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Abstract: Matching infrared (IR) facial probes against a gallery of visible light faces remains a
challenge, especially when combined with cross-distance due to deteriorated quality of the IR data.
In this paper, we study the scenario where visible light faces are acquired at a short standoff, while
IR faces are long-range data. To address the issue of quality imbalance between the heterogeneous
imagery, we propose to compensate it by upgrading the lower-quality IR faces. Specifically, this
is realized through cascaded face enhancement that combines an existing denoising algorithm
(BM3D) with a new deep-learning-based deblurring model we propose (named SVDFace). Different
IR bands, short-wave infrared (SWIR) and near-infrared (NIR), as well as different standoffs, are
involved in the experiments. Results show that, in all cases, our proposed approach for quality
balancing yields improved recognition performance, which is especially effective when involving
SWIR images at a longer standoff. Our approach outperforms another easy and straightforward
downgrading approach. The cascaded face enhancement structure is also shown to be beneficial
and necessary. Finally, inspired by the singular value decomposition (SVD) theory, the proposed
deblurring model of SVDFace is succinct, efficient and interpretable in structure. It is proven to be
advantageous over traditional deblurring algorithms as well as state-of-the-art deep-learning-based
deblurring algorithms.

Keywords: cross-spectral face recognition; deblurring; deep learning; denoising; infrared; quality
imbalance

1. Introduction

Face recognition as a research problem has been intensively studied to date, although
most works have assumed a working spectrum of visible light. To break the limits of
face recognition under visible light, some scholars and research teams have turned to face
recognition using the infrared (IR) spectrum, which is still a growing research topic [1–10].
Cross-spectral face recognition between IR and visible light imageries takes us beyond
these limits and allows recognition to be performed at nighttime or in harsh environments
such as fog, haze, and rain [11,12]. Unlike face recognition in visible light, cross-spectral
face recognition involves matching between heterogeneous imageries. For instance, face
images collected in the IR spectrum, such as near-infrared (NIR) and short-wave infrared
(SWIR) [13], are treated as probes. They are matched against a gallery of visible light
images. Such a heterogeneous matching problem is fairly challenging since the imaging
mechanism and characteristics underlying IR are quite distinct from those underlying
visible light. Despite such a huge difference between the heterogeneous imageries, scholars
have developed tools that can extract common features shared by IR and visible-light facial
images, and the technique of cross-spectral face recognition has witnessed some successes
to a certain extent [3,14].
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The problem of cross-spectral face recognition encounters a number of challenging
issues. A lot of attention has been paid to the issue of designing powerful operators and
classifiers for common features across the spectrum, such as in the work of Jain et al., who
performed LDA reduction on LBP and HOG features of heterogeneous IR and visible light
faces [15]. The work of Savvides et al. used a joint dictionary learning and reconstruction
for NIR-VIS face recognition [4]. Some other scholars have studied the issue of facial
occlusion and periocular recognition in the context of cross-spectral face recognition, such
as Schmid [14,16]. As the technique of deep learning emerges and develops, scholars have
recently turned their attention to applying deep neural networks for more robust feature
extraction [17–19]. There are also scholars trying to transform the cross-spectral recognition
problem into the intra-spectral recognition problem by heterogeneous conversion between
IR and visible light faces, such as shown in the works of [20,21].

However, so far, very little research work has been conducted to particularly deal
with the difference in image quality of heterogeneous faces, i.e., the issue of heterogeneous
quality imbalance [22]. Such an issue cannot be overlooked, since it plays an important
role in a practical recognition system in which the performance is often greatly effected
by image quality [23,24]. The issue becomes even more serious when the standoffs of
the heterogeneous faces are different [25]. For example, visible face images acquired
in the daytime usually have better quality than IR face images collected at nighttime.
As the standoff distance increases, the quality of IR images gets worse and the issue
of heterogeneous quality imbalance becomes more aggravated. Such a phenomenon is
illustrated in Figure 1. In view of such a problem, this research work is thus dedicated to the
issue of heterogeneous quality imbalance in the context of cross-spectral face recognition
and proposes a set of tools to mitigate this issue.

Figure 1. Illustrated is the phenomenon of quality degradation of IR facial images as the acquisition
standoff increases. From left to right, images of the same individual collected at (a) 1.5 m, (b) 50 m
and (c) 106 m are shown. Picture source: [22], copyright by the SPIE and reprinted with permission.

Common reasons accounting for degraded face images are poor lighting, off-angle,
occlusion, defocus blur, camera noise, atmospheric conditions (fog, snow, rain, etc.), and
other external or internal factors [26–28]. Sharpness, one of the most significant factors of
image quality, is crucial to the performance of a face recognition system. The majority of
face recognition algorithms extract both geometric information as well as refined textural
features. Both require a sharp and clear face image [24]. Other factors, such as contrast,
brightness and illumination, also play important roles in face recognition. However, in IR
images, their effect is not as pronounced as that of image sharpness. Therefore, we focus
on balancing the sharpness of heterogeneous faces in this work.

In order to achieve the goal of quality balancing, one can address the problem from
either the obverse side or the reverse side: (1) out of two matched faces, to bring the face of
higher quality (i.e, the visible light face in our study) down to the level of quality of the
other face (i.e., the IR face); (2) to improve the face of lower quality to the level of quality
of the other face. The first approach is conceptually more direct and easier to realize in
practice, such as by simply smoothing the face image of higher quality with a low-pass
kernel. The second approach is obviously more complex and can be accomplished via
image enhancement such as denoising. We in this paper take the second type of approach.
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However, denoising alone typically results in removal of useful facial details. Hence, to
overcome this drawback, we further propose combining denoising with a subsequent
stage of deblurring. More specifically, we first denoise the IR face images with the BM3D
algorithm and then deblur them with a new CNN-based algorithm that we propose.

To summarize, this paper addresses the issue of quality imbalance in the context of
cross-spectral face recognition and claims the following contributions.

• To the best of our knowledge, this is one of the first works that specifically deal with
the issue of quality imbalance in cross-spectral face recognition.

• Quality balancing is achieved by upgrading the IR face imagery where a cascaded
structure of denoising and deblurring is proposed.

