDa protein, a 
functional homolog of Bcl-2, allows E1A + E1B cells to remain 
viable and replicate DNA in the presence of unrepaired DNA, 
eventually acquiring a highly polyploid state. Resistance to 

apoptosis and high polyploid state increase the cellular plasticity, 
and enable various pro-survival strategies.

Together, our results indicate that exposure of E1A + E1B cells 
to IR induces cellular senescence, which is determined by the 
persistence of unrepaired DNA lesions and, therefore, sustained 
activation of DDR signaling. We have found that mechanisms 
of gerosuppression in apoptosis-resistant IR-treated cells 
associate with polyploidization, attenuation of DDR signaling, 
downregulation of mTOR, and expression of pluripotency 
markers Oct3/4 and Nanog. Reversion of IR-induced senescence 
in cells resistant to apoptosis results in the appearance of SA-β-
Gal-negative cells of near normal size and ploidy, which exhibit 
high proliferative potential and restore the population.

Materials and Methods

Cell culture and treatment
Cells with stable expression of adenoviral E1A and E1B19 

kDa proteins were selected from rat embryonic fibroblasts 
co-transfected with HindIII-G region of Ad5 viral DNA and 
pSV 2neo plasmid. Cells were cultured in DMEM supplemented 
with 10% fetal calf serum (FCS), penicillin, and streptomycin 
in 5% CO

2
 at 37 °C, irradiated in a dose of 6 Gy using X-ray 

machine Axiom Iconos R200 (Siemens) and analyzed up to 20 
d after treatment.

Antibodies
Primary antibodies: BrDU (Millipore), E1A, 53BP1, 

pATMSer1981, pATRSer428, S6 ribosomal protein, pS6 ribosomal 
protein, p4E-BP1, Akt, pAktSer473, GAPDH, LAMP1, Nanog 
(all by Cell Signaling Technology); Rad51, Oct3/4 (all by Santa 
Cruz Biotechnology); γH2AX, pDNA-PKcsS2056 (all by Abcam); 
LC3 (MBL). Secondary antibodies: Alexa-fluor 488, Alexa-fluor 
568 (all by Invitrogen); anti-mouse and anti-rabbit antibodies 
conjugated with horseradish peroxidase (Sigma).

Figure 10. e1A + e1B cells overpass senescence induced by IR. (A) SA-β-Gal staining of untreated and irradiated cells was performed. Images were 
acquired in transmitted light, magnification 10 × 40. Giant cells remain SA-β-Gal-positive (a), whereas cells of near-normal size are SA-β-Gal-negative 
(b). (B) Quantification of the percentage of senescent cells stained for SA-β-Gal detection. Mean values with standard deviation are shown.
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Flow cytometry
To assay cell cycle distribution cells flow cytometry assay 

of propidium iodide-stained cells was performed as described 
before.83

Growth curves
Cells were seeded at the initial density of 3 × 104 cells per 

30-mm dish in 3 repeats 24 h before the treatment. Cells were 
irradiated or left untreated and counted in cell counting chamber 
daily up to 20 d. The medium was replaced by the fresh one 
supplemented with 10% FCS every second day. The growth 
curve was made based on the data obtained in 3 independent 
experiments.

Morphological staining with hematoxylin and eosin
To analyze morphology of irradiated cells, E1A + E1B cells 

were grown on coverslips, fixed with −20 °C methanol for 5 min, 
and stained with hematoxylin and eosin as previously described.83

Feulgen DNA staining and integrated optical density 
measurement

For analysis of cell ploidy by DNA cytometry, cells were 
grown on coverslips, irradiated, or left untreated. Cells were 
fixed with methanol −20 °C for 5 min followed by hydrolysis 
with 5N HCl for 30 min at room temperature. Afterwards, the 
coverslips were immediately transferred into Schiff reagent and 
incubated for 1.5 h at room temperature in the dark. The samples 
were washed with fresh SO

2
 water 3 times, with ultrapure water 

3 times, and then dehydrated with 96% ethanol. The coverslips 

were allowed to dry at room temperature and mounted on 
microscope slides prior to analysis. Images were acquired using 
Axioscope, DFC360 (Zeiss) microscope equipped with a digital 
camera. DNA content was measured as integrated optical density 
using software (VideoTesT); DNA content of non-irradiated cells 
in metaphase was taken as 4C. The ploidy of 100 cells per sample 
was analyzed.

Immunoblotting
Cells were lysed in a buffer containing 10 mM TRIS-HCl, pH 

7.4, 150 mM NaCl, 1% Triton X-100, 0.5% Nonidet P-40, 20 
mM β-glycerophosphate, 1 mM sodium orthovanadate, 5 mM 
EGTA, 10 mM sodium fluoride, 1 mM phenylmethylsulfonyl 
fluoride, and protease inhibitors cocktail (Roche). Extracts 
were subjected to SDS-polyacrilamyde gel electrophoresis 
(SDS-PAGE), transferred to PVDF membrane (Invitrogen), 
and immunoblotted with primary antibodies followed by 
incubation with horseradish peroxidase-conjugated secondary 
antibodies. Immunocomplexes were visualized by enhanced 
chemiluminescence (ECL, Thermo Fisher Scientific). Western 
blot densitometry was performed using ImageJ software (US 
National Institutes of Health).

