
Temporally-aware algorithms for the
classification of anuran sounds

Amalia Luque1, Javier Romero-Lemos1, Alejandro Carrasco2 and
Luis Gonzalez-Abril3

1 Departamento de Ingenierı́a del Diseño, Universidad de Sevilla, Sevilla, Spain
2 Departamento de Tecnologı́a Electrónica, Universidad de Sevilla, Sevilla, Spain
3 Departamento de Economı́a Aplicada I, Universidad de Sevilla, Sevilla, Spain

ABSTRACT
Several authors have shown that the sounds of anurans can be used as an indicator of

climate change. Hence, the recording, storage and further processing of a huge

number of anuran sounds, distributed over time and space, are required in order to

obtain this indicator. Furthermore, it is desirable to have algorithms and tools for

the automatic classification of the different classes of sounds. In this paper, six

classification methods are proposed, all based on the data-mining domain, which

strive to take advantage of the temporal character of the sounds. The definition and

comparison of these classification methods is undertaken using several approaches.

The main conclusions of this paper are that: (i) the sliding window method attained

the best results in the experiments presented, and even outperformed the hidden

Markov models usually employed in similar applications; (ii) noteworthy overall

classification performance has been obtained, which is an especially striking result

considering that the sounds analysed were affected by a highly noisy background;

(iii) the instance selection for the determination of the sounds in the training dataset

offers better results than cross-validation techniques; and (iv) the temporally-aware

classifiers have revealed that they can obtain better performance than their non-

temporally-aware counterparts.

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning, Climate

Change Biology

Keywords Global warming, Sound classification, Data mining, Feature extraction, Machine

learning, Habitat monitoring

INTRODUCTION
Sound classification has become a major issue in numerous scientific and technical

applications. Many techniques have been proposed to obtain the desired sound labelling:

some for general purpose (Hinton et al., 2012) and others for specific applications

(Cowling & Sitte, 2003).

Although sounds are inherently represented by a time series of acoustic data, it is

common to focus on small fragments of audio signals and attempt to classify them

without considering the preceding or subsequent sound sections. For this reason,

non-temporally-aware (NTA) methods are also frequently applied (Tzanetakis & Cook,

2002; Wang et al., 2006).
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In order to clarify the temporal character of the sound in this paper, our interest lies

in the evolution of its low-level short-duration frames and not to the sequence of

acoustic units commonly used in bioacoustics (Kershenbaum et al., 2016).

The main aim of this paper is to analyse and compare temporally-aware and NTA

classifiers and to show that the consideration of temporal information clearly improves

classification performance.

Let us indicate that the study presented here could eventually be applied to the study

of global warming, since the sounds produced by certain animal species have been

revealed as a strong indicator of temperature changes and, therefore, of the existence

of climate change. Of particular interest are the results provided by anuran-sound

analysis (Márquez & Bosch, 1995), and hence these kinds of sounds are analysed in

this paper.

As a widely distributed taxonomic group, anurans are considered excellent indicators

of biodiversity. However, frog populations have been experiencing dramatic declines

over the past decade due to habitat loss, climate change, and invasive species (Xie et al.,

2017). Therefore, long-term monitoring of frog populations is becoming increasingly

important in the optimization of conservation policy.

It is worth noting that the sound production mechanism in ectotherms is strongly

influenced by the ambient temperature (Llusia et al., 2013). Hence, the temperature

may significantly affect the patterns of calling songs by modifying the beginning, duration,

and intensity of calling episodes and, consequently, the anuran reproductive activity.

The presence or absence of certain anuran calls in a certain region, and their evolution

over time, can therefore be used as an indicator of climate change.

The first step in biological species identification involves the recording of different

sounds in their natural environment, where different devices can be used. Processing

of the recorded sounds can be performed either locally in real time (Aide et al., 2013),

or in a remote centre requiring, in this case, a suitable communication system, usually a

wireless sensor network, which generally requires information-compressing technologies

(Diaz et al., 2012).

In previous work (Luque et al., 2016), a NTA method for sound classification has been

proposed. According to this procedure, the sound is split up into frames. Every frame

is subsequently featured using 18 parameters (also called features). The frame features

are then compared to certain frame patterns belonging to known sounds, thereby

assigning a class label to each frame. Finally the sound is classified by frame voting, for

which up to nine different algorithms have been proposed (Luque et al., 2018; Romero,

Luque & Carrasco, 2016). For the determination of the sounds which should be

included in the training dataset, instance selection and cross-validation techniques are

considered and compared.

However, sounds are inherently made up of a time series of acoustic data. Therefore,

if the temporal information of the frame is added to the classification process, then better

classification results should be expected. It must be borne in mind that the goal of

classification is to recognize species and, more precisely, their different vocalizations.
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The paper is organized as follows: section “Materials and Methods” describes the

anuran dataset and presents the methodology employed to compare classifiers, by

depicting its general schema, the six (three frame-based, three segment-based) approaches

to temporally-aware classification, the classification algorithms considered, and the

performance metrics employed. The application for the classification of a set of actual

anuran sounds is presented in section “Results,” where the results of the six approaches

are compared with each other and also with NTA classifiers.

MATERIALS AND METHODS
Sound dataset
For testing purposes, actual anuran sounds provided by the National Natural History

Museum (Fonozoo.com, 2017) have been employed. The sounds correspond to two

species, the Epidalea calamita (natterjack toad) and Alytes obstetricans (common

midwife toad), with a total of 868 recordings containing four classes of sounds:

1. E. calamita; mating call (369 records).

2. E. calamita; release call (63 records).

3. A. obstetricans; mating call (419 records).

4. A. obstetricans; distress call (17 records).

A total of 4,343 s of recording have been analysed, with an average duration of 5 s.

A common feature of all the recordings is that they have been taken in their natural

habitat, with very significant surrounding noise (wind, water, rain, traffic, voices, etc.),

which posed an additional challenge in the classification process.

To perform a supervised classification, certain sounds have to be selected as patterns

(to be used in the training phase) and others are employed for validation and testing

purposes. A common practice is to split the dataset into several disjoint subsets and apply

a cross-validation technique (four folds have been used in the paper). However, use of

these noisy recordings as patterns may lead to a decrease in the classification performance.

Hence, several other approaches arise as an alternative to cross-validation. In our case,

recordings with relatively low background noise, which were carefully selected by

biologists and sound engineers, have been used as patterns.

This approach, usually called instance or example selection, is recommended in

order to increase the rate of learning by focusing attention on informative examples

(Blum & Langley, 1997; Raman & Ioerger, 2003; Olvera-López et al., 2010; Borovicka et al.,

2012). In order to determine the frame patterns, the experts listen to the recording of the

anuran calls and simultaneously consider the spectrogram and the set of MPEG-7

features, and label each frame that they consider may belong to any of the possible classes.

The parameters for every classifier are determined by exclusively using the pattern

records (training dataset). The remaining elements in the dataset are then divided into

two approximately equal subsets used for validation and testing. The validation dataset

is employed to determine the hyper-parameters of the classifiers, such as the number r

of relevant features, the number w of frames to be considered in sliding window (SW),

recurrent sliding window (RSW) and hidden Markov model (HMM)–SW, and the
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Table 1 Sound and pattern datasets.

Sound class Sound records Pattern records

Number Seconds Number Seconds (pattern section) Seconds (total record)

Ep. cal. mating call 369 (43%) 1,853 4 13.89 20.39

Ep. cal. release call 63 (7%) 311 3 0.99 14.56

Al. ob. mating call 419 (48%) 2,096 4 1.09 19.72

Al. ob. distress call 17 (2%) 83 2 3.30 9.80

Silence/noise – – – 45.20 –

Total 868 4,343 13 64.47 64.47

Figure 1 General schema for the classification procedure.

Full-size DOI: 10.7717/peerj.4732/fig-1
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number T of recurrent inputs in recurrent neural networks (RNNs). On the other hand,

the testing dataset, which includes none of the patterns nor validation sounds, is

employed for the evaluation of the performance of every algorithm. Table 1

summarizes the sound and pattern dataset.