• For deblurring, we further propose an SVD theory-inspired CNN model (SVDFace)
which decomposes the inverse kernel function into stacks of 1D convolutional layers.
The singular value decomposition (SVD) network has advantages such as compact
parameters, good interpretability in its structure, and needless knowledge of the exact
cause of image degradation.

• The proposed deblurring method (SVDFace) is proven to be advantageous over
other deblurring methods, including state of the art. The cascaded structure of face
enhancement is also shown to be superior to the non-cascaded structure. Moreover,
the upgrading approach to quality balancing outperforms the downgrading approach.

The remainder of the paper is organized as follows. In Section 2, we review related
research works on the topic of image quality imbalance as well as on the topic of deblurring.
Section 3 introduces the proposed methodology for balancing the heterogeneous image
quality, where the cascaded enhancement structure is described and the SVD-inspired
deblurring network is proposed and explained. In Section 4, we describe the datasets
used in our experiments and the experimental setup. We also analyze and compare the
recognition performance of our method with other methods from different perspectives.
Section 5 summarizes the work.

2. Related Works

To date, the literature contains very scarce research work on the topic of heterogeneous
quality imbalance in the context of cross-spectral face recognition. There are, nonethe-
less, a considerable number of research studies on a broader scope of image quality for
general biometrics.

For example, Grother et al. studied the issue of fingerprint image quality in their
paper [29], in which they found that the image quality of the fingerprints greatly affected
the matching performance of their fingerprint matcher. Using a measure of the Normalized
Matching Score (NMS) proposed by them, it was demonstrated that the quality of the fin-
gerprint samples is related to NMS, especially for the genuine scores. The NIST fingerprint
dataset was utilized in their experiment.

Nandakumar et al. took an approach of statistical tests to address the quality problem.
They estimated the joint densities of quality and matching scores for both genuine and
imposter distributions. Then, they conducted a likelihood ratio test between the estimated
genuine and imposter distribution. The method was demonstrated on fingerprint and
iris biometrics [30]. For each modality, a quality-based density was evaluated and a
multi-modal distribution was obtained as a product of the individual density modalities.
Experimental results showed that it indeed improved the verification performance when
combining the modalities with the quality measures.

In the work of [31], Jain et al. modeled the distributions of genuine and impostor
match scores as finite Gaussian mixture models, of which the parameters were estimated
with the EM algorithm. They proposed a framework for the optimal combination of match
scores that was based on a likelihood ratio test. In addition to handling the quality issue,
their method could also address other issues such as discrete values, arbitrary scales, and
correlation between the scores of multiple matchers. The proposed fusion framework was
proven to be successful by experiments on three multi-biometric databases.
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Kryszczuk and Drygajlo [32,33] proposed using the quality measures and matching
scores in order to improve the accuracy of uni- and multi-modal biometric classification.
They introduced a stacking-based classifier ensemble (named Q-stack), which concatenated
matching scores of the original matcher and quality measures at the matching stage. The
method was shown to be useful for tasks of biometric identity verification using face and
fingerprint modalities. Classifiers such as SVM, Bayes classifiers and Linear Discriminant
were tested.

In summary, all of the aforementioned works either assess the image quality and define
a certain measure (or score) to accept/discard a biometric sample or to use the quality
information as a weak feature for the recognition task. However, improving low-quality IR
images and compensating the quality imbalance remain unstudied.

We in this paper study image quality from a different perspective—to balance hetero-
geneous image quality, and we propose addressing the heterogeneous quality imbalance
problem by a CNN-based deblurring method preceded by denoising of the low-quality IR
faces. Therefore, we hereby also give a review of image deblurring.

Image deblurring is usually formulated as a deconvolution problem, which has been
intensively studied. However, the majority of previous works tackle the problem from a
generative perspective assuming a known image noise model and known distributions that
natural image gradients follow. For example, in the work by Richardson [34], describing
the Richardson-Lucy method, image noise is assumed to follow a Poisson distribution.

Whyte et al. [35] introduced an algorithm that locates and decouples error-prone
bright pixels for deblurring shaken and partially saturated images. In their work [36],
Kenig et al. added an explicit denoising module to the deconvolution module, where the
denoising approach is trained from noisy data. The generative approaches typically have
difficulties to handle complex outliers that are not independent and identically distributed.

More recently, deep neural networks have been successfully applied to many image
processing tasks. Such efforts become possible due to the availability of a large number
data and enormous computational resources available to us today. Very promising results
with respect to conventional methods have been achieved and displayed [37]. There are
some works where deep learning has been applied to deblurring [38], such as the works
of [39–42]. In this paper, we propose the use of deep neural networks for automatic learning
of the deconvolution operations (i.e., deblurring) without the need to know the exact cause
of image blurring and degradation.

3. Proposed Methodology

The methodology proposed in this paper for quality balancing between the hetero-
geneous imagery is to upgrade the quality of IR images by means of image enhancement.
Specifically, we achieve image enhancement with a cascaded structure of denoising
and deblurring.

3.1. Necessity of the Cascaded Structure

Denoising of low-quality IR faces can improve image quality and compensate the
heterogeneous quality imbalance to a certain extent. However, we find that a combination
of denoising and deblurring is still necessary. The reason we propose such a combina-
tion is that there exists a paradox in denoising of IR faces: denoising alone is known to
simultaneously remove useful facial details while suppressing unwanted noise.

These facial details, however, usually contain information crucial to face recognition.
As a result, with the level of noise coming down, the denoised face images yield higher-
quality metrics such as signal-to-noise ratio (SNR). However, they ultimately demonstrate
bad recognition performance. Since our final goal is to improve the cross-spectral recog-
nition performance, we want to recover the refined facial details as much as possible
while maintaining a low noise level. This motivates us to add an additional block in the
image enhancement block diagram (see Figure 2): a successive deblurring block after the
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preceding denoising block. The two-stage enhancement structure is therefore ensured to
have the advantage of retaining the useful facial details while suppressing the noise.

