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The quantum Zeno and anti-
Zeno effects with strong system-
environment coupling
Adam Zaman Chaudhry

To date, studies of the quantum Zeno and anti-Zeno effects focus on quantum systems that are weakly 
interacting with their environment. In this paper, we investigate what happens to a quantum system 
under the action of repeated measurements if the quantum system is strongly interacting with its 
environment. We consider as the quantum system a single two-level system coupled strongly to a 
collection of harmonic oscillators. A so-called polaron transformation is then used to make the problem 
in the strong system-environment coupling regime tractable. We find that the strong coupling case 
exhibits quantitative and qualitative differences as compared with the weak coupling case. In particular, 
the effective decay rate does not depend linearly on the spectral density of the environment. This then 
means that, in the strong coupling regime that we investigate, increasing the system-environment 
coupling strength can actually decrease the effective decay rate. We also consider a collection of two-
level atoms coupled strongly with a common environment. In this case, we find that there are further 
differences between the weak and strong coupling cases since the two-level atoms can now indirectly 
interact with one another due to the common environment.

By repeatedly measuring a quantum system very frequently, the evolution of the quantum system can be slowed 
down, an effect that has been dubbed as the Quantum Zeno effect (QZE)1–22. On the other hand, if the quantum 
system is measured repeatedly not very rapidly, the measurements can actually speed up the temporal evolution. 
This effect, the opposite of the QZE, is known as the Quantum anti-Zeno effect (QAZE)23–28. Both the QZE and 
the QAZE have attracted tremendous theoretical and experimental interest due to their great importance for 
emerging quantum technologies as well as their fundamental theoretical interest. However, it is worth noting 
that the emphasis in studies performed on the QZE and the QAZE to date has been on the population decay 
of quantum systems. In these studies, the quantum system is prepared in an excited state, and then the sys-
tem is repeatedly checked to see if the system is still in the excited state or not23–34. It is well-known then that 
the decay rate of the quantum system depends on the overlap of the spectral density of the environment and a 
measurement-induced level width23. Depending on this overlap, decreasing the measurement interval can lead to 
a decrease (the QZE) or an increase (the QAZE) of the decay rate.

While studies of the QZE and the QAZE performed to date by and large focus on the population decay model 
where only decay takes place, we also know from the study of open quantum systems that, in general, quantum 
systems interacting with their environment also undergo dephasing. To this end, the QZE and the QAZE were 
studied for the exactly solvable pure dephasing model in ref. 35 where it was shown that the QZE and the QAZE 
are significantly different for the pure dephasing case as compared with the population decay case. This study 
was then extended to arbitrary system-environment models in ref. 36 where a general framework for calculating 
the effective decay rate of the system for an arbitrary system-environment model was presented. It was found 
that the effective decay rate can be written as an overlap integral of the spectral density of the environment and 
an effective ‘filter function’ that depends on the system-environment model at hand, the measurement interval, 
and the measurement being repeatedly performed. This general formalism was then used to study the QZE and 
the QAZE when both dephasing and population decay are present. For example, repeated measurements for the 
paradigmatic spin-boson model37 were considered and it was shown that the presence of both population decay 
and dephasing make the results differ considerably both quantitatively and qualitatively as compared to the pure 
population decay case.
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It should be pointed out, however, that the results presented in ref. 36 were derived under the assumption that 
the system-environment coupling is weak. This is consistent with studies performed for the population decay 
models, where the effective decay rate can be derived using time-dependent perturbation theory24. On the other 
hand, the behavior of a quantum system, subjected to repeated measurements, that is interacting strongly with its 
environment is not well understood38. For instance, one could ask whether or not the effective decay rate is still 
an overlap integral of the spectral density function and a ‘filter’ function. This paper intends to answer precisely 
such questions by looking at what happens to the spin-boson model under the action of repeated measurements 
if the central two-level system is interacting strongly with a surrounding environment of harmonic oscillators. 
Since the system-environment coupling is strong, the system-environment interaction cannot be treated pertur-
batively, and thus the treatment given in ref. 36 is no longer applicable. Our strategy then is to perform a uni-
tary transformation, known as the polaron transformation, on the system-environment Hamiltonian39, 40, 42–44, 46. 
One then finds that the system and the environment can end up interacting weakly in this new ‘polaron’ frame. 
Perturbation theory can then be applied and the effect of repeated measurements is analyzed. We find that the 
analysis of the QZE and QAZE are in general very different compared to the population decay case. For example, 
it is clear that for the usual population decay case, increasing the system-environment strength increases the effec-
tive decay rate. However, for the strong system-environment regime that we investigate, we find that increasing 
the system-environment coupling regime can actually decrease the effective decay rate. We also study the QZE 
and the QAZE for more than one two-level system interacting with a common environment. For the weak cou-
pling regime, the effective decay rate is directly proportional to the number of two-level systems coupled to the 
common environment36. On the other hand, for the strong system-environment coupling regime, we find that the 
effective decay rate for more than one two-level system is very different compared to the single two-level system 
case. The indirect interaction between the two-level systems due to their interaction with a common environment 
now plays a very important role, and the effective decay rate is no longer simply proportional to the number of 
two-level systems coupled to the common environment.