General description of the classification methodology
The general schema of the proposed procedure, depicted in Fig. 1, is based on the

following steps:

1. The sound is split up into 10 ms frames. This is the frame length recommended by

MPEG-7 since it is the approximate time period for the opening and closing of the

anuran vocal cords.

2. Every frame uses D MPEG-7 features: a vector x in ℝD (ISO, 2001). The series of S

frame vectors [x1, x2 : : : xS] makes up the X matrix of dimension M � D, which

features the full sound. Feature extraction using MPEG-7 features has been chosen

because very good results are shown in their description of sound frames for

classification purposes, and these features appear as serious competitors to

mel-frequency cepstral coefficients (MFCC) features, which are widely used in many

applications (Herrera-Boyer, Peeters & Dubnov, 2003). MPEG-7 and MFCC features

show similar classification performance and althoughMPEG-7 extraction could require

more computational effort, it enjoys several advantages: it is semantically richer (in the

sense that it is easier to intuitively grasp its meaning); it is fully standardized for

general-purpose applications; and it presents better performance when a reduction in

the number of features is required.

3. Temporal information is considered by using one of two approaches:

3.1. Frame-based approach: for every frame, a vector y of C additional features is

constructed (Liu & Motoda, 1998) by applying a function f to the matrix X of the

MPEG-7 original features and hence y = f(X). Therefore, every frame is featured

using D + C features, that is, a vector z ¼ x ¨ y in ℝD+C. Certain forms of the

function f, for instance, are comprised of statistical measures of X, or the

concatenation of the vectors corresponding to stacked frames.

3.2. Segment-based approach: every series ofN sound frames is represented by a model

using its N � D features.

4. Every sound fragment, either in terms of a frame or segment, is classified by using one

of two approaches:

4.1. The frame features are compared to frame patterns belonging to known species,

thereby assigning a class label to each frame. By means of the feature extraction and

construction procedures previously described, each sound frame is characterized

by D + C features or, equivalently, by a point in an ℝD+C space defined by its

coordinate vector z. N pattern frames are also available where the i-th pattern is

also represented by a point in the ℝD+C space with a coordinate vector pi. Each
frame is labelled as belonging to a certain class q out of a total ofM classes. The set

of pattern frames can be viewed as a cloud of points in ℝD+C and can be identified
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by a matrix P ¼ [p1, p2, : : : , pN]′ containing the coordinate vectors of the

N points. The subset of points in P belonging to the class q is denoted by its

matrix Pq. NTA classifiers perform a certain type of comparison between the

frame to be classified (represented by its vector y) and the pattern frames

(represented by its matrix P). This comparison is carried out in the space of

the ℝD+C features and its result is called a supervised classification. A wide and

representative set of non-sequential supervised classifiers is considered and

these are described below.

4.2. The segment models are compared to segment patterns belonging to known

species, and a class label is thereby assigned to each segment.

5. Finally the sound is classified by means of frame or segment voting.

MPEG-7 feature extraction and selection
The task of extracting MPEG-7 features from every sound frame is accomplished by

using three different processes: spectrogram analysis, linear prediction coding, and

harmonicity analysis. Hence,D = 18 features are obtained by following Luque et al. (2016),

which is summarized in Table 2.

As shown below, the consideration of temporal information associated to the frames

usually leads us to significantly increase the number of features required. In order to

cope with this drawback, a reduction in the number of the 18 original MPEG-7 features is

proposed by considering the rmost significant features of each frame (leading to a vector

in ℝr). Feature selection procedures are employed to determine the relevance-ordered set

of features and its optimal size (Guyon et al., 2006).

The feature selection technique used in the paper is based on the Jensen–Shannon

divergence (Lin, 1991). It obtains the separability of the sound classes for every feature by

applying the following procedure:

1. Consider the set of the N pattern frames represented by the matrix P ¼ [p1, p2, : : : ,
pN]′. Focus on the subset of elements in P belonging to the k-th class qk, which is

denoted by its matrix Pk and, specifically, in the i-th pattern frame pi ∈ Pk. The

vector pi contains D elements, one for each feature. The j-th feature corresponding

to the i-th pattern frame is denoted as pji j pi ∈Pk. Let us denote 4jk as the set of values

of the j-th feature in every frame belonging to the k-th class (qk): 4jk ¼ {pji} ∀i j pi ∈Pk.

2. Estimate the probability density function (pdf) fjk of the values in4jk, that is, of the j-th

feature values for those pattern frames belonging to the k-th class.

3. For the j-th feature and every pair of classes u and v, an indication is obtained of how

separate the corresponding fju and fjv pdfs are. For this purpose, the Jensen–Shannon

divergence is used, which is given by

DJSðfju; fjvÞ ¼
1

2

Z1

�1

fju log2
2fju

fju þ fjv
dx þ 1

2

Z1

�1

fjv log2
2fjv

fju þ fjv
dx: (1)
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4. Every value of the Jensen–Shannon divergence is transformed in the corresponding

distance, which is given by

dJS fju; fjv
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DJS fju; fjv

� �q
: (2)

5. For the j-th feature, the separability index Yj is derived, in accordance with

Yj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYA�1

u¼1

YA
v¼iþ1

dJS fju; fjv
� �B

vuut ; (3)

where A is the total number of classes and B is the number of pairs of classes u and v,

which is given by

B ¼ A A� 1ð Þ
2

: (4)

The separability index Yj for the j-th feature is an indicator of how separate the pdfs

are corresponding to each class. The more separate the pdfs are, the more useful (or

relevant, or significant) that feature is for classification. Hence, the value of Yj is used as

an indicator of the relevance of the j-th feature.

For comparison purposes, two NTA methods are also considered:

1. NTA classification based on 18 MPEG-7 features (NS-18).

2. NTA classification based on the r most relevant MPEG-7 features (NS-r).

Feature construction
In order to consider the temporal behaviour of a sound, the frames should not

be considered one by one, but the preceding and subsequent frames should also

Table 2 MPEG-7 features and the processes for their extraction.

Feature description Extracting process

1 Total power

Spectrogram analysis

2 Relevant power(power in a certain frequency band)

3 Power centroid

4 Spectral dispersion

5 Spectrum flatness

6,7,8 Frequency of the formants (�3) (The first three formants are considered)

Linear prediction coding

9,10,11 Bandwidth of the formants (�3) (The first three formants are considered)

12 Pitch

13 Harmonic centroid

14 Harmonic spectral deviation

15 Harmonic spectral spread

16 Harmonic spectral variation

17 Harmonicity ratio
Harmonicity analysis

18 Upper limit of harmonicity
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be taken into account, that is, their ordered succession should be considered.

Several methods have been proposed in the literature to include this temporality

(Dietterich, 2002; Esling & Agon, 2012). A number of these methods can be

considered frame-based, that is, they still classify frames but now the frames are

featured with additional information on the temporal context. Alternatively, other

approaches are defined as segment-based as they do not classify isolated frames but

instead classify a series of frames (a segment). First, three frame-based approaches

are described:

1. Construction of local interquartile range (LIQR) features (Schaidnagel, Connolly &

Laux, 2014). The general idea for this feature construction technique is to use the

time axis to construct new temporally-aware features. These techniques are commonly

based on the values of the features of the frame without considering their order,

which is usually called a bag of features. Average values or other related statistics are

usually employed.

In the case of the anuran calls to be classified, the typical croaking of a frog is

found, while other calls are similar to the sound of a whistle. The croaking

sound is produced by repeatedly opening and closing the vocal cords (roughly

every 10 ms, equal to the frame length) leading to a series of frames featured with

widely spread values (Fay, 2012). On the other hand, the whistle-like sounds are

produced by a continuous air flow showing a narrow spread in feature values.

For the incorporation of this information into the classification process, a new

set of features is therefore constructed that considers the spread of the extracted

feature values and not their average. Furthermore, in order to avoid the

influence of outliers, the interquartile range (IQR) is selected instead of the

standard deviation.