BM3D
CNN Deblur
(SVDFace)

Denoising Deblurring
Low 

quality 
IR input

High 
quality 

IR output

Cascaded Face Enhancement
Figure 2. The overall structure of the cascaded face enhancement approach proposed in this work,
which involves consecutive denoising and deblurring.

For denoising, we utilize an existing well-known technique called BM3D [43], which
is based on sparse representation in a 3D transform-domain. BM3D has been proven
to be successful and robust in various denoising tasks, which is why it is chosen as the
denoising module in our paper. With the denoising stage being set, the remaining stage of
deblurring is the tricky one left, which is the core of our proposed cascaded approach. As
for deblurring, we especially propose a new deep neural-network-based algorithm due
to the fact that traditional deblurring methods either presume knowledge of the image
degradation cause or demonstrate low robustness. With the advent of deep learning
techniques, the deblurring problem can be addressed by convolution neural networks.
After a thorough analysis of the deblurring problem (refer to Section 3.3.1), we observe that
the deblurring process can be modeled and learned as convolutional operations of CNN
without the need to know the exact cause of image blurring and degradation.

3.2. BM3D Denoising

The image denoising algorithm of BM3D is an adaptive non-parametric filtering
approach, which uses a strategy based on enhanced sparse representation in a transformed
domain. The central idea behind it is to group similar 2D image blocks into 3D data arrays
followed by collaborative filtering. The denoised output is eventually a 3D estimation
that consists of the jointly filtered grouped image blocks. Since the way to develop BM3D
denoising is not the focus of this work and a detailed explanation of the BM3D algorithm
can be found in [43], we hereby only provide a concise depiction.

When applied as the denoising module in this paper, we first generate two-dimensional
image blocks out of a low-quality-input IR face, according to the similarity of the IR face
blocks. Stacking up similar image blocks, a 3D array is constructed afterwards, which is
called an image group. During aggregation of blocks, we use the same block-matching
method that has been used in motion estimation for video compression. Following group-
ing, the stage of collaborative filtering is conducted, which produces estimates of the ideal
non-noisy image in a way such that each group of blocks collaborates for the filtering of all
other groups and vice versa. Specifically, the collaborative filtering is realized as shrinkage
in a 3D domain, which comprises three steps. Firstly, a 3D linear transformation is per-
formed on the image groups; secondly, the transform coefficients are shrunken to attenuate
the image noise via soft/hard thresholding or Wiener filtering; lastly, inverse 3D transform
is performed to produce estimates of all grouped image blocks. During aggregation, the
basic estimate of the ground truth image is computed by weighted averaging of all the
obtained block-wise estimates that are overlapping. A final estimate step is also added
for better denoising performance, where an improved grouping and collaborative Wiener
filtering is involved.

The result of applying the BM3D denoising algorithm to an SWIR face image is
displayed in Figure 3b. Compared to Figure 3a, the original noisy input, one can easily see
that the quality of the SWIR image is improved (based on visual evaluation). It is worth
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noting that ideal denoising should yield a clean and sharp output. However, BM3D denoising,
just like other denoising techniques, not only suppresses the noise but also removes useful
facial details, resulting in a blurred face image. This leads to our cascaded structure with a
subsequent deblurring stage, as proposed in the next subsection of Section 3.3.

(a) (b)

Figure 3. Results of BM3D denoising: (a) the original SWIR 50 m face image and (b) the same image
after denoising by means of BM3D. Note that BM3D not only suppresses the noise but also removes
useful facial details, resulting in a blurry face image.

3.3. Deep Neural-Network-Based Deblurring

BM3D removes camera noise and image distortions due to atmospheric interference.
However, it also decreases the quality of fine features in the face image that are useful
for automatic face recognition. In the Fourier transform space, fine features are described
by high frequency components and thus denoising, which is a low-pass operation, may
oversmoothe the fine features. To enhance the facial details, we propose applying a
deblurring stage right after BM3D denoising. The process of image blurring can be modeled
as a translation-invariant convolution operation. Thus, to restore the fine features in the
face image, we have to perform deconvolution.

3.3.1. SVD-Inspired Deblurring Network

Image deblurring is a well-known problem in the area of image processing and has
been intensively studied to date. Traditionally, deblurring is achieved by solving the inverse
of the distortion cause. The problem is, however, that more than often, the actual distortion
function is unknown and difficult to formulate. As techniques of deep learning appear, the
inverse problem can be learned and approximated in an implicit way. Nonetheless, success
of these deep learning methods relies on large training data, which are not available in our
specific case of cross-spectral face recognition. IR face data are relatively expensive and
difficult to collect compared to visible light data.

In view of this, we propose to learn the inverse problem with a more succinct and
efficient neural network. Inspired by the theory of singular value decomposition (SVD), we
find that ordinary 2D convolution operations of the neural networks can be replaced by 1D
operations. Such an improvement is supported by the SVD analysis of the inverse problem
in deblurring. Consequently, the new network has high interpretability, which is usually
not the case for other ordinary networks. More importantly, the SVD-inspired network has
much fewer parameters than other ordinary networks, an advantage especially crucial to
our specific topic.

To formally present our SVD-inspired networks, we start with the mathematical
formulation of the image deblurring problem (i.e., deconvolution). The central idea behind
deconvolution is to reverse the process of image distortion, which is defined by a kernel
function called the Point Spread Function (PSF):

Ĩ = I ∗ ∗ K, (1)

where I is the ideal clean face image, K is the kernel function (i.e., PSF), Ĩ is the blurry image,
and ∗∗ stands for two-dimensional convolution. To deblur the blurry image, one needs
to find the inverse of the kernel function, K−1. Due to their nature, convolutional neural
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networks can be used to approximate this deconvolution operation. We will carefully
prove this argument below. According to the separability rule, the inverse kernel can be
decomposed using singular value decomposition (SVD):

K−1 = UΣVT , (2)

where U and V are unitary matrices and Σ is a rectangular diagonal matrix (i.e., all entries
rather than Σii are zero).

Using block matrix multiplication, the SVD equation can be further expanded as

K−1 = Up×mΣm×nVT
n×q

=
[
u1, u2, . . . , um

]


σ1 . . . . . . 0

σ2
...