Results
Spin-boson model with strong system-environment coupling.  We start with the paradigmatic 
spin-boson model Hamiltonian37, 47, 48 which we write as (we set ħ = 1 throughout)

∑ ∑ε σ σ ω σ= +
∆

+ + +† ⁎ †H b b g b g b
2 2

( ),
(1)L z x

k
k k k z
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k k k k

where the system Hamiltonian is σ σ= +ε ∆HS L z x, 2 2
, the environment Hamiltonian is ω= ∑ †H b bB k k k k, and the 

system-environment coupling is σ= ∑ +⁎ †V g b g b( )L z k k k k k . ε is the energy level difference of the two-level system, 
Δ is the tunneling amplitude, ωk are the frequencies of the harmonic oscillators, bk and †bk  are the annihilation and 
creation operators for the harmonic oscillators, and σx and σz are the standard Pauli operators. The ‘L’ denotes the 
‘lab’ frame. If the system-environment coupling is strong, we cannot treat the system-environment coupling per-
turbatively. Furthermore, the system-environment correlation effects are significant as well in general. To moti-
vate our basic approach in this strong coupling regime, we note that if the system tunneling amplitude is negligible 
and the initial system state is an eigenstate of σz, then, even though the system and the environment are strongly 
interacting, the evolution of the system state is negligible. This then means that we should look to unitarily trans-
form HL such that the effective system-environment coupling contains the tunneling amplitude Δ. This unitary 
transformation is provided by the ‘polaron’ transformation, whereby the system-environment Hamiltonian in this 
new ‘polaron’ frame becomes = χσ χσ−H e H eL
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39–46. The system-environment 

Hamiltonian in the polaron frame is then H = HS + HB + V, where σ= εHS z2
, ω= ∑ †H b bB k k k k , and 

σ σ= +∆
+ −

†V X X[ ]
2

, with = χX e  (see Methods for details). Now, if the tunneling amplitude is small, we can use 
time-dependent perturbation theory, treating V as the perturbation. This is the key idea to deal with the strong 
system-environment coupling regime. Although the system and the environment are strongly interacting, in the 
polaron frame, they are effectively interacting weakly. Let us now use this fact in order to calculate the survival 
probability, and thereby the effective decay rate. For concreteness, we assume that the initial state prepared is |↑〉, 
where σz|↑〉 = |↑〉. In other words, we consider the same initial state as that considered in the analysis of the usual 
population decay model23, 24. At time t = 0, we prepare the system state |↑〉, and we subsequently perform meas-
urements with time interval τ to check if the system state is still |↑〉 or not. The survival probability after time 
interval τ is then s(τ) = Trs,B[|↑〉〈↑|ρL(τ)], where ρ τ( )L  is the combined density matrix of the system and the envi-
ronment at time τ just before the projective measurement. Then,

τ ρ= ↑ ↑ .τ τ−s e e( ) Tr [ (0) ] (2)S B
iH

L
iH

,
L L

It is important to note that the initial state that we have prepared cannot simply be taken as the usual product 
state |↑〉〈↑|⊗ β−e Z/H

B
B , with = β−Z eTr [ ]B B

HB  since the system and the environment are strongly interacting and 
consquently there will be significant initial system-environment correlations49, 50. Rather, the initial state that we 
should consider is ρ = β

↑
−

↑P e P Z(0) /L
HL , where P↑ = |↑〉〈↑|, and = β

↑
−Z P eTr [ ]S B

H
,

L . Keeping this in mind, we use 
the polaron transformation to cast the expression for the survival probability τs( ) after the measurement at time 
τ in terms of quantities in the polaron frame. Doing so leads us to
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with the Hamiltonian H now in the polaron frame. Now, for small Δ, to a first approximation, the initial state in 
the polaron frame can be written as ⊗ β

↑
−P e Z/H

B
B . This is a similar approximation as the usual assumption that 

the initial system-environment state is ρ ρ⊗(0)S B since, in the polaron frame, the system and the environment are 
weakly interacting. We thus get

τ ρ τ= ↑ ↑ ↑ ↑ ⊗ = ↑ ↑τ β τ− −s e e Z e( ) Tr [ ( / ) ] Tr [ ( )], (4)S B
iH H

B
iH

S S,
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where ρ τ = ↑ ↑ ⊗τ β τ− −e e Z e( ) Tr [ ( / ) ]S B
iH H

B
iHB . Our objective then is to find ρ τ( )S , given the initial 

system-environment state ρ(0) = |↑〉〈↑| ⊗ β−e Z/H
B

B . We find that (see the Methods section)
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Here τ = τ−U e( )S
iHS , σ= ∆

+F1 2
, =B X1 , σ= ∆

−F2 2
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†F t U t F U t( ) ( ) ( )S S , =µ µ


†B t U t B U t( ) ( ) ( )B B  with 
= −U t e( )B

iH tB , ρ… = …Tr [ ( )]B B B  where TrB denotes taking trace over the environment, the environment corre-
lation functions are defined as =µν µ ν

 C t t B t B t( , ) ( ) ( )
B1 2 1 2 , and h.c. denotes the hermitian conjugate. Now, since 

the system-environment coupling in the polaron frame is weak, we can neglect the build up of correlations 
between the system and the environment. Thus, we can write the survival probability after time τ=t N , where N 
is the number of measurements performed after time t = 0, as τ τ= = ≡ τ τ−ΓS t N s e( ) [ ( )]N N( ) , thereby defining 
the effective decay rate τΓ( ). It then follows that τ τΓ = −