In the implementation used, first for every frame, a ‘window’ centred on that

frame is considered, using the closest neighbouring frames. For every original

feature, a new derived feature is constructed. To this end, the values of the original

feature for every frame in the window are considered. The IQR of these values is

computed, and this value is considered the new derived feature. In this way, the

number of constructed features is C = D, and hence up to 2 � D features (a vector

in ℝ2�D) are now identifying a frame, where C of these features include temporal

information. In this approach, a window size of 10 frames (100 ms) has been

used.

2. SW (Aggarwal, 2007). In this technique, also known as frame stacking or shingling,

a short window with w frames, centred on each frame, is considered. An odd-numbered

value is usually chosen for the window size, that is, w = 2d + 1, where d is an

integer. The class qi for the i-th frame is obtained using a classifying function fc , as

follows:

qi ¼ fCðxi�d ; � � � ; xi�1; xi; xiþ1; � � � xiþdÞ; (5)
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where xj ∈ℝD represents the feature vector for the j-th frame. The D features describing

each frame are now those corresponding to all the frames under the window. Therefore,

each frame is featured using w � D features (a vector in ℝw�D). In this approach, the

number of features describing each frame can significantly increase, thereby inflicting a

major impact on the computing resources required in the classification process. For this

reason, only the r most relevant features have been used by applying the

aforementioned feature selection techniques.

3. RSW (Joshi & Dietterich, 2003). This is a method similar to the SW procedure above,

except that the classifier now considers not only the features of the frame under the

window, but also their previous classification results. Thus, the class qi for the i-th
frame is obtained as follows:

qi ¼ fCðqi�d; � � � ; qi�1; xi�d ; � � � ; xi; � � � xiþdÞ: (6)

NTA classifiers
Every frame-based approach (and also the segment-based autoregressive integrated

moving average (ARIMA) model, described below) relies on an underlying NTA

classifier. A broad and representative selection of these classifiers has been used

throughout this paper: minimum distance (MinDis) (Wacker & Landgrebe, 1971);

maximum likelihood (MaxLik) (Le Cam, 1990); decision tree (DecTr) (Rokach &

Maimon, 2008); k-nearest neighbours (kNN) (Cover & Hart, 1967); support vector

machine (SVM) (Vapnik, 1998); logistic regression (LogReg) (Dobson & Barnett,

2008); neural network (Neur) (Du & Swamy, 2013); discriminant function (Discr)

(Härdle & Simar, 2012); and Bayesian classifier (Bayes) (Hastie, Tibshirani &

Friedman, 2005).

All these classifiers have been prototyped using MATLAB. The minimum distance

classifier in its training phase obtains the mean value mjk for the j-th feature belonging

to the k-th class. In the test phase for the i-th frame, the distance dik between the frame

features and the mean value of the k-th class qk is obtained in accordance with the

expression

dik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
j¼1

xji � mjk

� �2

vuut ; (7)

where xji is the value of the j-th feature corresponding to the i-th frame. The class assigned

to the frame is that with the minimum distance.

The maximum likelihood classifier is used under a Gaussian probability distribution

with full covariance. The neural network classifier is based on a feed-forward neural

network with a 10-neuron hidden layer and a one-neuron output layer. The remaining

methods and classifiers have been coded based on built-in MATLAB functions using their

default parameters, which are reflected in Table 3.
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Segment modelling and classification
With respect to segment-based approaches for the introduction of temporal information,

the following methods are proposed:

1. HMMs (Rabiner, 1989). This is a genuinely temporally-aware classifier which takes

every sound frame xi ∈ℝD and assigns it with a discrete label (Linde, Buzo & Gray, 1980;

Brookes, 2006), thereby obtaining an observation Oi, which is an integer number ck

(a code) in the range [0, C - 1]. The series of observations is assumed to be produced by

an HMM made up of N connected states S, where the Sa state emits the observation

code ck with an emitting probability Eak, and evolves to the state Sb with a transition

probability Tab. For the recognition of isolated ‘words’ (anuran calls), with a distinct

HMM designed for each class, a left–right model is the most appropriate, and the

number of states should roughly correspond to the number of sounds (phonemes)

within the call. However, the differences in error rate for values of N that are close to

5 are small. The structure and the value of N have been taken from Rabiner (1989) and

they are depicted in Fig. 2. The E and Tmatrices are obtained for each class q from their

Figure 2 Hidden Markov Model structure for each anuran call as proposed in Rabiner (1989).

Full-size DOI: 10.7717/peerj.4732/fig-2

Table 3 MATLAB functions supporting the various classifiers.

Classif. Training function Test function Additional function

MinDis – –

MaxLik fitgmdist mvnpdf

DecTr fitctree predict

kNN fitcknn predict

SVM fitcsvm predict

LogReg mnrfit mnrval

Neur feedforwardnet; train net

Discr fitcdiscr predict

Bayes fitNaiveBayes posterior

HMM hmmtrain hmmdecode kmeanlbg; disteusq

ARIMA vgxset; vgxvarx NTA classifiers aicbic

RNN layrecnet train net
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corresponding pattern frames Pq using the forward–backward algorithm (Baum &

Eagon, 1967). Once the HMMs are identified, the algorithm takes the series of

observations for the full sound segment to be classified (and not only for a single

frame), and estimates the probability of being produced by the HMMof each class. The

full sound segment is labelled as belonging to the class with the highest probability.

When a sound file has to be classified, three alternatives for the determination of the

segment length have been explored:

○ The full sound file (HMM-F).

○ A segment with the same length as the regions of interest (ROI) mean length

(HMM–ROI). The ROIs are the segments of the sound patterns containing a valid

sound (no silence or noise).

○ A segment defined by a SW of a certain length (HMM–SW).

This is the classifier recommended in the MPEG-7 standard. In this technique, the

rmost significant values have been used, where r is a parameter to be chosen from the

experimentation. Additionally, the HMM classifiers tested in the paper use a 256-

code (C = 256) quantization codebook.

2. RNNs (Parascandolo, Huttunen & Virtanen, 2016). The series of frame features xi is

introduced into a neural network with H neurons in its hidden layer, which produces

an intermediate output yi. The previous outputs yi-1 to yi-T are then introduced as

new inputs of the network (Fig. 3). A value of H = 10 neurons in the hidden layer is

used throughout the paper.

3. ARIMA models (Box, Jenkins & Reinsel, 2011). The series of frame features xi ∈ ℝD is

considered the result of the vector ARIMA time series, VARIMA(a,d,b), defined as

x
ðdÞ
i ¼ C0 þ

Xa
k¼1

Akxi�k
ðdÞ þ

Xb
k¼1

Bkei�k þ ei; (8)

where a is the order of the autoregressive model, d is the degree of differencing, and b

is the order of the moving-average model. The coefficient matrices Ak and Bk have a

D � D dimension, and the C0 vector, representing the time series mean, has D

components. In this case, the number of features describing the sound segment is

(a + b) � D2. For the sake of simplicity, the stationarity of time series (d = 0) is

assumed. On the other hand, VARMA models can be approximated by equivalent VAR

models (b = 0). In this case, the optimum value for the remaining order of the model

(a) is obtained using the Akaike information criterion (AIC) (Akaike, 1974), and the

Ak matrices are estimated using a maximum-likelihood technique (Hevia, 2008). Every

sound segment, featured with a � D2 parameters, can now be labelled using NTA

classifiers.

In order to determine the order of the model (a), first the optimum order for every

k-th ROI pattern (in the training dataset) is computed using a weighted AR mean order

�ak , derived as
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�ak ¼
POM

i¼1 i � AICikPOM

i¼1 AICik

; (9)

where AICik is the AIC value for the k-th ROI pattern modelled as a VARmodel of order

i, and OM is the maximum VAR order considered (OM = 10 is used). The optimum

value for the VAR order model is then determined by

a ¼ 1

NROI

XNROI

i

�ak; (10)

where NROI is the number of ROI segment patterns.