...
. . .

0 σm . . . 0




vT
1

vT
2
...

vT
n


=

m

∑
i=1

σiuivT
i ,

(3)

where ui and vi are the i-th column of the unitary matrices U and V, respectively, and σi is
the i-th singular value of Σ.

Thus, the deconvolution process can be rewritten as:

Î = Ĩ ∗ ∗ K−1

=
m

∑
i=1

σi Ĩ ∗ ui ∗ vT
i ,

(4)

where Î is the deblurred output and * stands for one-dimensional convolution. Equation (4)
shows that due to the fact that the product uivT

i can be viewed as a two-dimensional
separable function, a two-dimensional convolution can be represented as a sequence of two
one-dimensional convolutions. With regard to the composition of the convolutional neural
network for deblurring, this conclusion suggests that we need to design network layers
with 1D convolutional kernels rather than 2D square kernels, which were traditionally
used in CNN structures (see Figure 4 for details).

The next task is to determine the size of the 1D kernels. In practice, we can approx-
imate the inverse kernel K−1 with an image of a smaller size than the original image by
disregarding near-zero values of K−1. Empirically, choosing the size of K−1 to be no less
than 1/3 of the original image size has been shown to be a good practice. For example, the
kernel size can be set as 45 × 41 for an input face of 120 × 112. However, 45 × 41 is still a
relatively large image. In accordance with guidelines on building an effective CNN, the
performance of a network tends to be higher as the convolutional kernels decrease in size,
while the network increases in depth [44,45]. Therefore, we further decompose the convo-
lutional kernel into a set of smaller kernels using the fact that a larger two-dimensional
kernel is the convolution of smaller kernels. The mathematical description of the process is
given as:

u = ũ(1) ∗ ũ(2), (5)

where u is the original larger 1D kernel and ũ(1) and ũ(2) are two smaller 1D kernels.
This process can be repeated until we obtain the desired size of kernels. In our paper,
we decompose the vertical 1D kernel with the original size of 45 × 1 into a sequence of
repeated convolutions among 11 smaller kernels of the size of 5× 1. Similarly, we represent
the horizontal 1D kernel with the size of 1 × 41 as a sequence of repeated convolutions
among 10 kernels with the size of 1 × 5.
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Overall, the proposed deep neural network comprises three parts: a deconvolution
module, an artifact-removing module and a reconstruction module. In the deconvolution
module, the input layer takes in an IR face image of size 120 × 112 and is connected to two
sets of convolutional layers, where the convolutional kernels of the first set are horizontal
1D filters (corresponding to ui) and the kernels of the second set are vertical 1D filters
(corresponding to vT

i ). The sizes of the kernels are 5 × 1 and 1 × 5, resulting in feature
maps of size 76 × 112 and of size 76 × 72 at the last layer of each set, respectively.

120 x 112

116 x 112 x 16

5 x 1

1
1

2
2

5
5

120 x 112

72 x 68 x 3260 x 56 x 32120 x 112 x 128

1
1

Deconvolution

Artifact removingReconstruction

Blurry
Input

Sharp
Output

… …
80 x 112 x 16

… …

X 10

76 x 112 x 16
… …

76 x 72 x 16

… …

X 11

5
5

5
5

X 4

1 x 5

1
11

1

… …

… …

Figure 4. The framework of the proposed CNN-based deblurring algorithm, which consists of deconvolution, artifact
removing and reconstruction.

The deconvolution module is further connected with the artifact removing module
to remove outliers. The second module has four layers, C3_1 ∼ C3_4. Each of the four
layers is composed of 32 kernels with the same size of 5 × 5. The output of the artifact
removing module has the size of 60 × 56 × 32. The last module is built to reconstruct the
final deblurred image, which should be reduced to the same size as that of the input to the
network, i.e., 120 × 112. To achieve this, we use a backward convolution structure (also
known as transposed convolution), which has two layers. The first layer, C4_1, is of size
2 × 2 up-sampling operation, while the second layer, C4_2, is of size 5 × 5 convolutional
operation. Margins are padded to have a final output size of 120 × 112. The block-diagram
of the proposed deep network is demonstrated in Figure 4, and its parameters are listed in
Table 1.
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Table 1. Parameters of the proposed deep neural network of deblurring.

Index Type Patch Size Remark Output Size

1 C1_1 5 × 1 vertical 116 × 112 × 16
2 C1_2 5 × 1 vertical 112 × 112 × 16
3 C1_3 5 × 1 vertical 108 × 112 × 16
4 C1_4 5 × 1 vertical 104 × 112 × 16
5 C1_5 5 × 1 vertical 100 × 112 × 16
6 C1_6 5 × 1 vertical 96 × 112 × 16
7 C1_7 5 × 1 vertical 92 × 112 × 16
8 C1_8 5 × 1 vertical 88 × 112 × 16
9 C1_9 5 × 1 vertical 84 × 112 × 16
10 C1_10 5 × 1 vertical 80 × 112 × 16
11 C1_11 5 × 1 vertical 76 × 112 × 16
12 C2_1 1 × 5 horizontal 76 × 108 × 16
13 C2_2 1 × 5 horizontal 76 × 104 × 16
14 C2_3 1 × 5 horizontal 76 × 100 × 16
15 C2_4 1 × 5 horizontal 76 × 96 × 16
16 C2_5 1 × 5 horizontal 76 × 92 × 16
17 C2_6 1 × 5 horizontal 76 × 88 × 16
18 C2_7 1 × 5 horizontal 76 × 84 × 16
19 C2_8 1 × 5 horizontal 76 × 80 × 16
20 C2_9 1 × 5 horizontal 76 × 76 × 16
21 C2_10 1 × 5 horizontal 76 × 72 × 16
22 C3_1 5 × 5 square 72 × 68 × 32
23 C3_2 5 × 5 square 68 × 64 × 32
24 C3_3 5 × 5 square 64 × 60 × 32
25 C3_4 5 × 5 square 60 × 56 × 32
26 C4_1 1 × 1 up-sampling 120 × 112 × 128
27 C4_2 5 × 5 padding 120 × 112 × 1