τ
s( ) ln ( )1 . Since we have the system density matrix in 

the polaron frame, we can work out the survival probability τs( ) and hence the effective decay rate τΓ( ). The result 
is that (see the Methods section for details)
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and the spectral density of the environment has been introduced as ∫ ω ω∑ … → …
∞g d J( ) ( )( )k k

2
0

. At this point, 
it is useful to compare this expression for the effective decay rate for the case of strong system-environment cou-
pling with the case of the usual population decay model where the effective decay rate is 
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23, 24. It should be clear that for the strong system-environment coupling case, 
the effective decay rate given by Eq. (6) has a very different qualitative behavior. In particular, the effective decay 
rate can no longer be regarded as simply an overlap integral of the spectral density of the environment with a 
sinc-squared function. Rather, the effective decay rate now has a very prominent non-linear dependence on the 
spectral density, leading to very different behavior as compared with the population decay case. For example, as 
the system-environment coupling strength increases, Φ t( )R  increases, and thus we expect Γ(τ) to decrease. To 
make this claim concrete, let us model the spectral density as ω ω ω= ω ω− −J G e( ) s

c
s1 / c, where G is a dimensionless 

parameter characterizing the system-environment coupling strength, ωc is the cutoff frequency, and s is the 
Ohmicity parameter48. For concreteness, we look at the Ohmic case (s = 1). In this case, ωΦ = +t t( ) ln(1 )R

G
c2
2 2 , 

while ωΦ = −t G t( ) tan ( )I c
1 , leading to

∫ ∫τ
τ

ε ω
ω

Γ =
∆

′
′ − ′

+ ′
.

τ −

dt dt t G t
t

( )
2

cos[ tan ( )]
(1 ) (9)

t
c

c
G

2

0 0

1

2 2 /2

The double integral can be worked out numerically. Results are shown in Fig.  1(a) for different 
system-environment coupling strengths G. For the strong system-environment regime that we are dealing with, 
it is clear that increasing the system-environment coupling strength G actually decreases the effective decay rate. 
This is in contrast with what happens in the weak system-environment regime for the paradigmatic population 
decay model [see Fig. 1(b)]. Here it is clear that increasing the system-environment coupling strength increases 
the effective decay rate as expected. It should also be noted that the behaviour of Γ(τ) as a function of τ allows 
us to identify the Zeno and anti-Zeno regimes. One approach is to simply say that if Γ(τ) decreases when τ 
decreases, we are in the Zeno regime, while if Γ(τ) increases if τ decreases, then we are in the anti-Zeno regime23, 
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30, 33, 35. From Fig. 1(b), it should also be noted that increasing the coupling strength does not change the quali-
tative behavior of the Zeno to anti-Zeno transition, but for the strong coupling regime [see Fig. 1(a)], while we 
only observe the Zeno effect for G = 1, both the Zeno and anti-Zeno effects are observed for G = 2.5. Similarly, as 
shown in Fig. 2(a), increasing the cutoff frequency for the strong coupling case decreases the effective decay rate, 
but the opposite behaviour is observed for the weak coupling case [see Fig. 2(b)].

In our treatment until now, we have considered the change in the system state due to the tunneling term. This 
tunneling term, due to its presence in σ σ= +ε ∆HS L z x, 2 2

, leads to the system state changing even if the system and 
the environment are not coupled to each other. Thus, an alternative way to quantify the effective decay rate would 
be to remove the evolution due to the system Hamiltonian (in the ‘lab’ frame) HS L,  before performing each meas-
urement since what we are really interested in is the change in the system state due to the system-environment 
interaction. A similar approach has been followed in refs 35, 36 and 51 Therefore, we now derive an expression for 
the effective decay rate of the system state when, just before each measurement, we remove the system evolution 
due to HS L, . The survival probability, after one measurement, is now (starting from the state |↑〉)

τ ρ= ↑ ↑ .τ τ τ τ− −s e e e e( ) Tr [( ) (0) ] (10)S B
iH iH iH iH

, L
S L L L S L, ,

Notice now the presence of τeiHS L,  and τ−e iHS L,  which remove the evolution of the system due to the system 
Hamiltonian before performing the measurement. Once again transforming to the polaron frame, we obtain

τ ρ= − ↓ ↓ ↑ ↑ ⊗τ τ τ τ− −s e e e e( ) 1 Tr [( ) ( ) ], (11)S B
iH iH

B
iH iH

,
S P S P, ,

Figure 1.  Variation of the effective decay rate with change in system-environment coupling strength. (a) Graph 
of Γ (at zero temperature) for the strong-coupling regime as a function of τ with the system-environment 
coupling strength G = 1 (red, dashed curve), G = 1.75 (dot-dashed, magenta curve), and G = 2.5 (solid, blue 
curve). Here we have used an Ohmic environment (s = 1), with ε = 1, ωc = 10, and Δ = 0.05. The initial state is 
|↑〉. (b) Behaviour of Γ (at zero temperature) for the usual weak system-environment coupling scenario leading 
to only population decay for G = 0.02 (dashed, red curve), G = 0.05 (dot-dashed, magenta curve), and G = 0.1 
(solid, blue curve). Here we have used again an Ohmic environment, the initial state is still |↑〉, ε = 1, and 
ωc = 10. Throughout, we use dimensionless units with  = 1.