Classification performance metrics
The definition of the proper performance indicators constitutes a key aspect in the

evaluation of procedures, and it is difficult to overstate its importance (Sturm, 2014).

In order to compare the results obtained for every classifier, several metrics for the

performance of a classifier can be defined (Sokolova & Lapalme, 2009), all of which are

based on the confusion matrix (Table 4).

The most relevant metrics and their definitions are shown in Table 5, where they

are computed for each class that is considered ‘positive,’ as compared to the remaining

classes, which are considered ‘negative.’ Additionally, an average value per class can be

defined for each metric.

Since, in the dataset, the number of instances in every class remains imbalanced

(see Table 1), the use of accuracy or precision as the main performance metric can imply a

significant skew (Chawla, 2005). It is therefore preferred to use sensitivity and specificity

since these remain unbiased metrics even when the classes are imbalanced (Gonzalez-Abril

et al., 2014, 2017). Therefore, when a single metric is required for the comparison of

classifier results (i.e. to identify ‘the best classifier’), the geometric mean or the area

under curve (AUC) values are preferred since they combine, in a single metric, the

sensitivity and the specificity which both present better behaviour in the presence of

imbalanced classes. The AUC is more commonly employed and is the metric used for

the selection of the best options and/or classifiers throughout the paper. When only

one point is available in the receiver operating characteristic (ROC) space, the value of

the AUC is computed as the arithmetic mean of sensitivity and specificity.

Confidence interval of the classification performance metrics
Once the classification performance metrics are obtained, it is good practice to

estimate the confidence interval of their values. To undertake this task, a bootstrap

analysis is performed (Efron & Tibshirani, 1994). Firstly consider the testing dataset T
containing S sounds. From this dataset, S samples are then taken with replacement

and a new T 1 dataset is obtained. Due to the replacement in the sampling process, certain

sounds are not contained in T 1, while others are repeated at least once. The classification

metrics vector m1 can now be computed for the T 1 dataset.
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This process is repeated Nb times (usually a large number), thereby obtaining datasets

T 1; T 2 � � � T Nb
and their corresponding metrics vectors m1;m2; � � �mNb

. This set of metrics

vectors is employed to estimate the pdf of the metrics vector f(m) and other related

statistics. This procedure is commonly employed to derive the confidence interval of

the classification metrics. Therefore, considering the metric mk, which is the k-th metric

in the m vector, and its pdf fk(mk), the confidence interval of mk, for a given confidence level

�, is the interval between the values uk and vk such that Pr[uk � mk � vk] = �. The value

of uk can be estimated as the �/2 percentile of mk, and the value vk as the 100 - (�/2)

percentile. Throughout this paper, bootstrap analysis with Nb = 1,000 and a confidence

level of � = 95% is used.

Table 5 Classification performance metrics based on the confusion matrix.

Metric Formula Evaluation focus

Accuracy
ACC ¼ TPþ TN

TPþ TNþ FPþ FN

Overall effectiveness of a classifier

Precision
PRC ¼ TP

TPþ FP

Class agreement of the data labels with the positive labels given by the classifier

Sensitivity
SNS ¼ TP

TPþ FN

Effectiveness of a classifier to identify positive labels. Also called true positive rate (TPR)

Specificity
SPC ¼ TN

TNþ FP

How effectively a classifier identifies negative labels. Also called true negative rate (TNR)

F1 score F1 ¼ 2
PRC � SNS
PRCþ SNS

Combination of precision (PRC) and sensitivity (SNS) in a single metric

Geometric mean GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNS � SPC

p
Combination of sensitivity (SNS) and specificity (SPC) in a single metric

Area under (ROC) curve
AUC ¼

R1
0

SNS � dSPC
Combined metric based on the receiver operating characteristic (ROC) space (Powers, 2011)

Table 4 Confusion matrix.

Classification class

Classified as positive Classified as negative

Data class Positive TP (true positive) FN (false negative)

Negative FP (false positive) TN (true negative)

Figure 3 Recurrent neural network structure. Full-size DOI: 10.7717/peerj.4732/fig-3
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Bootstrap analysis can also be employed to estimate the probability that a certain

metric outperforms another. For every T j dataset, the classification methods 1 and

2 are employed and their metric vectors mj1 and mj2 are computed. The difference

between these metric vectors is then derived by dj = mj1 - mj2. The pdf of the

differences vector f(d) and the continuous density function (cdf), F(d), can then be

computed. Finally, considering the difference dk, which is the k-th metric in the d vector,

and its cdf Fk(dk), the probability of outperforming, ok, is the probability that dk > 0, that

is, ok = Pr[dk > 0] = Fk(0).

RESULTS
Instance selection vs. cross-validation
In Fig. 4, cross-validation and instance selection approaches are depicted for NTA

classification based on 18 MPEG-7 features (NS-18). As can be observed, most of the

algorithms present a significantly better performance when the patterns are chosen using

the instance selection method, with an increase of more than seven points (in %) in the

AUC metric of the centroid. Similar results are obtained for other temporally-aware and

NTA classifiers for which instance selection has been employed.

NTA classification for a varying number of features
The results obtained by the NTA classifiers based on 18 MPEG-7 features are compared

using the ROC analysis, which is depicted in Fig. 5. The best result corresponds to the

minimum distance classifier, with an AUC of 83.5%. This result is considered as the

original baseline (denoted NTA-18) for future comparisons.

In order to prevent a high number of features entering the following temporally-aware

algorithms, it could be convenient to reduce their number by selecting the r most

relevant MPEG-7 features. To determine the value of r, the AUC of the validation dataset

Figure 4 Cross-validation and instance selection ROC analysis for non-temporally-aware classifiers

based on 18 MPEG-7 features. Full-size DOI: 10.7717/peerj.4732/fig-4
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is used. In Fig. 6, the AUC values for three NTA classifiers are considered as a function

of the number of features. The classifiers in the figure are those showing the best AUC

performance for values of r : minimum distance, maximum likelihood, and decision tree.

From this figure, it can be seen that using the 11 most relevant features (r = 11), the best

AUC is obtained. On the other hand, if the computing effort is a major concern and

therefore the number of features becomes an important issue, selecting the five most

relevant features (r = 5) is a good balance between the AUC and the number of features.

A further reduction would produce the steepest AUC decrease (below 75%, decreasing

Figure 5 ROC analysis for non-temporally-aware classifiers based on 18 MPEG-7 features.

Full-size DOI: 10.7717/peerj.4732/fig-5

Figure 6 AUC vs. the number of features for the three best non-temporally-aware classifiers.

Full-size DOI: 10.7717/peerj.4732/fig-6
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more than 10 points) which is confirmed below (joint optimization subsection). The

following subsections derive the results for both the reduced (r = 5) and the optimum

(r = 11) number of features.

Classification with a reduced number of features
NTA classification
For comparison purposes, the results obtained by the NTA classifiers based on the five

most relevant MPEG-7 features are also compared using the ROC analysis, which is

depicted in Fig. 7. The best result corresponds to the decision-tree classifier with an

AUC of 80.7%. This result is considered as the reduced baseline (denoted NTA-5) for

future comparisons.

Determining the number of frames
In four of the proposed temporally-aware methods (SW, RSW, HMM–SW and RNN)

several consecutive frames have to be considered. The first issue is therefore to determine

the optimum number of frames (also called window size w). For this purpose, the AUC

of the validation dataset is used, which is represented in Fig. 8 for several temporally-

aware methods (using the best underlying NTA classifiers) as a function of the number of

frames. In that figure, instead of the AUC absolute value, the increase in the AUC is

depicted, compared to the w = 1 case. This graphical approach clearly shows the advantage

of using temporally-aware classifiers. In all the methods, except in the RNN, only an

odd number of frames have been considered because they are preferred in those

algorithms.

