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Cancer-associated fibroblasts (CAF),
comprised of activated fibroblasts

or myofibroblasts, are found in stroma
surrounding solid tumors; these myofi-
broblasts promote invasion and meta-
stasis of cancer cells. Activation of stromal
fibroblasts into myofibroblasts is induced
by expression of cystoskeleton protein,
palladin, at early stages in tumorigenesis
and increases with neoplastic progression.
Expression of palladin in fibroblasts is
triggered by paracrine signaling from
adjacent k-ras-expressing epithelial cells.
Three-dimensional co-cultures of palla-
din-expressing fibroblasts and pancreatic
cancer cells reveals that the activated
fibroblasts lead the invasion by creating
tunnels through the extracellular matrix
through which the cancer cells follow.
Invasive tunneling occurs as a result of the
development of invadopodia-like cellular
protrusions in the palladin-activated fibro-
blasts and the addition of a wounding/
inflammatory trigger. Abrogation of palla-
din reduces the invasive capacity of these
cells. CAF also play a role in cancer
resistance and immuno-privilege, making
the targeting of activators of these cells of
interest for oncologists.

The soil in which cancer grows has a
profound effect on tumor destiny. Will an
incipient cancer remain occult and indol-
ent, or become aggressive and invasive?
Work in the past decade has highlighted
some of the essential ways in which the
stroma fibroblasts can influence neoplastic
progression. Pancreatic adenocarcinoma
has frequently been used as a model tumor
type because the cancer cells are embedded
in a sea of activated myofibroblasts.

Myofibroblasts, also referred to as cancer-
associated fibroblasts (CAF), have smooth
muscle cell-like contractile properties and
positive a-smooth muscle actin (a-SMA)
staining.1

The mechanism by which myofibro-
blasts enhance tumorigenesis and meta-
stases is complex and may involve the
enhanced secretion of soluble growth
factors, increased contractility and
mechanostimulation of the cancer cells,
and physical remodeling of the extracel-
lular matrix to create metastasis-promoting
channels.2-8 Myofibroblasts can have a
critical influence on immune surveillance,
as well as chemo and radio-resistance to
tumors.8-11 Moreover, hypoxic conditions
caused by the exuberant growth of CAF
surrounding cancer may also contribute
chemotherapy resistance through increased
hydrostatic pressure and compression/loss
of local vasculature.7,12 Recent break-
throughs shed light on the timing and
mechanism of this important step in tumori-
genesis: fibroblast activation in cancer.

Stromal Fibroblasts are Activated
Early in Tumorigenesis

Stromal fibroblast activation occurs early
prior to cancer development. In human
pancreatic cancer and mouse models of
pancreatic cancer, CAFs are present sur-
rounding the high-grade dysplastic lesions
in the pancreas and even to a lesser extent
in the low-grade dysplastic lesions.13,14

Similar findings in hepatocellular carcin-
oma and oral squamous cell carcinoma and
their dysplastic precursor lesions have been
found.15,16 These data suggest that cancer
is not necessary for the transformation of
CAF, but rather myofibroblast activation
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occurs earlier in the process of neoplastic
progression when dysplasia is present.

The Mechanism of Fibroblast
Activation Implicates Two Factors:

Palladin Expression
and Inflammation

Palladin appears to play a key role in
fibroblast transformation in some cancers,
including pancreatic cancer and breast
cancer.14,17 Palladin is an embryonic
protein that plays a key role in cellular
migration. It is a cytoskeletal protein that
acts as a scaffold and serves to crosslink the
components of stress fibers, actin bundles,
Z discs, focal adhesions and other sub-
cellular structures.18,19 Palladin is upregu-
lated in the leading edge of wounds and
in the cancer-associated fibroblasts of
metastatic cancers.14,17,20 Interestingly, pal-
ladin has also been detected in expression
screens for invasion-specific genes in
pancreatic and breast cancer.21,22