Figure 2.  Variation of the effective decay rate with change in the cutoff frequency. (a) Graph of Γ (at zero 
temperature) for the strong-coupling regime as a function of τ with ω = 10c  (red, dashed curve), ω = 15c  (dot-
dashed, magenta curve), and ω = 20c  (solid, blue curve). Here we have used an Ohmic environment (s = 1), 
with ε = 1, G = 1, and Δ = 0.05. The initial state is |↑〉. (b) Behaviour of Γ (at zero temperature) for the usual 
weak system-environment coupling scenario leading to only population decay for ω = 10c  (red, dashed curve), 
ω = 15c  (dot-dashed, magenta curve), and ω = 20c  (solid, blue curve). Here we have used again an Ohmic 
environment, the initial state is still |↑〉, ε = 1, and G = 0.05.
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where σ σ σ= + +ε ∆
+ −

†H X X( )S P z, 2 2
 and ρ = β−e Z/B

H
B

B . Since we are assuming that the tunneling amplitude is 
small, the unitary operator τ−e iHS P,  can be expanded as a perturbation series. At the same time, τ−e iH  can also 
expanded as a perturbation series. Keeping terms to second order in the tunneling amplitude (see the Methods 
section), we find that now the modified decay rate Γn(τ) is

τ τ τΓ = Γ + Γ( ) ( ) ( ), (12)n mod

where the modification to the previous decay rate is
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Using these expressions, we have plotted the behavior of Γn(τ) for the strong system-environment coupling 
regime in Fig. 3(a). It should be clear that once again increasing the system-environment coupling strength gen-
erally decreases the effective decay rate Γn(τ). This is in sharp contrast with what happens in the weak coupling 
regime. For the weak coupling case, it is known that36

∫τ ω ω ω τΓ =
∞

d J Q( ) ( ) ( , ), (14)n
0

where the filter function ω τQ( , ) is

ω τ
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Here = ε∆

Ω

Ω( )a t( ) sinx
t2 2

22  and = Ω∆
Ω

a t t( ) sin( )y  with εΩ = + ∆2 2 2. Using these expressions, we can investigate 
how the decay rate varies as the measurement interval changes for different system-environment coupling 
strengths in the weak coupling regime. Typical results are illustrated in Fig. 3(b) from which it should be clear that 
increasing the coupling strength in the weak coupling regime increases the effective decay rate. Furthermore, 
changing the coupling strength has no effect on the measurement time interval at which the Zeno to anti-Zeno 
transition takes place for the weak coupling regime as the three curves in Fig. 3(b) achieve their maximum value 
for the same value of τ. This is not the case for the strong coupling regime [see Fig. 3(a)].

At this point, it is worth pausing to consider where the qualitative difference in the behavior of the effective 
decay rate in the weak and the strong coupling regime comes from. The effective decay rate is derived from the 
survival probability after one measurement τs( ). For both the weak and the strong coupling regimes, the survival 

Figure 3.  Dependence of the modified decay rate Γ τ( )n  on the system-environment coupling strength. (a) 
Graph of the effective decay rate Γ τ( )n  (at zero temperature) in the strong system-environment coupling regime 
as a function of τ with the system-environment coupling strength G = 1 (red, dashed curve), G = 1.75 (dot-
dashed, magenta curve), and G = 2.5 (solid, blue curve). Here we have used an Ohmic environment ( =s 1), 
with ε = 1, ω = 10c , and Δ = 0.05. The initial state is |↑〉. (b) Behaviour of Γ (at zero temperature) for the usual 
weak system-environment coupling scenario with ε = 1 and ∆ = .0 05 with G = 0.001 (dashed, red curve), 
G = 0.003 (dot-dashed, magenta curve), and G = 0.005 (solid, blue curve). We have =s 1, the initial state is still 
|↑〉 and ω = 10c .
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probability after one measurement is given by Eq. (10). For both cases, the Hamiltonian HS L,  and HL are the same. 
The only difference is in the choice of the system-environment state ρ (0)L . For the weak coupling case, this state is 
simply the product state |↑〉〈↑|⊗ β−e Z/H

B
B . This is not the case for the strong coupling due to the significant 

system-environment correlations. Thus, we can say that the qualitative difference in the behavior of the effective 
decay rate is because of the presence of the system-environment correlations. It seems that these correlations can 
protect the quantum state of the system - as the coupling strength increases, these correlations become more and 
more significant, and at the same time, the effective decay rate goes down.