In order to train this SVD-based deblurring network, we adopt a transfer learning
method. Firstly, we train our model on a popular visible light dataset, GoPro [41]. Then we
fine-tune the model using an NIR subset of Q-FIRE [46], a multispectral dataset collected
by Clarkson University. The NIR subset is composed of 1030 images from 82 subjects. We
partition the NIR dataset into two parts: the first 800 images are used as training and the
remaining 230 images serve as validation. Training requires pairs of images consisting of
high-quality IR face images and their low-quality IR counterparts. We simulate low-quality
IR face images by blurring the original face with a simple smoothing filter of size 3 × 3.
To mimic image degradation due to camera and atmospheric effects, we add realizations
of a white noise to the blurred face images. The noise level is set to σ = 5. A quadratic
loss function and the Adaptive Moment Estimation (Adam) rule are used during the
training process. The specific model and parameters corresponding to the epoch with
the best recognition performance was chosen. It should be noted that this is done in an
empirical way. As an illustration, an IR face image deblurred by means of the proposed
deep convolutional network is displayed in Figure 5c. Compared to the face image after
denoising, as shown in Figure 5a, the final output after the deblurring stage looks much
improved in its quality.

To provide a comparison to other deblurring algorithms, we also involved an imple-
mentation of blind deconvolution [47]. Given the BM3D denoised result (Figure 5b) of
a low-quality IR face (Figure 5a), the result of applying blind deconvolution is shown in
Figure 5c. As observed, blind deconvolution is able to successfully recover edges in the
face image and makes it look sharper. However, it also introduces artifacts (ringing effects)
around the eye lids and the image margins and white speckles on the face. To acknowledge
the state-of-the-art techniques in image enhancement, we compare the performance of
our proposed approach with the performance of DeblurGAN [42], Progressive Semantic
Deblurring [48], and UMSN Deblurring [49], all of which represent the recent advances in
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image deblurring. As shown in Figure 5d, DeblurGAN successfully sharpens the blurry
face but is unable to recover most of the useful facial details important for face recognition.
When tested with our proposed model of SVDFace, the output face is clear and sharp with
facial details retained (Figure 5e). This result justifies the development of the algorithm
proposed in this paper.

(a) (b) (c) (d)

(e) (f) (g)

Figure 5. Comparison of several image enhancement methods: (a) Original IR face; (b) BM3D
denoising; (c) BM3D denoising + blind deconvolution; (d) BM3D denoising + DeblurGAN; (e) the
proposed cascaded enhancement approach. Note that (b) BM3D alone removes both unwanted
noise and some useful facial details. (c) is sharper than (b), but artifacts are also introduced around
eyelids and margins and white speckles. DeblurGAN, Progressive Semantic Deblurring and UMSN
Deblurring, as shown in (d–f), all sharpen (b) to some extent. Overall, the proposed cascaded
enhancement approach with SVDFace deblurring (g) outperforms all the other five approaches
(zoom-in recommended for better viewing).

3.3.2. Analysis of Structural Advantages

Before we carry out experiments to verify the advantages of the proposed deblurring
model, SVDFace, we provide a theoretical analysis of its structural advantages over ordi-
nary neural networks. A summary of the structural advantages of the SVD-inspired model
is given in Table 2.

As can be seen in Figure 6, the most conspicuous characteristics of SVDFace is that it is
in a one-dimensional shape, either vertical or horizontal, compared to the two-dimensional
shape of ordinary neural networks. Such a choice of 1D shape is supported by the SVD
decomposition theory applied to the inverse problem in deblurring. In other words, the
new type of neural networks has higher interpretability than other ordinary networks,
whose lack of interpretability has long been criticized.

Secondly, since its convolution kernel has a 1D shape, the SVD-inspired network has
much fewer parameters than other 2D-shaped networks. This is an advantage especially
important on the topic of cross-spectral face recognition, where the number of IR training
data is usually limited. For simplicity, let us take an SVD kernel size of 1 × 3 for example.
Assuming an SVD networks of l layer and each layer with k kernels, the total number of
network parameters is 3 × m × n × l × k for an input image of m × n. Such a calculation
is the same for both vertical and horizontal SVD kernels. Now, if the SVD kernels are
changed to ordinary 2D shaped kernels of 3 × 3, the total number of network parameters is
9 × m × n × l × k, which is 3 times larger than that of the SVD networks. That is to say, the
SVD networks can save network parameters as dramatically as 66.67%.
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(a)

(b)

(c)

Figure 6. Comparison of convolution operations between singular value decomposition (SVD)-
inspired network and other ordinary networks: (a) vertical SVD convolution; (b) horizontal SVD
convolution; (c) ordinary convolution.

Table 2. Advantages of SVD-inspired networks over other networks of ordinary convolutions. Assume an input image of
m × n and a SVD networks with l layers, where each layer has k kernels.

Network Type Dimensions Cost Numbers of Parameters Training Data Needed Interpretable

Vertical SVD Networks 1D Low 3 × m × n × l × k Small Yes
Horizontal SVD Networks 1D Low 3 × m × n × l × k Small Yes

Other Networks 2D High 9 × m × n × l × k Large No

Furthermore, the computation and storage cost of the SVD networks is also dramat-
ically lowered as the network parameters are reduced. This is also an advantage when
designing a practical system, especially in mobile or embedded applications where com-
putation and storage resources are very expensive. Last but not least, our SVD networks
can automatically learn the inverse of PSF function in an implicit way, without any a priori
knowledge of the exact cause of image blurring and degradation.

4. Experimental Results and Analysis

In this section, we describe several cross-spectral matching experiments and sum-
marize the results of matching SWIR or NIR probe images of low quality to a gallery
of visible light images of high quality, with or without the application of the smoothing
or enhancement technique. For the SWIR and NIR cases, results are presented for both
standoff distances of 50 m and 106 m.

4.1. Dataset

To analyze the performance of the proposed quality enhancement approaches in the
context of face recognition, we involved the Tactical Imager for Night/Day Extended-Range
Surveillance (TINDERS) dataset, collected by the Advanced Technologies Group, West
Virginia High Tech Consortium (WVHTC) Foundation [50].