Palladin is upregulated in the CAF of
pancreatic cancer early during tumorigen-
esis—it is overexpressed in the stromal
fibroblasts immediately surrounding low
and high-grade dysplasia. The expression
of palladin closely correlates with the
expression of a-SMA in these pre-cancer-
ous lesions.13 Our recent studies to unravel
the role of palladin in fibroblast activation
in cancer reveal that simply co-culturing a
normal human fibroblast next to a pan-
creatic cancer cell is sufficient to impart
myofibroblast properties to the fibroblast;
this process occurs in a palladin-dependent
fashion (Fig. 1). Because myofibroblasts
can be detected early in tumorigenesis, we
tested whether the initiating event in
pancreatic ductal adenocarcinoma, e.g., a
k-ras mutation in an epithelial cell, was
sufficient to cause transformation of an
adjacent resting fibroblast into a myofibro-
blast. Transwell experiments involving
normal fibroblasts co-cultured with nor-
mal epithelial cell expressing wild-type or
mutated k-ras were performed: activated
k-ras (wild-type or mutated) paracrine
signaling is sufficient to induce the adjacent,
but non-touching, quiescent fibroblasts
to become myofibroblasts. Abrogation of
palladin, using siRNA, causes loss of the
myofibroblast phenotype, including loss of
common myofibroblast markers such as

a-SMA, and loss of myofibroblast function,
such as migration and invasion.13

Curiously, palladin-expressing fibro-
blasts appear to be primed but not
activated. The palladin-expressing fibro-
blasts have the phenotype of a myofibro-
blast: an elongated shape and expression of
a-SMA and vimentin; however, an inflam-
matory or wounding signal is required for
the myofibroblasts to become migratory
and invasive. In absence of the inflam-
matory signal, the palladin-expressing
myofibroblasts remain dormant, with
diminished capability for migration or
invasion.13 This finding might be one
reason for the underlying inactivity of
some indolent tumors, if inflammation is
absent the fibroblast-led invasion cannot
not occur. In summary, while a palladin-
expressing fibroblast is primed, expressing
all of the proteins one would expect in a
myofibroblast, it does not yet act as a
leading partner for cancer cell invasion
without the inflammatory signal. In the
clinical setting, such inflammation could
be driven from environmental factors such
as smoking, infections or inflammatory
cytokines associated with obesity.

Stromal-Assisted Cancer Invasion
and Metastases

Myofibroblasts can produce tracks within
the extracellular matrix, which in effect,

create tunnels for the carcinoma cells to
follow.23 More recently, we have identified
the mechanism of how this fibroblast-led
cancer invasion occurs. Upregulation of
palladin causes the fibroblast to develop a
fusiform/mesenchymal shape with appar-
ent invadopodia—feet that contain pro-
teolytic enzymes (Fig. 2). To identify the
contents of the “feet” of palladin-activated
myofibroblasts, we ensnared the myofi-
broblasts in the act of invasion in a sieve
that was large enough to let the feet
through, but too small for a whole cell to
pass through. Proteomic analysis per-
formed on the ensnared and isolated “feet”
revealed the overexpression of proteolytic
enzymes such as metalloproteinases and
cathepsin, invadopodia proteins and pro-
teins associated with poor prognosis in
cancer. Functional studies demonstrated
that, in the setting of an inflammatory or
wounding signal, the palladin-activated
fibroblasts can both rip and destroy the
extracellular matrix literally creating tun-
nels through which the cancer cells
follow.13 Fibroblasts without palladin
expression have markedly diminished
capacity to create tunnels and cancer cells
do not follow them (Fig. 3). Remarkably,
once the activated myofibroblasts escort
the cancer cells through tunnels in the
organ of origin, labeling studies have
shown that the cancer cell and myofibro-
blasts invade together through blood

Figure 1. Normal human dermal fibroblasts were grown adjacent to pancreatic ductal cells in
a transwell plate. Left: fibroblasts grown adjacent to pancreatic cancer ductal cells caused
upregulation of palladin (stained red) in the fibroblasts. Middle: fibroblasts growing adjacent to
normal pancreatic ductal cells do not express palladin. Right: k-ras expression (either wild type
or mutated k-ras) in a normal pancreatic ductal cell was sufficient to upregulate palladin in
the adjacent normal fibroblast. Once fibroblasts express palladin they develop the myofibroblast
phenotype. Nuclei are stained blue with DAPI. Scale bars indicate 20 mm.
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vessels and implant in metastatic sites.24,25