Immunofluorescence and confocal microscopy
For immunofluorescence analysis, cells grown on coverslips 

were fixed with 3.7% paraformaldehyde in PBS for 15 min. Cells 
were washed with PBS containing 0.5% Tween 20 (PBST) and 
permerabilized with 0.1% Triton X-100 in PBS for 30 min followed 

Figure 11. Irradiated e1A + e1B cells show suppression of mtoRC1 and mtoRC2 and activation of autophagy. Western blot analysis of phosphorylation 
of S6 ribosomal protein and 4e-Bp1 (A) and phosphorylation of Akt on Ser473 (B). the indicated numbers show the results of western blot densitometry. 
(C) Western blot analysis of LC3-I conversion to LC3-II. (D) Analysis of LC3 and LAMp1 colocalization in non-irradiated and IR-treated cells. Confocal 
images are shown.
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by incubation in blocking solution (5% goat serum in PBST) 
for 1 h. Cells were incubated with primary antibodies diluted 
in blocking solution overnight at 4 °C, washed with PBST, and 
incubated with secondary antibodies Alexa-488 and Alexa-
568 (Invitrogen) for 1 h at room temperature. Coverslips were 
mounted using ProLong Gold mounting medium containing 
4,6-diamidino-2-phenylindole (DAPI) (Invitrogen). Cells were 
analyzed with Leica TCP SP5 scanning confocal microscope 
(Leica Microsystems). Confocal images were acquired using a 
Plan-Apochromat 40 × /1.4 oil immersion objective. Pinholes 
were set at 1 airy unit. The dynamics of γH2AX and 53BP1 
foci accumulation, as well as percentage of IF-positive cells 
were calculated based on analysis of 200 cells in each sample in 
3 independent experiments.

Fluorescence intensity measurment
The integrated density of Rad51 and pDNA-PKcsSer2056 

fluorescence in the nuclei, mean fluorescence of background 
(outside the nuclei), and nuclei area were measured using ImageJ 
software (US National Institutes of Health). The fluorescence 
intensity was calculated as corrected total nuclei fluorescence 
intensity (CTNFI) in 100 cells in 2 independent experiments:

IntFluor = CTNFI = integrated density – (nucleus area × 
mean fluorescence of background).

BrdU incorporation assay
DNA replication was analyzed by BrdU incorporation. 

Cells were pulse-labeled with 10 µM of BrdU (BD Biosciences) 
for 1 h. The following procedures were performed as described 
previously.83 Images were acquired using Leica TCP SP5 
scanning confocal microscope (Leica Microsystems).

Analysis of EdU and yH2AX colocalization
Untreated and irradiated cells were incubated with 10 µM of 

EdU (Click-iT EdU AlexaFluor 488 Imaging Kit, Invitrogen) 
for 1 h and proceeded to EdU detection and staining with 
the antibodies against γH2AX according to manufacturer’s 
instruction.

SA-β-Gal activity
To analyze senescence-associated SA-β-Gal expression, cells 

were grown on coverslips, fixed with 3.7% paraformaldehyde 
in PBS for 15 min, and SA-β-Gal staining was performed as 
previously described.83 The coverslips were washed with PBS and 
mounted on microscope slides using ProLong Gold mounting 
medium (Invitrogen). The images were acquired in transmitted 
light, magnification 10 × 40, using Zeiss Pascal microscope 
(Zeiss) equipped with digital camera and Adobe Photoshop 
software (Adobe Systems). To calculate the number of SA-β-Gal 
positive cells, 200 cells per sample were analyzed in 3 independent 
experiments.

Single-cell gel electrophoresis (comet assay)
Comet assay in alkaline conditions was performed as follows. 

The microscope slides were covered with 1% agarose and dried. 
The suspension containing 1.5 × 104 of living cells was prepared 
in 0.5% low melting agarose, 37 °C, placed on microscope slide, 
covered with cover glass and set at 4 °C for 10 min protected from 
light. Cells were covered with another layer of cell-free agarose 
and lysed overnight at 4 °C in a buffer containing 2.5 M NaCl, 
0.1 M EDTA, 10 mM TRIS-HCl, 1% Triton X-100, pH 10.0. 

Slides were rinsed in electrophoresis buffer (0.3 M NaOH, 1 
mM EDTA, pH 13.0) and subjected to electrophoresis at 4 °C 
in the dark. Following that, slides were rinsed with neutralizing 
solution (0.4 M TRIS-HCl, pH 7.5), stained with SYBR-green, 
and visualized using Zeiss Pascal fluorescent microscope (Zeiss) 
equipped with digital camera and Adobe Photoshop software 
(Adobe Systems). To calculate the number of comets, comet tail 
length and tail moment, 100 cells were analyzed in 3 independent 
experiments. Comet length and tail moment were measured 
using CaspLab software.

Cell viability assay
To determine cell viability, cells were stained with acridine 

orange/ethidium bromide mixture (1:1) in PBS. Cells growing 
on coverslips were washed with PBS 37 °C, the acridine orange 
and ethidium bromide solution was applied, and fluorescent 
microscopy was performed immediately using Leica TCP SP5 
scanning confocal microscope (Leica Microsystems). The number 
of live cells was counted, and the percent of viable cells was 
calculated for 200 cells per each of 3 independent experiments.
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