Large spin-boson model with strong system-environment coupling.  Let us now generalize the 
usual spin-boson model to deal with NS two-level systems interacting with a common environment. In this case, 
the system-environment Hamiltonian (in the ‘lab’ frame) is given by36, 40, 50

∑ ∑ε ω= + ∆ + + +† ⁎ †H J J b b J g b g b2 ( ),
(18)L z x

k
k k k z

k
k k k k

where Jx y z, ,  are the usual angular momentum operators obeying the commutation relations ε=J J i J[ , ]k l klm m. We 
now start from the spin coherent state |j〉 such that Jz|j〉 = j|j〉 with =j N /2S . Other eigenstates of Jz can be consid-
ered as the initial state in a similar manner. Our objective is to again perform repeated projective measurements, 
described by the projector |j〉〈 j|, with time interval τ and thereby investigate what happens to the effective decay 
rate. As before, the survival probability after one measurement is τ ρ= τ τ−s j j e e( ) Tr [ (0) ]S B

iH
L

iH
,

L L . Since we 
consider the system and the environment to be strongly interacting, we once again perform the polaron tranfor-
mation given by = χ χ−H e H eJ

L
Jz z, with χ the same as before. Then, we find that

∑ε ω κ= + − +
∆

++ −
† †H J b b J J X J X

2
( ),

(19)z
k

k k k z
2

where κ = ∑ ω
4 k

gk

k

2

, and = ±±J J iJx y are the standard raising and lowering operators. Interestingly, the trans-
formed Hamiltonian now contains a term proportional to Jz

2. This term arises because the collection of two-level 
systems interacting with the collective environment are indirectly interacting with each other. This term is obvi-
ously proportional to the identity operator for a single two-level system, and thus has no influence for a single 
two-level system. If the tunneling amplitude is small, then we again use perturbation theory and assume that, in 
the polaron frame, the system-environment correlations can be neglected. We find that now the effective decay 
rate is (see the Methods section)

∫ ∫τ
τ

ε κΓ =
∆

′ ′ + − ′ − Φ ′ .
τ −Φ ′j dt dt e t j t t( ) cos[ (1 2 ) ( )] (20)

t t
I

2

0 0

( )R

Here Φ t( )R  and Φ t( )I  are the same as defined before. This result obviously agrees with the result that we obtained 
for a single two-level system. Moreover, it is clear from Eq. (20) that increasing the system-environment coupling 
strength G should reduce the effective decay rate due to the −Φ ′e t( )R  factor in the integrand. This is precisely what 
we observein Fig. 4(a). Furthermore, it may be thought that increasing j (or, equivalently, NS) increases the effec-
tive decay rate. On the other hand, the dependence on j is not so clear because of the presence of the indirect 
interaction. Namely, increasing j increases the oscillatory behavior of the integrand due to the dependence of the 
integrand on ε κ′ + − ′ − Φ ′t j t tcos[ (1 2 ) ( )]I . Thus, once the integral over this rapidly oscillating integrand is 
taken, we can again get a small number. Such a prediction is borne out by Fig. 4(b) where the effective decay rate 
has been plotted for different values of j. It is obvious that there is a big difference between the single two-level 

Figure 4.  Variation of the decay rate Γ τ( ) as the coupling strength and the number of two-level systems is 
changed. (a) Graph of Γ (at zero temperature) for the strong-coupling regime with j = 1 as a function of τ with 
the system-environment coupling strength G = 1 (red, dashed curve), G = 1.75 (dot-dashed, magenta curve), 
and G = 2.5 (solid, blue curve). Here we have used an Ohmic environment (s = 1), with ε = 1, ω = 10c , and 
∆ = .0 05. The initial state is |j〉. (b) Graph of Γ (at zero temperature) for the strong-coupling regime with 
G = 1.5 as a function of τ with = .j 0 5 (red, dashed curve), j = 1 (dot-dashed, magenta curve), and j = 2 (solid, 
blue curve). We have s = 1, ε = 1, ω = 10c , and Δ = 0.05. The initial state is |j〉.
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system case and the more than one two-level system case. Furthermore, it seems that increasing j can largely 
reduce the value of the effective decay rate, meaning that in the strong coupling regime, the indirect interaction 
helps in keeping the quantum state alive.

Let us now consider the situation where the evolution to the system Hamiltonian ε= + ∆H J JS L z x,  is removed 
before each measurement. In the polaron frame HS L,  becomes ε= + +∆

+ −
†H J J X J X( )S P z, 2

. The major difference 
now compared to the previous single two-level system case is that the total system-environment Hamiltonian in 
the polaron frame κ= + −H H H JS P B z,

2 contains a term (namely, κ− Jz
2) that is not part of the system 

Hamiltonian in the polaron frame. As a result, when the system evolution is removed just before performing each 
measurement, the evolution induced by this extra term survives. Keeping this fact in mind, the effective decay rate 

τΓ ( )n  is now

τ τ τΓ = Γ + Γ( ) ( ) ( ), (21)n mod

where τΓ( ) is given by Eq. (20) and

∫

τ
τ ε

ετ

ε
ετ κ τ ε τ

Γ =
∆ 













−














− − +


 −



 − Φ












.
τ

−Φ − Φ

−Φ

j e

dte j t t t

( ) (2 ) 1 sin
2

1 sin
2

cos (2 1)(2 )
2

( )
(22)

i

t
I

mod

2

2
2 (0) (0)

0

( )

R I

R

In Fig. 5(a), we have shown the behavior of τΓ ( )n  when the system-environment coupling strength is increased 
for =N 2S . It should be obvious that we observe multiple Zeno-anti Zeno regimes. Also, increasing the coupling 
strength does not generally increase the effective decay rate τΓ ( )n . This behavior should be contrasted with the 
weak coupling scenario. For weak coupling, it has been found that the effective decay rate is still given by Eq. (14), 
but now the filter function is NS times the filter function given by Eq. (15)36. Thus, increasing the coupling strength 
should now increase the effective decay rate. This is precisely what is observed in Fig. 5(b). Consequently, the 
weak coupling and the strong coupling regimes are very different for the strong and the weak coupling regimes. 
The difference is again due to the system-environment correlations.