From this figure, by using a window size between three and nine in the SWmethod, the

AUC value can be enhanced by more than six points (in %). With these considerations, a

Figure 7 ROC analysis for non-temporally-aware classifiers based on the five most relevant MPEG-7

features. Full-size DOI: 10.7717/peerj.4732/fig-7
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seven-frame SW (w = 5) has been selected (its optimum value is denoted in the figure

by a filled blue marker). This means a duration of 70 ms which roughly corresponds

to seven opening periods of the anuran vocal cords. Similarly, the optimum values of the

number of frames for the remaining methods are RSW: 11; HMM–SW: one; and RNN: 15.

Figure 9 ROC analysis for non-temporally-aware classifiers using LIQR feature construction.

Full-size DOI: 10.7717/peerj.4732/fig-9

Figure 8 AUC vs. the number of frames for several non-temporally-aware classifiers (five features).

Full-size DOI: 10.7717/peerj.4732/fig-8
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LIQR classification
The first frame-based approach to temporally-aware classification is now considered:

that of the construction of the LIQR features. The results corresponding to the ROC analysis

are depicted in Fig. 9. The best result corresponds to the decision-tree classifier that has

an AUC of 85.2%. For most of the classifiers, the LIQR approach attains slightly better

results than does the equivalent NTA classifier: a mean enhancement of about five points

(in %) is achieved in the AUC value compared to the reduced baseline (NTA-5).

SW classifiers
By considering the five most relevant features and a seven-frame window size, the SW

method (SW7-5) is examined and its results compared through the ROC analysis, as

presented in Fig. 10. The best result corresponds to the decision-tree classifier, with an

AUC of 86.7%, which means an enhancement of about six points (in %) compared to

the reduced baseline (NTA-5), and an enhancement of about three points (in %)

compared to the original baseline (NTA-18).

The third frame-based approach to temporally-aware classification is now considered:

the recurrent SWmethod. The results corresponding to the ROC analysis are depicted

in Fig. 11, when five features (r = 5) and an 11-frame window size (w = 11) are considered

(RSW11-5). The best result corresponds to the decision-tree classifier, which presents

an AUC of 72.7%. For most of the classifiers, the recurrent SW approach obtains

worse results than the equivalent NTA classifier, with a mean decrease of about 13 points

(in %) in the AUC.

Segment-based classifiers
The HMM is the first segment-based approach to the introduction of the temporal

information into the classification process. The HMM takes a sound segment and

Figure 10 ROC analysis for non-temporally-aware classifiers using the sliding window method. Full-size DOI: 10.7717/peerj.4732/fig-10
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attempts to classify it as a whole, without any framing. The results corresponding to its

ROC analysis are depicted in Fig. 12. In this figure, the five most relevant features (r = 5)

are considered. The HMM over a segment defined by a SW (HMM–SW) of size w = 1,

that is, over a single frame, obtains the best results among the HMM classifiers, with

an AUC of 63.2% which, comparatively, is a poor result. Although the HMM is the

Figure 11 ROC analysis for non-temporally-aware classifiers using the recurrent sliding window

method. Full-size DOI: 10.7717/peerj.4732/fig-11

Figure 12 ROC analysis for HMM and RNN classifiers.

Full-size DOI: 10.7717/peerj.4732/fig-12
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classifier recommended in the MPEG-7 standard, it is clearly superseded by other NTA

techniques.

The second segment-based approach to temporally-aware classification is now

considered: the RNN. Using a hidden layer with H = 10 neurons, five features (r = 5),

and 15 frames (w = 15), that is, a number of T = 14 previous intermediate outputs, an

AUC of 61.0% has been obtained. This result is also depicted in Fig. 12.

Finally, the ARIMA segment-based approach is considered. As stated before, a vector

AR (VAR) simplified model is considered, where the five most relevant features are used

(r = 5). The first step is to determine the order of the VAR model (a) using the AIC

criterion on the training dataset, as was described in the “Method” section. The results

are depicted in Fig. 13, where the AIC values have been normalized to the [0,1] interval.

A white point is drawn at every k-th row indicating the weighted AR mean order ak

for the k-th ROI pattern. The optimum value for the VAR order model is represented

in the figure with a vertical white line, and has the value a = 3.36. Its closest integer is

used as the VAR order model, a = 3.

Once the ARIMA models are determined, their parameters are classified using NTA

classifiers and their performances are also compared using the ROC analysis, as illustrated in

Fig. 14. The best result corresponds to the decision-tree classifier with an AUC of 62.0%.

Comparing classifiers

Hitherto, partial results have been presented for every temporally-aware method. In order

to obtain an overall perspective, a comparison of the six different methods proposed

for temporally-aware classifiers is presented in Fig. 15 and Table 6, where the NTA

Figure 13 AIC values for ROI segment patterns. Full-size DOI: 10.7717/peerj.4732/fig-13
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classifiers (original and reduced baselines) are also considered for reasons of contrast (best

results are shown in bold).

Additionally, a ROC analysis has also been accomplished for every method and its

results are depicted in Fig. 16. From these results, it can be observed that the best

performance corresponds to the SW approach (with an underlying decision-tree

Figure 15 AUC values for temporally-aware methods (five features).

Full-size DOI: 10.7717/peerj.4732/fig-15

Figure 14 ROC analysis for temporally-aware classifiers using ARIMA models. Full-size DOI: 10.7717/peerj.4732/fig-14
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classifier). It shows the best AUC metric with a value of 86.7%. The SWmethod also

has the best values for almost every performance metric. The only exceptions are the

precision and the F1 score (which depends on precision) which, although they present the

highest values for the LIQR method, also present good figures for the SWmethod.

Bootstrap analysis
Using bootstrap analysis on the testing dataset, the pdf of the classification performance

metrics can be obtained. The results, focusing on the best temporally-aware method

(SW) and considering the AUC pdfs for different window sizes, are shown as a colour map

in Fig. 17. The colours represent the probability density for every AUC given a certain

window size.

Figure 16 ROC analysis for temporally-aware methods.

Full-size DOI: 10.7717/peerj.4732/fig-16

Table 6 Summary of performance metrics (five features).

Method Features Frames Best classifier ACC PRC SNS SPC F1 GM AUC

NTA-18 (original baseline) 18 – MinDis 84.12 55.37 76.95 90.03 64.40 83.23 83.49

NTA-5 (reduced baseline) 5 – DecTr 86.82 76.45 72.60 88.77 74.47 80.28 80.68

LIQR 10 (2 � 5) – DecTr 91.88 79.25 77.49 92.94 78.36 84.86 85.22

SW 35 (7 � 5) 7 DecTr 92.59 74.11 79.07 94.28 76.51 86.34 86.67

RSW 55 (11 � 5) 11 DecTr 83.41 57.74 58.52 86.96 58.13 71.34 72.74

HMM-F 5 – – 75.41 44.64 40.62 82.78 42.53 57.99 61.70

HMM–ROI 5 – – 71.88 44.87 42.69 75.80 43.75 56.88 59.25

HMM–SW 5 1 – 72.35 47.08 45.09 81.26 46.06 60.53 63.18

RNN 75 (15 � 5) 15 – 66.59 47.81 40.01 81.91 43.58 57.27 60.98

ARIMA 75 (3 � 52) – DecTr 80.94 38.75 38.47 85.50 38.61 57.35 61.98

Note:
Best results are shown in bold.
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Let us now centre on the SWmethod using the seven-frame optimum window size

(as obtained using the validation dataset) and the reduced number of five features. This case,

which is denoted as SW7-5, is now compared to the two NTA baselines: one with the

original number of features (NTA-18), and the second with the reduced number of features

(NTA-5). The pdfs for the AUC in these three cases are depicted in Fig. 18.

Not only can Bootstrap analysis offer the confidence interval for every classification

performance metric, but it can also, even more importantly, show how much the

optimum temporally-aware classification method (sliding window SW7-5) improves the

results above the two NTA baselines (NTA-5 and NTA-18). The results for a 95%

confidence level are shown in Table 7.

The AUC improvement over the two mentioned baselines obtained via the SW

method for various window sizes is depicted in Fig. 19. In this figure, the 95% confidence

interval is also shown.