The TINDERS dataset comprises 48 frontal face classes each represented by visible
light, NIR and SWIR images. The visible light images are acquired at a short standoff
distance of 1.5 m, while NIR images are collected at the wavelength of 980 nm for two long
standoff distances of 50 m and 106 m, and SWIR images at the wavelength of 1550 nm are
also collected at the same standoff distances. The visible light (color) images in a resolution
of 480 × 640 are collected in two sessions, with 3 images per session. All of them have
neutral expression, resulting in a total of 288 images. Visible light images are saved in the
.jpg format. Within SWIR and NIR image sets, four or five images per class are available
for each long-range distance. Two or three of the IR images per class have a neutral
expression, and two images per class have a talking expression. A total of 478 images,
each of resolution 640 × 512, are available in the SWIR band. A total of 489 images with
a resolution of 640 × 512 are available in the NIR band. Both SWIR and NIR images are
stored in the .png format. Sample images are shown in Figure 7.

Prior to feature extraction and matching, all images are aligned using positions of the
eyes, regardless of the spectral band. Images are rotated, scaled and translated such that
pairs of eyes are aligned. Color images (visible light) are converted to gray-scale images,
while IR images are first processed using a logarithmic function. The transformed IR images
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are further normalized to have intensity values between [0, 255]. During feature extraction,
the heterogeneous images are encoded using a composite operator, which fuses Gabor
filters, Local Binary Patterns (LBP) [51], Generalized LBP (GLBP) [52] and Weber Local
Descriptor (WLD) [53]. Detailed information can be found in our previous works [14,16].

Figure 7. Sample images, from left to right: (a) visible light at 1.5 m, (b) short-wave infrared (SWIR)
at 50 m, (c) SWIR at 106 m, (d) near infrared (NIR) at 50 m, and (e) NIR at 106 m.

4.2. Quality Balancing: Upgrading vs. Downgrading

In order to justify our proposed approach of upgrading the IR faces to the problem of
heterogeneous quality balancing, we design the first experiment to compare the upgrading
approach against the downgrading approach. The the upgrading approach, as described in
Section 3, is achieved by cascaded face enhancement, which combines the BM3D denoising
algorithm and our proposed deblurring CNN model. The downgrading approach can be
implemented simply through Gaussian-based smoothing of the visible light faces.

We experimented with a variety of cases in which different light spectra and standoffs
are involved, namely to match IR faces of SWIR 50 m, SWIR 106 m, NIR 50 m and NIR 106 m
versus visible light faces at 1.5 m. In all cases, the cross-spectral matching is conducted with
and compared between three different methods: the original matching algorithm without
any preprocessing of quality balancing, the downgrading approach to quality balancing
via Gaussian smoothing, and the upgrading approach that we propose. Numerical analysis
of the experiments is presented in the form of Genuine Accept Rate (GAR) and Equal Error
Rate (EER) values. EERs and GARs of cross-spectral matching for the SWIR and NIR bands
are summarized in Tables 3 and 4, respectively.

When matching low-quality SWIR face images acquired at 50 m and 106 m to visible
face images of high quality acquired at a short standoff distance of 1.5 m, as shown
in Table 3, both approaches of upgrading and downgrading are beneficial for the cross-
spectral face recognition performance. For the case of SWIR 50 m, the GARs at FAR = 0.1
and FAR = 0.001 and the EER values are 0.9188, 0.62118 and 0.0890, respectively. After
Gaussian smoothing of the high-quality visible light faces, the GAR and EER values are
boosted to be 0.9293, 0.6709 and 0.0792, respectively. This indicates that, easy as it may
appear, the downgrading approach works well in practice. When the quality balancing
approach is chosen as our upgrading approach, an even more significant improvement
of performance is observed: the GAR and EER values are boosted to 0.9643, 0.6926 and
0.0553, respectively. This clearly demonstrates the superiority of our proposed upgrading
approach over the easier approach of quality downgrading. As the standoff increases to
106 m, the degree of performance boost becomes higher. This suggests that the concept
of quality balancing is even more helpful for cross-spectral face recognition at a longer
standoff, which in turn justifies the very topic of this study.
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Table 3. Equal Error Rate (EER) and Genuine Accept Rates (GARs) at False Accept Rate (FAR) = 10−1

(GAR1) and FAR = 10−3 (GAR2) for the cases of SWIR 50 m and 106 m: The upgrading approach vs.
the downgrading approach.

CASE METHOD GAR1 (%) GAR2 (%) EER (%)

SWIR 50 m

Original 91.88 62.11 8.90

Downgrading
(Gaussian Smoothing) 92.93 67.09 7.92

Upgrading
(proposed) 96.43 69.26 5.53

SWIR 106 m

Original 82.50 44.79 14.17

Downgrading
(Gaussian Smoothing) 86.74 51.67 11.75

Upgrading
(proposed) 91.8 52.78 9.04

We repeated this experiment for the cases of the NIR spectra at standoffs of 50 m
and 106 m and obtained very similar observations. As can be seen in Table 4, both the
upgrading and downgrading approaches again benefit from the recognition performance
significantly, with our upgrading approach outperforming the downgrading approach.
However, in the NIR case, the performance boost is not as pronounced as that in the SWIR
case. This suggests that the quality imbalance issue is more serious in the NIR band and
the need for heterogeneous quality balancing is more urgent.

Table 4. EER and GARs at FAR = 10−1 (GAR1) and FAR = 10−3 (GAR2) for the cases of NIR 50 m
and 106 m: The upgrading approach vs. the downgrading approach.

CASE METHOD GAR1 (%) GAR2 (%) EER (%)

NIR 50 m

Original 92.23 68.21 8.71

Downgrading
(Gaussian Smoothing) 93.42 70.24 7.63

Upgrading
(proposed) 96.08 70.45 5.95

NIR 106 m

Original 64.48 13.28 23.24

Downgrading
(Gaussian Smoothing) 66.38 15.96 21.73

Upgrading
(proposed) 73.80 17.79 18.53

4.3. Cascaded or Non-Cascaded

The next set of experiments were conducted intending to validate our proposed
structure of cascaded face enhancement. In other words, we wanted to see that the stage of
CNN deblurring that follows the preceding stage of BM3D denoising is indeed necessary
for and contributes to the recognition performance. Therefore, we compared the recognition
performance of cascaded face enhancement with that of BM3D denoising alone and that of
no image preprocessing at all. This study wasconducted for all cases of different spectra
with varying distance.