Discussion
We have investigated the quantum Zeno and anti-Zeno effects for a single two-level system interacting strongly 
with an environment of harmonic oscillators. Although it seems that perturbation theory cannot be applied, we 
have applied a polaron transformation that can make the coupling strength effectively small in the transformed 
frame and thereby validate the use of perturbation theory. We have obtained general expressions for the effective 
decay rate, independent of any particular form of the spectral density of the environment. Thereafter, we have 
shown that the strong coupling regime shows both qualitative and quantitative differences in the behavior of the 
effective decay rate as a function of the measurement interval and the QZE to QAZE transitions as compared 
with the weak system-environment coupling scenario. The effective decay rate is no longer an overlap integral of 
the spectral density of the environment and some other function. Rather, there is a very pronounced non-linear 
dependence on the spectral density of the environment. Most importantly, increasing the coupling strength in the 
strong coupling regime can actually reduce the effective decay rate. These differences can be understood in terms 
of the significant role played by the system-environment correlations. Moreover, we have extended our results to 
many two-level systems interacting with a common environment. Once again, we obtained expressions for the 
effective decay rate that are independent of the spectral density of the environment. We illustrated that in this 
case as well the behavior of the effective decay rate is very different from the commonly considered weak coupling 

Figure 5.  Variation of the effective decay rate τΓ ( )n  for the large spin-boson model. (a) Graph of Γ (at zero 
temperature) with modification for the strong-coupling regime as a function of τ with j = 1 for the system-
environment coupling strength G = 1 (red, dashed curve) and G = 2.5 (solid, blue curve). Here we have used an 
Ohmic environment (s = 1), with ε = 1, ω = 10c , and ∆ = .0 05. The initial state is |j〉. (b) Behaviour of Γ (at 
zero temperature) for the usual weak system-environment coupling scenario with ε = 1 and Δ = 0.05 with 
G = 0.001 (dashed, red curve) and G = 0.005 (solid, blue curve). We have used again an Ohmic environment, the 
initial state is still |j〉 and ω = 10c .
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regime. Our results should be important for understanding the role of repeated measurements in quantum sys-
tems that are interacting strongly with their environment.

Methods
The polaron transformation.  For completeness, let us sketch how to transform the spin-boson 
Hamiltonian to the polaron frame39, 40, 42–44, 46. We need to find = χσ χσ−H e H eL

/2 /2z z . We use the identity

θ θ
= + + +θ θ−

e Be B A B A A B[ , ]
2!

[ , [ , ]] (23)
A A

2

Now, it is clear that χσ σ =[ /2, /2] 0z z . Also, ω σ




∑ − ∑







= − ∑ + .
ω ω

† † † ⁎
⁎( )b b b b g b g b, ( )k

g
k

g
k k k k k z k k k k k

k

k

k

k
 Carrying 

on, we find that σ χ σ ∑ + = − ∑ .
ω

⁎ †g b g b[ /2, ( )] 2z z k k k k k k
gk

k

2

 This is simply a c-number, so the higher-order commu-
tators are zero. Furthermore, this c-number leads to a constant shift in the transformed Hamiltonian, and can 
thus be dropped. Putting all the commutators together, we find that

∑ ∑ ∑ε σ ω σ ε σ ω




 + + +





 = + .χσ χσ−† ⁎ † †e b b g b g b e b b

2
( )

2 (24)
z

k
k k k z

k
k k k k z

k
k k k

/2 /2z z

Next, we observe that σ σ σ= +χσ χσ χσ χσ∆ − ∆
+ −

−e e e e( )x
/2

2
/2 /2

2
/2z z z z , where σ+ and σ− are the standard spin half 

raising and lowering operators. Furthermore, χσ σ σ χ=+ +[ /2, ]z , leading to σ σ=χσ χσ χ
+

−
+e e e/2 /2z z . Similarly, 

σ σ=χσ χσ χ
−

−
−

−e e e/2 /2z z . Thus, we finally have the required Hamiltonian in the polaron frame.
For the large spin case, the calculation is very similar40. The major difference is that now the c-number term 

that we dropped before cannot be dropped any longer since this term is proportional to Jz
2 (for the spin half case, 

this is proportional to the identity operator, so this is just a constant shift for the spin half case). Namely, we now 
find that

∑ ∑ ∑ ∑χ ε ω
ω





 + + +





 = − + − .† ⁎ † † ⁎J J b b J g b g b J g b g b J

g
, 2 ( ) 2 ( ) 8

(25)
z z

k
k k k z

k
k k k k z

k
k k k k z

k

k

k

2
2

Also,

∑ ∑ ∑χ
ω ω









− + −








= .† ⁎J J g b g b J
g

J
g

, 2 ( ) 8 8
(26)

z z
k

k k k k z
k

k

k
z

k

k

k

2
2

2
2

The rest of the calculation is very similar to the spin half case, and leads to the Hamiltonian in the polaron 
frame.