Classification with the optimum number of features
Separate optimization
It is now time to turn our attention to the cases when the number of features is not

such an important issue and it is affordable to use the r = 11 most relevant features.

This number was obtained through an optimization procedure presented above.

Figure 17 Colour map for the probability density function of the AUC vs. window size. Results

obtained using bootstrap analysis of the sliding window method.

Full-size DOI: 10.7717/peerj.4732/fig-17
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Now, again, the next issue is to run a second and separate optimization process to

determine the optimum number of frames for the methods requiring such a parameter.

For this purpose, the AUC on the validation dataset is used, which is represented in Fig. 20

for several temporally-aware methods (using the best underlying NTA classifiers) as a

function of the number of frames. In this figure, instead of the AUC absolute value, the

increase of the AUC compared to the w = 1 case is depicted.

From this figure, by using a window size between three and nine in the SWmethod, the

AUC value can be enhanced by about three points (in %). With these considerations, a

three-frame SW (w = 3) has been selected (its optimum value, denoted in the figure

by a filled blue marker). Similarly, the optimum number of frames for the remaining

methods are RSW: three; HMM–SW: 11; and RNN: three.

Repeating the analysis of the various temporally-aware methods on the testing dataset,

now using 11 features, the results obtained are presented in Fig. 21 and Table 8, where

Figure 18 Probability density function of the AUC for the optimum sliding window case (with

reduced number of features). Comparison to the original and reduced baselines.

Full-size DOI: 10.7717/peerj.4732/fig-18

Table 7 Performance improvement of the sliding window method (five features, seven frames).

Performance improvement ACC PRC SNS SPC F1 GM AUC

Baseline NTA-5 Mean 5.77 -2.33 6.50 5.51 2.06 6.08 6.01

Conf. Int. ±2.70 ±10.3 ±12.3 ±2.08 ±9.94 ±7.38 ±6.72

Baseline NTA-18 Mean 8.46 18.73 2.20 4.25 12.12 3.15 3.22

Conf. Int. ±2.82 ±6.94 ±11.9 ±1.93 ±7.98 ±7.05 ±6.51
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the NTA classifiers (original and optimum baselines) are also considered for reasons of

contrast (best results are shown in bold).

Additionally, an ROC analysis has also been accomplished for every method and its

results are depicted in Fig. 22. From these results, it can be observed that the best

performance corresponds to the SW (and to the RSW) approach (with an underlying

minimum distance). It shows the best AUC metric with a value of 88.4%. The SW

Figure 19 AUC improvement for the sliding window method with reduced number of features.

Comparison to the reduced (A) and original (B) baselines.

Full-size DOI: 10.7717/peerj.4732/fig-19

Figure 20 AUC vs. the number of frames for several non-temporally-aware classifiers (11 features).

Full-size DOI: 10.7717/peerj.4732/fig-20
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(and RSW) method also has the best values for every performance metric. Although

SWand RSWmethods show exactly the same performance metrics on the testing dataset,

the SW has been chosen as the best method for two reasons: it offers slightly better

AUC on the validation dataset; and it provides better performance for non-optimum

window sizes (see Fig. 20).

Bootstrap analysis can now offer the confidence interval on how much the optimum

temporally-aware classification method (sliding window SW3-11) improves the results

above the two NTA baselines (NTA-11 and NTA-18). The results for a 95% confidence

level are shown in Table 9.

Figure 21 AUC values for temporally-aware methods (11 features).

Full-size DOI: 10.7717/peerj.4732/fig-21

Table 8 Summary of performance metrics (11 features).

Method Features Frames Best classifier ACC PRC SNS SPC F1 GM AUC

NTA-18 (original baseline) 18 – MinDis 84.12 55.37 76.95 90.03 64.40 83.23 83.49

NTA-11 (reduced baseline) 11 – MinDis 88.00 77.67 81.03 92.50 79.31 86.58 86.77

LIQR 22 (2 � 11) – DecTr 89.77 75.89 74.59 91.49 75.23 82.61 83.04

SW 33 (3 � 11) 3 MinDis 90.47 79.30 82.85 93.93 81.03 88.21 88.39

RSW 33 (3 � 11) 3 MinDis 90.47 79.30 82.85 93.93 81.03 88.21 88.39

HMM-F 11 – – 78.24 21.77 50.42 85.20 48.13 65.54 67.81

HMM–ROI 11 – – 72.59 85.96 48.39 76.03 61.92 60.66 62.21

HMM–SW 11 11 – 75.29 45.56 37.02 83.82 39.16 55.70 60.42

RNN 33 (3 � 11) 3 – 71.06 48.69 47.44 84.56 48.06 63.34 66.00

ARIMA 363 (3 � 112) – MinDis 89.29 48.03 47.88 90.81 47.96 65.94 69.34

Note:
Best results are shown in bold.
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Joint optimization
In the previous section the numbers of features and frames were separately optimized,

that is, firstly the optimum number of features was determined and, subsequently, the

optimum window size for that value was derived.

However, it is also possible to run a joint optimization process to simultaneously

seek the optimum values for both parameters. By running this process on the validation

set for the best temporal-aware method (SW), a set of AUC values for each pair of

values of the parameters (number of features and window size) is obtained. The result

is shown in Fig. 23 in the form of several lines (one per window size) that depict the

increase of the AUC compared to the w = 1 case. In this figure, the maximum values

(optimums in the number of features dimension) are represented by small filled circles.

This figure also confirms that the selection of the five most relevant features (r = 5)

provides a good balance between the AUC and the number of features (a result previously

derived from Fig. 6).

An alternative way to represent the joint optimization process is to employ a

bidimensional colour map, as in Fig. 24, which depicts the increase of AUC for every pair

of values (number of features, window size). The optimums in the number of features

Table 9 Performance improvement of the sliding window method (11 features, three frames).

Performance improvement ACC PRC SNS SPC F1 GM AUC

Baseline NTA-5 Mean 2.47 1.64 1.85 1.43 1.74 1.66 1.64

Conf. Int. ±2.76 ±3.76 ±11.4 ±1.76 ±6.63 ±6.62 ±6.20

Baseline NTA-18 Mean 6.36 23.94 6.06 3.91 16.70 5.08 4.98

Conf. Int. ±2.94 ±5.28 ±11.6 ±1.85 ±7.02 ±6.71 ±6.25

Figure 22 ROC analysis for temporally-aware methods (11 features).

Full-size DOI: 10.7717/peerj.4732/fig-22
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Figure 23 Increasing the AUC values for the sliding window method with a varying number of

features and window sizes. Full-size DOI: 10.7717/peerj.4732/fig-23

Figure 24 Colour map of the increase in the AUC values for the sliding window method.

Full-size DOI: 10.7717/peerj.4732/fig-24
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dimension are marked with a black spot, while the optimums in the window size

dimension are denoted by an empty circle. The overall optimum value, which is indicated

with a cyan filled circle, is reached for eight features and a seven-frame window (SW7-8).

In order to ascertain the impact of optimizing in each direction, Fig. 25 has been

constructed. Given a certain number of features (x-coordinate for the corresponding blue

point), the AUC can be optimized by changing the window size, given by a vertical

movement in Fig. 24, and the maximum value is the y-coordinate for that blue point.

Alternatively, given a certain window size (x-coordinate for the corresponding green

point), the AUC can then be optimized through the selection of the proper number of

features, given by a horizontal movement in Fig. 24, and the maximum value is the

y-coordinate for that green point. It can be seen that, in almost every case, the

optimization of the window size offers greater improvement than the optimization of

the number of features.

In Fig. 23, the AUC is plotted as a function of the number of extracted (primary)

features, which has been denoted as D. However, the SWmethod adds other C = w ·D
constructed (secondary or derived) features. Therefore, the total number of features

defining the dimension of the space for classification purposes is D + C, and this is

the value which has to be considered and kept as low as possible in order to reduce

Figure 25 Impact of optimizing the AUC by selecting the window size or the number of features.