In support of these studies, we found
palladin-expressing fibroblasts adjacent to
cancer cells in lymph node and liver
metastases.14

Metastasis Can Occur
before Cancer Formation

Elegant studies by Rhim et al., using
lineage tracing in a pancreatic cancer
engineered mouse model, revealed that
mutant ductal cells undergo epithelial
mesenchymal transformation (EMT),
invade into the blood stream, and lodge
into metastatic sites such as the liver prior
to histologic evidence of cancer.26 The
invasion of these mutant epithelial cells
occurs in 2.7% of all PanIN 2 (low-grade
dysplasia) and 6.8% of PanIN 3 (high-
grade dysplasia) lesions, but never in the
setting of PanIN 1 (hyperplasia).
Inflammation is required for the dissem-
ination of PanIN 2 and 3 cells to occur.

Not surprisingly, COX-2, an inflammat-
ory mediator, is increasingly overexpressed
between PanIN lesions and malignant
pancreatic tissues.27 In the studies by
Rhim, if dexamethasone was added as an
anti-inflammatory agent, the dissemina-
tion of mutated circulated pancreatic
epithelial cells was abolished. Even more
amazing was the loss of PanIN lesions and
associated myofibroblasts within the pan-
creatic parenchyma in the setting of
dexamethasone taken on a daily basis:
the pancreata return to a normal appear-
ance, while the control mice proceed to get
pancreatic adenocarcinoma. Taken as a
whole, this work implicates the invasion of
mutated cells earlier than originally
thought in cancer and would help explain
the very lethal nature of some cancers,
such as pancreatic, even when the tumors
are quite small. The early activation of
fibroblasts into tunneling myofibroblasts
by k-ras mutated epithelial cells fits in
mechanistically with the model of earlier

invasion of epithelial cells prior to cancer
formation. Abolition of inflammation
reverses the invasion process.

Targeting the Stromal Fibroblasts

Because of the interdependent behavior of
cancer cells and stromal fibroblasts, the
latter have become a target of interest for
oncologists.28 Pancreatic cancer cells have
increased resistance to gemcitabine, in part
due to direct activation of the Hedgehog
pathway resulting from cross-talk between
myofibroblasts and adjacent cancer
cells.29,30 Recent chemotherapy using a
Hedgehog inhibitor results in a significant
loss of the tumor-associated fibroblasts in
pancreatic cancer and prolonged survival
in mouse models.7 However, in the latter
trial the mice relapse when the myofibro-
blasts repopulate. This finding, combined
with the negative outcome of a recent
human phase III clinical trial testing the
efficacy of chemotherapy and hedgehog

Figure 2. Normal human fibroblasts transfected with an empty vector (EV) remained boxy in appearance and had no effect on collagen or matrigel when
exposed to wounding media (A and B). In contrast, fibroblasts transfected with wild-type palladin (WT) became elongated with mesenchymal features (C),
caused destruction of the collagen matrix (D) with apparent clumping of the collagen edges. Additionally, palladin-expressing fibroblasts created tunnels in
matrigel (stained red) when exposed to woundingmedia in 3D invasion cultures (E). Fibroblasts, stainedwhite in (F), became quite elongated when tunneling.
Tunnel is delineated by yellow arrowheads. Scale bars indicate 20 mm.
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pathway inhibition, suggests that com-
pensatory pathways may exist if only one
pathway in the targeting of CAF is
abrogated. This is particularly of issue
because there are usually myofibroblasts
remaining at the surgically resected pan-
creatic cancer margins and the sources for
tumor stromal fibroblasts may be derived

from both local and potentially non-local
sources.31

Other methods of directly targeting the
CAF have included use of monoclonal
antibodies, drugs, and vaccines. A novel
monoclonal antibody targeting fibroblast
activation protein (FAP), a cell surface
protease of activated tumor fibroblasts, has

been shown to induce long-lasting inhibi-
tion of tumor growth and complete
regression in xenograft models of lung,
pancreas, and head and neck cancers.32