Finding the system density matrix in the polaron frame.  Here we describe how to obtain the system 
density matrix in the polaron frame ρ τ( )S  just before performing the measurement at time τ. We define 

τ τ τ= =τ−U e U U( ) ( ) ( )iH
Itot 0 , where τU ( )0  is the unitary time-evolution operator corresponding to HS and HB, 

while τU ( )I  is the ‘left over’ part that we can find using time-dependent perturbation theory. Writing the 
system-environment coupling in the polaron frame as ∑ ⊗µ µ µF B , with σ= ∆

+F1 2
, =B X1 , σ= ∆

−F2 2
 and 

= †B X2 ,  τU ( )I  can be  found to  be  τ = + +U A A( ) 1I 1 2 ,  with  ∫= − ∑µ
τ

µ µ
A i F t B t dt( ) ( )1 0 1 1 1 and 

∫ ∫= −∑µν
τ

µ ν µ ν
  A dt dt F t F t B t B t( ) ( ) ( ) ( )t

2 0 1 0 2 1 2 1 2
1 . Correct to second order in the tunneling amplitude Δ (in par-

ticular, we assume that Δτ is small enough such that higher order terms can be ignored), we can then write

ρ τ τ ρ ρ ρ

ρ ρ ρ τ

≈ + +

+ + +

† †

† †

U A A

A A A A U

( ) Tr { ( )[ (0) (0) (0)

(0) (0) (0) ] ( )}, (27)

S B 0 tot tot 1 tot 2

1 tot 2 tot 1 tot 1 0

where ρ ρ ρ= ⊗(0) (0)S Btot .  Eq. (27) can now be simplified term by term. First,  we find that 
τ ρ τ ρ τ=



†U UTr { ( ) (0) ( )} ( )B S0 tot 0 , where ρ τ τ ρ τ=


†U U( ) ( ) (0) ( )S S S S  is the system density matrix if the tunneling 
amplitude is zero. Next, we find that ∫τ ρ τ τ ρ τ= ∑µ

τ
µ µ



† † †U A U i dt U F t U B tTr { ( ) (0) ( )} ( ) (0) ( ) ( ) ( )B S S S B0 tot 1 0 0 1 1 1 , 
w h e r e  τ ρ τ=µ µ



†B t U B t U( ) Tr { ( ) ( ) ( )}
B B B B B1 1 .  S i m i l a r l y ,  ∫τ ρ τ τ= − ∑µ

τ†U A U i dt UTr { ( ) (0) ( )} ( )B S0 1 tot 0 0 1  
ρ τµ µ



†F t U B t( ) (0) ( ) ( )S S B1 1 . Carrying on,

∫ ∫∑τ ρ τ τ ρ τ= −
µν

τ

µ ν µν
 

† †U A U dt dt U F t F t U C t tTr { ( ) (0) ( )} ( ) ( ) ( ) (0) ( ) ( , ),
(28)

B
t

S S S0 2 tot 0
0

1
0

2 1 2 1 2
1

with the environment correlation function µνC t t( , )1 2  defined as ρ= =µν µ ν µ ν
   { }C t t B t B t B t B t( , ) ( ) ( ) Tr ( ) ( )

B B B1 2 1 2 1 2 . 
Similarly,

∫ ∫∑τ ρ τ τ ρ τ= − .
µν

τ

ν µ νµ
 

† † †U A U dt dt U F t F t U C t tTr { ( ) (0) ( )} ( ) (0) ( ) ( ) ( ) ( , )
(29)

B
t

S S S0 tot 2 0
0

1
0

2 2 1 2 1
1
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Finally,

∫ ∫∑τ ρ τ τ ρ τ= .
µν

τ τ

µ ν νµ
 

† † †U A A U dt dt U F t F t U C t tTr { ( ) ( )} ( ) ( ) (0) ( ) ( ) ( , )
(30)

B S S S0 1 tot 1 0
0

1
0

2 1 2 2 1

Using the fact that ∫ ∫ ∫ ∫ ∫ ∫= +
τ τ τ τdt dt dt dt dt dtt t

0 1 0 2 0 1 0 2 0 2 0 1
1 2 ,

∫ ∫∑τ ρ τ τ ρ

τ

=

× + . .

µν

τ

µ

ν νµ





† †

†

U A A U dt dt U F t

F t U C t t

Tr { ( ) ( )} ( ) ( ) (0)

( ) ( ) ( , ) h c , (31)

B
t

S S

S

0 1 tot 1 0
0

1
0

2 1

2 2 1

1

where h.c. denotes hermitian conjugate. Putting all the terms back together, the system density matrix can be 
written as Eq. (5).

Finding the effective decay rate.  We now explain how to find the effective decay rate given by Eq. (6). 
With the system density matrix at time τ available, we first calculate the survival probability s(τ). This can be done 
via τ = −s( ) 1 〈↓|ρs (τ)|↓〉. Since the state |↓〉 is an eigenstate of HS, and ρS(0) = |↑〉〈↑|, it is straightforward to see 
that

∫ ∫∑τ = −





↓ ↑ ↑ ↓






.