When experimenting with the SWIR band, as shown in Table 5, we observed that
denoising alone (i.e., without the following deblurring stage) shows a slight drop in the
recognition performance. The GAR at FAR = 0.1 and the EER decreased from 91.88%
and 8.90% to 88.23% and 11.21%, respectively, when the SWIR standoff was set at 50 m.
In contrast, our proposed cascaded enhancement structure (i.e., BM3D + CNN deblur)
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experienced a boost in the GAR and EER values by 4.55% and 3.37%, respectively. This
clearly proves that our proposed cascaded enhancement structure is indeed beneficial
and necessary. As the standoff increased to 106 m, the GAR at FAR = 0.1 and the EER
experienced a larger drop and the improvement of the cascaded structure became more
dramatic, which means the cascaded enhancement technique was more effective as the
standoff distance increased. These observations are expected, since we know that denoising
alone will remove useful facial details, although denoising does suppress the image noises.
Thus, our proposal of adding a successive deblurring stage to the denoising stage is valid
in terms of improving cross-spectral face recognition performance.

Table 5. EER and GARs at FAR = 10−1 (GAR1) and FAR = 10−3 (GAR2) for the cases of SWIR 50 m
and 106 m: cascaded vs. non-cascaded.

CASE METHOD GAR1 (%) GAR2 (%) EER (%)

SWIR 50 m

Original 91.88 62.11 8.90

Non-cascaded
(BM3D alone) 88.23 53.92 11.21

Cascaded Enhancement
(BM3D + CNN deblur) 96.43 69.26 5.53

SWIR 106 m

Original 82.50 44.79 14.17

Non-cascaded
(BM3D alone) 74.79 35.56 18.33

Cascaded enhancement
(BM3D + CNN deblur) 91.81 52.78 9.04

Next, we carried out the same experiment for the NIR band, and similar observations
and results were obtained. As listed in Table 6, the GAR and EER values of our proposed
cascaded enhancement structure are significantly higher than those of the denoising alone
structure and the original algorithm for the case of NIR 50 m. As the standoff is set to be
106 m, the same conclusion still holds true.

Table 6. EER and GARs at FAR = 10−1 (GAR1) and FAR = 10−3 (GAR2) for the cases of NIR 50 m
and 106 m: cascaded vs. non-cascaded.

CASE METHOD GAR1 (%) GAR2 (%) EER (%)

NIR 50 m

Original 92.23 68.21 8.71

Non-cascaded
(BM3D alone) 91.04 65.97 9.38

Cascaded enhancement
(BM3D + CNN deblur) 96.08 70.45 5.95

NIR 106 m

Original 64.48 13.28 23.24

Non-cascaded
(BM3D alone) 60.95 8.97 23.37

Cascaded enhancement
(BM3D + CNN deblur) 73.80 17.79 18.53

4.4. Comparison of Different Deblurring Methods

The final set of experiments were designed to further justify the need for the devel-
opment of the CNN deblurring model we propose in this paper (SVDFace). Therefore,
we compare SVDFace with five other deblurring methods including traditional non-deep
learning based algorithms and state-of-the-art deep learning models. The original recogni-
tion performance is also compared as the baseline, resulting in a total of seven methods.
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Specifically, the other five deblurring methods of comparison are a Laplacian sharpening
based algorithm [22], a well-known blind deconvolution technique [47], and three state-
of-the-art models: DeblurGAN [42], Progressive Semantic Deblurring [48], and UMSN
Face Deblurring [49]. DeblurGAN is a recent GAN-based model that is very successful
for deblurring of general images, while Progressive Semantic Deblurring and UMSN are
SOTA algorithms designed especiallyfor face deblurring . It should be noted that all the
deblurring methods are experimented on using the same denoising algorithm of BM3D as
a preceded stage. This is to ensure a fair comparison.

For all deblurring methods, IR facial images in both the SWIR and NIR bands at both
50 m and 106 m were first denoised with BM3D and then processed with the corresponding
deblurring method. Finally, cross-spectral face matching of IR faces versus visible light
faces was conducted, and the performance was evaluated. The experimental results of
cross-spectral matching are presented in receiver operating curves (ROC) as well as GAR
and EER values. The ROC curves for SWIR 50 m and 106 m are shown in Figure 8a,b,
respectively. EERs and GARs are summarized in Table 7. The ROC curves for NIR are
plotted in Figure 9, while EERs and GARs are listed in Table 8.
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Figure 8. Matching SWIR probes to visible gallery using different deblurring methods: (a) SWIR
50 m; (b) SWIR 106 m.
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Table 7. EER and GARs at FAR = 10−1 (GAR1) and FAR = 10−3 (GAR2): Matching SWIR 50 m
and 106 m probes to visible gallery with different deblurring methods. The method of the best
performance is shown in bold.