Full-size DOI: 10.7717/peerj.4732/fig-25
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the computing requirements. For this reason, it is worth redrawing this figure in

terms of the total number of features. The result is shown in Fig. 26. It can be seen

that, if the total number of features is a concern, then the green line (corresponding

to w = 3 frames) has a suboptimum (a secondary peak identified with an empty

green circle) corresponding to five extracted features, that is, 15 total features.

The corresponding classifier (SW3-5) should also be considered as a possible

alternative.

Summary of results
Throughout the previous subsections, several classification methods have been identified.

Firstly, there are three NTA classifiers using: the original number of features (NTA-18),

the reduced or balanced number of features (NTA-5) and the optimum number of

features (NTA-11). These three classifiers have been used as the baselines to determine the

improvement achieved using other procedures. Later, when considering temporally-aware

methods, the SWmethod has shown itself to be the most efficient. The determination

of the window size in a separate optimization process identifies a classifier for a

balanced number of (primary) features (SW7-5) and another classifier for the optimum

number of features (SW3-11). On the other hand, the joint optimization of the number

of features and frames leads to the detection of an optimum method (SW7-8) or of a

classifier that balances the performance metric and the dimension of feature space

(SW3-5). Table 10 summarizes these seven classification methods.

Figure 26 Increase of the AUC values for the sliding window method as a function of the dimension

of feature space (D + C). Full-size DOI: 10.7717/peerj.4732/fig-26
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Using bootstrap analysis, the pdf of each performance metric for each classification

method can be estimated. The results regarding AUC are shown in Fig. 27 with the

classification methods ordered in terms of the increasing number of total features. It

can be seen that all the SW classifiers (except the SW3-5) obtain very similar results

and improve the original baseline by about five points (NTA-18).

However, by considering another classification performance metrics, different results

can be obtained. For instance, Fig. 28 depicts the comparison of the bootstrap analysis

when the accuracy (ACC) is considered. Now all the SW classifiers clearly outperform

the NTA methods. The best classifier (SW7-8), which was obtained by a joint

optimization process, increases the original baseline (NTA-18) by more than 10 points.

In order to compare each classification method using various performance metrics, a

box plot has been drawn (Fig. 29). For each metric and each method, four elements

Table 10 Summary of the best classification methods.

Method Best classifier Features Temporally aware Optimization Features concern

NTA-18 MinDis 18 No No Original

NTA-5 DecTr 5 No No Balanced

NTA-11 MinDis 11 No Only features No

SW7-5 DecTr 35 (7 � 5) Yes Separate Balanced

SW3-11 MinDis 33 (3 � 11) Yes Separate No

SW3-5 DecTr 15 (3 � 5) Yes Joint Balanced

SW7-8 DecTr 56 (7 � 8) Yes Joint No

Figure 27 Probability density function of the AUC. Full-size DOI: 10.7717/peerj.4732/fig-27
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are drawn: a filled box from the 25% to 75% percentiles; an upper vertical line from

the 75% percentile to the upper limit of the confidence interval; a lower vertical line

Figure 28 Probability density function of the ACC. Full-size DOI: 10.7717/peerj.4732/fig-28

Figure 29 Box plot for each performance metric. Full-size DOI: 10.7717/peerj.4732/fig-29
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from the 25% percentile to the lower limit of the confidence interval; and a horizontal

black line corresponding to the median value.

This same information is also presented in Table 11 (best results are shown in bold). Using

AUC as the single performance metric, the overall best classifier is the SW3-11 which

outperforms the baseline by about five points (requiring 33 features instead of 18). However,

the SW7-8 classifier (requiring 56 features) outperforms SW3-11 in terms of accuracy,

precision, specificity and F1 score, and stands as the second best in terms of AUC. On the other

hand, if the number of features is the greatest concern, then the NTA-11 classifier (requiring

11 features), still outperforms the original baseline with a much reduced number of features.

By considering not only the mean value of the improvements but also their statistical

distribution, the confidence interval for each metric and method can be derived. These

results are shown in Table 12, where the probability that the chosen method outperforms

the original baseline (NTA-18) is also presented (best results are shown in bold). It can be

seen that for almost every metric, the selected method outperforms the original NTA

classifier with a high probability.

DISCUSSION
We show that instance selection for the classification of the sounds in the training

dataset offers better results than do cross-validation techniques. This is consistent with

Table 11 Performance improvement (%) over the original baseline (NTA-18).

Method Features Statistic ACC PRC SNS SPC F1 GM AUC

NTA-5 5 Mean 2.69 21.06 -4.31 -1.27 10.06 -2.94 -2.79
NTA-11 11 Mean 3.89 22.30 4.21 2.48 14.96 3.42 3.34

SW3-5 15 (3 � 5) Mean 7.05 20.60 -2.13 2.44 10.95 -0.06 0.16

SW3-11 33 (3 � 11) Mean 6.36 23.94 6.06 3.91 16.70 5.08 4.98

SW7-5 35 (7 � 5) Mean 8.46 18.71 2.20 4.25 12.12 3.15 3.22

SW7-8 56 (7 � 8) Mean 9.29 28.55 3.83 4.32 17.87 4.07 4.07

Note:
Best results are shown in bold.

Table 12 Performance improvement (%) over the original baseline (NTA-18) with confidence

interval.

Method Features Statistic ACC PRC SNS SPC F1 GM AUC

NTA-11 11 Mean 3.89 22.30 4.21 2.48 14.96 3.42 3.34

Conf. Int. ±2.94 ±5.12 ±11.5 ±1.90 ±6.94 ±6.72 ±6.29

Pr. Outperf. 99.42 99.83 77.52 99.38 99.82 85.22 86.23

SW3-11 33 (3 � 11) Mean 6.36 23.94 6.06 3.91 16.70 5.08 4.98

Conf. Int. ±2.94 ±5.28 ±11.6 ±1.85 ±7.02 ±6.71 ±6.25

Pr. Outperf. 100 99.97 86.08 100 99.91 93.81 94.56

SW7-8 56 (7 � 8) Mean 9.29 28.55 3.83 4.32 17.87 4.07 4.07

Conf. Int. ±2.71 ±10.3 ±12.0 ±1.91 ±9.01 ±7.07 ±6.54

Pr. Outperf. 100 100 74.67 99.99 99.86 88.02 89.51

Note:
Best results are shown in bold.
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several other studies that have shown that selective learning helps reduce the effect of

the noise in the data (Raman & Ioerger, 2003; Olvera-López et al., 2010). As has been

addressed in Borovicka et al. (2012), many instances in the training set may prove to be

useless for classification purposes and they commonly do not improve the predictive

performance of the model and may even degrade it. Despite the noise in the data, certain

researchers (Blum & Langley, 1997) have proposed a further two reasons for instance

selection. The first reason arises when the learning algorithm is computationally intensive;

in this case, if sufficient training data is available, it makes sense to learn from only a

limited number of examples for purposes of computational efficiency. Another reason

arises when the cost of labelling is high (e.g., when labels must be obtained from experts).

In our case, the identification of the first and final frames of the ROIs is a burdensome task

which can be minimized by using fewer examples in the training dataset.

Furthermore, from the results, the decision-tree method appears as one of the best

classifiers in many temporally-aware methods. This fact is consistent with other studies

where non-speech sounds (Pavlopoulos, Stasis & Loukis, 2004), or more specifically,

environmental sounds (Bravo, Berrı́os & Aide, 2017) are considered.

Additionally, the temporally-aware classifiers have revealed that they can outperform

their NTA counterparts. Several authors (Dietrich, Palm & Schwenker, 2003; Salamon et al.,

2016) have reached similar results in the field of bioacoustics and argue that the

constructed features can better capture spectro-temporal shapes that are representative of

the various sound classes.