µν

τ

µν ν µ
 s dt dt C t t F t F t( ) 1 2Re ( , ) ( ) ( )

(32)

t

0
1

0
2 1 2 2 1

1

We now note that, since σ= ∆
+F1 2

, σ= ∆
−F2 2

, and σ= εHS z2
, σ= ε∆

+
F t e( ) i t

1 2
 and σ= ε∆

−
−

F t e( ) i t
2 2

. Therefore,

∫ ∫

∫ ∫

τ = −


 ↓ ↓ ↓ ↓





= −
∆ 






.

τ

τ ε −

 s dt dt C t t F t F t

dt dt C t t e

( ) 1 2Re ( , ) ( ) ( )

1
2

Re ( , )
(33)

t

t i t t

0
1

0
2 12 1 2 2 2 1 1

2

0
1

0
2 12 1 2

( )

1

1
1 2

What remains to be worked out is the environment correlation function ρ= 







∼ ∼†
C t t X t X t( , ) Tr ( ) ( )B B12 1 2 1 2 . Using 

the cyclic invariance of the trace, it is clear that this correlation function is actually only a function of −t t1 2 only, 
since ρ ρ








= = −
∼ ∼ − − −† †X t X t e Xe X C t tTr ( ) ( ) Tr [ ] ( )B B B B

iH t t iH t t
1 2

( ) ( )
12 1 2

B B1 2 1 2 . Thus,

∫ ∫ ∫ ∫τ = −
∆ 


 −



 = −

∆ 

 ′ ′





τ ε τ ε− ′s dt dt C t t e dt dt C t e( ) 1
2

Re ( ) 1
2

Re ( ) ,
(34)

t i t t t i t
2

0
1

0
2 12 1 2

( )
2

0 0
12

1
1 2

where we have introduced ′ = −t t t1 2. The calculation of ′C t( )12  can be performed as follows. First, we use the 
useful fact that for ρ =e eTr [ ]B B

Z Z /22
 where Z is a linear function of the creation and annihilation operators. 

Second, to obtain a single exponential so that the previous identity can be used, we use the identity that for any 
two operators X and Y, = + + …e e eX Y X Y X Y[ , ]1

2 . Fortunately for us, the series terminates for our case, so the higher 
order terms are zero. Using these two identities, we find that ′ = Φ Φ− ′ − ′C t e e( ) t i t

12
( ) ( )R I  where Φ t( )R  and Φ t( )I  have 

been defined in Eqs (7) and (8), and the spectral density of the environment has been introduced as 

∫ ω ω∑ … → …
∞g d J( ) ( )( )k k

2
0

. This finally leads to ∫ ∫τ ε= − ′ ′ − Φ ′
τ∆ −Φ ′s dt dt e t t( ) 1 cos[ ( )]

t t
I2 0 0

( )R
2

. We can 
define an effective decay rate τ τΓ = −

τ
s( ) ln ( )1 . For small Δ, we expect the deviation of the survival probability 

from one to be small. Thus, we end up with Eq. (6).

Calculating the modified decay rate.  Let us now briefly sketch how to obtain Eq. (12). We note that the 
system Hamiltonian HS L,  becomes in the polaron frame σ σ σ= + +ε ∆

+ −
†H X X( )S P z, 2 2

. Then, to second order in 
∆ ≈ + +τ−e A A, 1iH

SP SP
(1) (2)S P, , with ∫= − ∑

τ
µ µ µ
A i dt F t B( )SP

(1)
0 1 1 , and ∫ ∫= − ∑

τ τ
µν µ µ ν ν
 A dt dt F t B F t B( ) ( )SP

(2)
0 1 0 2 1 2 . 

Here, =µ
εσ

µ
εσ−

F t e F e( ) i t i t/2 /2z z . Substituting these expressions in the expression for the survival probability as well 
as the perturbation expansions for τeiH  and τ−e iH , and keeping terms up to second order in Δ, we find that the new 
survival probability consists of the previous survival probability plus some additional terms. It can be be easily 
seen that most of these additional terms, once the trace with the projector |↓〉〈↓| is taken, give zero. The additional 
terms that need to be worked out are τ ρ ρ τ↓ ↓†U A U ATr [ ( ) (0) ( ) ]B B S B B SP1

(1) , τ ρ ρ τ↓ ↓† † †A U A UTr [ ( ) (0) ( ) ]B SP B S B B
(1)

1 , 
a n d  τ ρ ρ τ↓ ↓† † †A U A UTr [ ( ) (0) ( ) ]B SP B S B B

(1)
1 .  T h e  f i r s t  o f  t h e s e  t e r m s  i s  e q u a l  t o 

∫ ∫ ρ τ−∑ ↓ ↓ −µν
τ τ

ν µ µν
 dt dt F t F t C t( ) (0) ( ) ( )S0 1 0 2 1 2 1 , while the second is simply the hermitian conjugate of the 

first. On the other hand, the last term is equal to ∫ ∫ ρ∑ ↓ ↓ .µν
τ τ

ν µ µν
 dt dt F t F t C( ) (0) ( ) (0)S0 1 0 2 1 2  Next, we use the 

fact that σ= ∆
+F1 2

 and σ= ∆
−F2 2

 to simply the inner products. Putting all the pieces together, we arrive at Eq. 
(12). The calculation of τΓ ( )n  for the large spin case is quite similar. One only needs to be careful about the fact 
that the system-environment Hamiltonian, in the polaron frame, contains a term, namely κ− Jz

2, that is not a part 
of the transformed system Hamiltonian HS P, .
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