CASE METHOD GAR1 (%) GAR2 (%) EER (%)

SWIR 50 m

Original 91.88 62.11 8.90

Laplacian Sharpening [22] 94.33 67.44 7.29

Blind Deconvolution [47] 92.99 65.90 8.04

DeblurGan [42] 93.56 63.10 7.59

Progressive Semantic
Deblurring [48] 93.28 62.54 7.85

UMSN Face Deblurring [49] 94.05 61.55 7.28

SVDFace
(proposed) 96.43 69.26 5.53

SWIR 106 m

Original 82.50 44.79 14.17

Laplacian Sharpening [22] 90.00 52.15 10.00

Blind Deconvolution [47] 84.65 47.85 13.42

DeblurGan [42] 89.80 47.91 10.14

Progressive Semantic
Deblurring [48] 87.15 43.13 11.67

UMSN Face Deblurring [49] 88.40 46.88 10.97

SVDFace
(proposed) 91.81 52.78 9.04

We first experimented with the SWIR spectra at varying standoffs of 50 m and 106 m.
By comparing the matching performance of the proposed deblurring method of SVDFace
with the performance of all other deblurring methods, we clearly see the advantage of
using SVDFace—a substantial performance improvement is observed. For the case of
SWIR 50 m, as shown in Table 7, our SVD-based deblurring network achieves a GAR
of 96.43% at FAR = 0.1 and an EER of 5.53%, in comparison to 93.56% and 7.59% of
DeblurGAN, 94.05% and 7.28% of UMSN Deblurring, 93.28% and 7.85% of Progressive
Semantic Deblurring, 94.33% and 7.29% of Laplacian Sharpening, and 92.99% and 8.04%
of Blind Deconvolution, respectively. It should be also noted that all the four deblurring
methods including ours indeed improve the recognition performance compared to the
original method, which involves no quality balancing processing at all.

As the standoff increases to 106 m, the cross-spectral recognition performance drops
significantly. This is attributed to the fact that IR images experience stronger noise and
disturbance at a larger standoff. The good news is, however, that all four deblurring
methods still work well in the longer standoff case. Once again, the proposed SVDFace
takes first place and Blind Deconvolution comes last in terms of the degree of performance
boost. Additionally, we find out that the degree of performance boost by our deblurring
method is even larger in the longer standoff case of 106 m than that in the case of 50
m. This suggests that our proposed method of cascaded enhancement structure and the
deblurring model for heterogeneous quality balancing is especially suitable for longer
distance of image acquisition. In other words, our method is robust at varying image
acquisition distances.

In the next experiment, NIR face images were matched against visible face images.
The matching results for the standoffs of 50 m and 106 m are displayed in Figure 9a,b,
respectively. EERs and GARs with FAR set to 0.1 and 0.001 are presented in Table 8 for
all four deblurring methods and the original method. Once again, all four deblurring
methods are proven to be beneficial for matching heterogeneous images with different
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quality, with our SVD-based deblurring network substantially outperforming the other
five deblurring methods. GAR and EER are improved from 92.23% and 8.71% to 96.08%
and 5.59%, and from 64.48% and 23.24% to 73.80% and 18.53% for NIR 50 m and 106 m,
respectively. Again, it can be concluded that our proposed method of heterogeneous quality
balancing is beneficial for cross-spectral face recognition and is superior to other deblurring
methods, including state of the art. Such a statement is especially true for longer distances
of image acquisition.
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Figure 9. Matching NIR probes to visible gallery using different deblurring methods: (a) NIR 50 m;
(b) NIR 106 m.
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Table 8. EER and GARs at FAR = 10−1 (GAR1) and FAR = 10−3 (GAR2): Matching NIR 50 m
and 106 m probes to visible gallery with different deblurring methods. The method of the best
performance is shown in bold.

CASE METHOD GAR1 (%) GAR2 (%) EER (%)

NIR 50 m

Original 92.23 68.21 8.71

Laplacian Sharpening [22] 94.12 70.87 7.12

Blind Deconvolution [47] 92.23 69.26 8.47

DeblurGan [42] 93.28 65.97 8.19

Progressive Semantic
Deblurring [48] 92.44 64.71 8.53

UMSN Face Deblurring [49] 93.27 65.90 7.99

SVDFace
(proposed) 96.08 70.45 5.95

NIR 106 m

Original 64.48 13.28 23.24

Laplacian Sharpening [22] 66.81 16.38 20.39

Blind Deconvolution [47] 63.91 17.58 21.29

DeblurGan [42] 65.75 15.40 21.32

Progressive Semantic
Deblurring [48] 64.62 15.25 21.45

UMSN Face Deblurring [49] 66.60 15.54 20.67

SVDFace
(proposed) 73.80 17.79 18.53

4.5. Analysis and Conclusion

In this subsection, we would like to reiterate and summarize a number of conclusions
made earlier in the text regarding the benefit of using the quality balancing approach
proposed in this paper.

• Infrared faces acquired at long standoffs suffer from quality degradation due to
atmospheric and camera effects, which leads to a serious drop in the cross-spectral
recognition performance, raising the issue of heterogeneous image quality imbalance.

• For both SWIR and NIR at 50 m and 106 m, image quality balancing prior to face
matching via upgrading the low quality imagery (i.e., cascaded enhancement) or
downgrading the high quality imagery (Gaussian smoothing) yields substantial im-
provement in recognition performance, with the former approach being better than
the latter approach.

• The proposed cascaded enhancement structure is necessary and effective in that a
single denoising stage yields lower recognition performance, while a subsequent
deblurring stage dramatically improves the performance.

• In the context of cross-spectral face recognition, the newly developed deblurring
network (SVDFace) demonstrates its advantage over traditional deblurring methods,
as well as the state-of-the-art deblurring model based on deep learning, for all cases of
IR bands and standoffs.

• As the degree of quality imbalance between the heterogeneous faces increases, such
as when the standoff increases from 50 m to 106 m, the effect of quality balancing
becomes more pronounced, especially for the SWIR band.

5. Conclusions

This paper studies the issue of heterogeneous quality imbalance in cross-spectral face
recognition. To compensate the quality disparity between the heterogeneous imageries, we
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propose upgrading the quality of IR faces via a cascaded structure of face enhancement,
the core of which is featured by a SVD theory-inspired deblurring deep neural networks.

Our proposed approach of quality balancing is tested on a dataset composed of
heterogeneous face images acquired in visible light, NIR and SWIR. To demonstrate the
advantage of the proposed approach, we conduct cross-spectral face recognition exper-
iments and compare our method against the others. Firstly, in all considered cases, the
proposed method of cascaded enhancement yields significantly improved performance
than the original method without any preprocessing of quality balancing at all. Secondly,
our method is also superior to the downgrading method via Gaussian smoothing, and the
cascaded structure is better than the non-cascaded structure. Lastly, the proposed SVD
deblurring model (SVDFace) outperforms five other deblurring methods including state of
the art. This is especially pronounced at a longer standoff.
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