The SWmethod attained the best results in our tests, which is also consistent with other

works (Salamon & Bello, 2015) that shows that feature learning is more effective when

the learning is performed jointly on groups of frames. In their study the authors have

reported very similar results for various window sizes. Our study, however, which has

comprised a larger set of values for window size, concludes that there is an optimum

region for the optimum number of frames and that overly large values of this parameter

can even degrade the classification performance. The results attained by the SW

method even outperformed the HMM usually employed in speech recognition

applications. This result is mainly due to the fact that the HMM is a classifier that

uses sub-word features, which are not suitable for non-speech sound identification

since environmental sounds lack the phonetic structure that speech possesses (Cowling &

Sitte, 2003). It has been found that the optimum classifier (SW3-11) increases the AUC

by approximately five points and obtains a noteworthy overall accuracy of 90.5% (six

points higher than the baseline). Since the level of background noise in the recordings

is high, this can be considered a remarkable result. In Salamon & Bello (2015), an increase

of 1.5 points in the AUC and five points in accuracy were reported for an eight-frame

window size.

The outperformance using these methods may only be moderate but it is reliably

consistent. The probability that the selected temporally-aware methods improve their

NTA counterparts is extremely high (more than 90% in most cases).

Conversely, the cost of more complex computing due to the higher number of features

required in the optimum SW3-11 method has been considered in detail (Luque et al.,
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2017). Using 33 (3� 11) features almost double the number of the original 18 parameters

which affects processing efforts in three different aspects. The first issue involves the

time required for the construction of the new features that, for the three-frames SW

optimummethod, is approximately 10 ms measured on a conventional desktop computer.

This time is negligible compared to the classification time (detailed below) and to the

frame length (10 ms, 1,000 times higher).

Additionally employing a greater number of features leads to higher processing

requirements in the task of training classifiers. By doubling the number of features, the

time needed to train classifiers is also approximately doubled, with values of 30 ms for

the minimum distance and of 800 ms for the decision tree. Although these values are

greater than the 10 ms window length they have a limited effect on the overall

classification process because classifiers are trained off-line only once and, therefore,

they do not affect real-time performances.

A third issue regarding processing efforts is the effect of employing a greater number

of features on classification times. Using 33 features instead of the original 18 parameters

approximately increases the classification time of a frame by 5% with absolute values

of approximately 2 ms for the minimum distance and 0.8 ms for the decision tree. Hence,

a very limited rise in the computing effort is demanded when the temporally-aware

methods are applied.

Another issue to be considered is the ability of the proposed method to identify

when within each audio recording the call is located. It could be thought that SW

classifiers are going to blur the edges of audio events by using features obtained over a

wider time span. However, these classifiers and certain other temporally-aware methods

can still sharply identify the events. The SWmethod features a frame considering

preceding and subsequent frames, but it still independently classifies every frame,

thereby allowing the precise identification of calls as has been shown in several

independent studies (Mesaros, Heittola & Virtanen, 2016; Stowell & Clayton, 2015; Foggia

et al., 2015).

CONCLUSION
Changes in the sounds of anurans can be used as an indicator of climate change.

Algorithms and tools for the automatic classification of the different classes of sounds

could be developed for this purpose. In this paper, six different classification methods

based on the data-mining domain have been proposed, which try to take advantage of

the temporal behaviour of sound. The definition and comparison of this behaviour is

undertaken using several approaches.

A detailed analysis of the classification errors shows that most errors occur when the

recordings are very noisy. Additionally, other misclassifications appear when a recording,

labelled as belonging to a certain class, is in fact made up of two or more overlapping

sounds: one belonging to the true class and the others to a false class.

Firstly, it has been shown that instance selection for the determination of the sounds in

the training dataset offers better results than do cross-validation techniques.
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Additionally, the temporally-aware classifiers have revealed that they can obtain a better

performance than their NTA counterparts. The SWmethod attained the best results in

our tests, and even outperformed the HMM usually employed in speech recognition

applications.

For classifiers based on a given number of features, the optimization of the window size

can increase the AUC value by up to 12 points (in %), while the optimization of the

number of features only leads to an AUC increase of fewer than three points.

If the number of total features is of no great concern, then the optimum classifier for

our dataset is based on 11 original features and a window with three frames (SW3-11),

which increases the AUC by about five points and obtains a noteworthy overall accuracy of

90.5%: a result even more significant when one considers the high level of background

noise affecting the sounds under analysis.

On the other hand, if the number of features has to be minimized due to low

computing capacity then the optimization of the number of features in NTA classifiers

presents the best method, with an optimum for 11 features (NTA-11) thereby achieving an

increase in the AUC of three points. If a further reduction in the number of features is

required, a good compromise is found in the use of only five features (NTA-5) instead of

the original 18, which reduces the number of parameters to less than one third while it

reduces the AUC performance by only three points.
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Bravo CJC, Berrı́os RÁ, Aide TM. 2017. Species-specific audio detection: a comparison of

three template-based detection algorithms using random forests. PeerJ Computer Science 3:e113

DOI 10.7717/peerj-cs.113.

Brookes M. 2006. VOICEBOX: a speech processing toolbox for MATLAB. Available at

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html.

Chawla NV. 2005. Data mining for imbalanced datasets: an overview. In: Maimon O, Rokach L,

eds. Data Mining and Knowledge Discovery Handbook. Boston: Springer, 853–867.

Cover TM, Hart PE. 1967. Nearest neighbour pattern classification. IEEE Transactions on

Information Theory 13(1):21–27 DOI 10.1109/TIT.1967.1053964.

Cowling M, Sitte R. 2003. Comparison of techniques for environmental sound recognition.

Pattern Recognition Letters 24(15):2895–2907 DOI 10.1016/S0167-8655(03)00147-8.

Luque et al. (2018), PeerJ, DOI 10.7717/peerj.4732 37/40

http://dx.doi.org/10.7717/peerj.4732#supplemental-information
http://dx.doi.org/10.7717/peerj.4732#supplemental-information
http://dx.doi.org/10.7717/peerj.4732#supplemental-information
http://dx.doi.org/10.7717/peerj.103
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1090/s0002-9904-1967-11751-8
http://dx.doi.org/10.1016/S0004-3702(97)00063-5
http://dx.doi.org/10.7717/peerj-cs.113
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1016/S0167-8655(03)00147-8
http://dx.doi.org/10.7717/peerj.4732
https://peerj.com/


Diaz JJ, Nakamura EF, Yehia HC, Salles J, Loureiro A. 2012. On the use of compressive sensing

for the reconstruction of anuran sounds in a wireless sensor network. In: IEEE International

Conference on Green Computing and Communications (GreenCom). New York: IEEE, 394–399.

Dietrich C, Palm G, Schwenker F. 2003. Decision templates for the classification of bioacoustic

time series. Information Fusion 4(2):101–109 DOI 10.1016/s1566-2535(03)00017-4.

Dietterich TG. 2002. Machine learning for sequential data: a review. In: Caelli T, Amin A,

Duin RPW, de Ridder D, eds. Structural, Syntactic, and Statistical Pattern Recognition.

Berlin, Heidelberg: Springer, 15–30.

Dobson AJ, Barnett A. 2008. An Introduction to Generalized Linear Models. Boca Raton:

CRC Press.

DuKL, SwamyMNS. 2013.Neural Networks and Statistical Learning. Boston: Springer Science and

Business Media.

Efron B, Tibshirani RJ. 1994. An Introduction to the Bootstrap. Boca Raton: CRC Press.

Esling P, Agon C. 2012. Time-series data mining. ACM Computing Surveys 45(12):1–34

DOI 10.1145/2379776.2379788.

Fay RR, ed. 2012. Comparative Hearing: Fish and Amphibians. Vol. 11. Boston: Springer Science &

Business Media.

Foggia P, Petkov N, Saggese A, Strisciuglio N, Vento M. 2015. Reliable detection of audio

events in highly noisy environments. Pattern Recognition Letters 65:22–28

DOI 10.1016/j.patrec.2015.06.026.

Fonozoo.com. 2017. FonoZoo. Available at http://www.fonozoo.com/.

Gonzalez-Abril L, Angulo C, Nuñez H, Leal Y. 2017.Handling binary classification problems with

a priority class by using support vector machines. Applied Soft Computing 61:661–669

DOI 10.1016/j.asoc.2017.08.023.
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