Vaccination against stromal fibroblasts
targeting FAP has also shown some
promise in mouse models.33 While no
current therapy targets palladin expression

Figure 3. The cartoon in (A) depicts the 3D invasion culture chamber: two wells, one containing fibroblasts and cancer cells (right) and the other filled
with chemoattractant EGF (left) are separated by a chamber filled with matrigel. Fibroblasts without palladin (B) and with palladin (C) were co-cultured
with pancreatic cancer ductal cell line, Panc-1, over a period of 72 h. Fibroblasts were stained with white Q-dots and cancer cells were stained pink. Note
in (C), the palladin-expressing fibroblasts tunneled through the matrigel and were followed by the pink cancer cells (arrow heads) as the cells moved
toward the EGF. In (B), pancreatic cancer cells remained at the baseline and did not invade in the 3D cultures when the fibroblasts did not express
palladin. Wounding media was provided in all of the 3D invasion cultures.
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in fibroblasts, we have performed prelimi-
nary studies suggesting that reagents that
target anti-SMA and regulate hepatic
stellate cell activation, (such as PPARc
agonists and metformin) are useful when
used in combination to block palladin
expression in myofibroblasts and human
CAF. These combined palladin-targeting
therapies concomitantly block a-SMA
expression and the myofibroblast phenotype
(unpublished data). Further investigation
using small molecular and high-throughput
drug screening is required to identify which

drugs are most effective in blocking palladin
and whether these drugs are effective in the
early and the late stages of cancer in mouse
models.

Therapies to decrease the inflammatory
component of carcinogenesis have
included use of aspirin,34 COX2 inhibitors
such as celcoxib,35,36 NFkB inhibitors such
as curcumin37,38 and PPARc agonists such
as troglitazone.39,40 Some of these anti-
inflammatory drugs have been used in
human phase II trials with mixed suc-
cess,35,36,41,42 where many of the patients

had later stage tumors. With our current
knowledge of the role of inflammation in
driving forth the early dissemination of
myofibroblast-aided cancer cells, it is
possible that the inflammation needs to
be treated earlier in the neoplastic pro-
gression—before the cancer cells have
escaped. In keeping with this concept,
the effective use of anti-inflammatory
drugs has been reported in chemopreven-
tion trials43,44.

Cross-talk between fibroblasts and can-
cer cells is essential to invasion and

Figure 4. Stromal fibroblasts in normal pancreas are quiescent and without palladin staining. K-ras activation in ductal cells leads to paracrine signaling
that is sufficient to induce palladin-associated myofibroblast transformation of the adjacent fibroblasts. This event occurs early in tumorigenesis, when
epithelial cells are dysplastic, and increases with neoplastic progression. In the setting of a wounding signal, the palladin-activated fibroblasts develop
cellular protrusions (feet) that express invadopodia proteins, proteases and enhance the capacity for invasion. The palladin-activated fibroblasts create
tunnels through the matrix, assisting the escape of cancer cells into the neo-vasculature. The activated fibroblasts appear to accompany the cancer cells
to their metastatic niche in breast and pancreatic cancer models.
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potentially chemotherapeutic agents that
disrupt this process could be effective.
Inflammatory cytokines and signaling
molecules including TNFa, IL-6, IL-1a/
β, NFkB and TGF-β play key roles in
paracrine signaling between tumor cells and
fibroblasts, as outlined in an excellent
review by Bhomick and Moses.45-49

Therapeutics designed to modulate these
molecules are described elsewhere; in
general most of these therapies are relatively
new and thus trials of some of these agents
are just being undertaken in humans.40,50

Figure 4 summarizes steps and mecha-
nism of myofibroblast activation and the
partnership these cells play in cancer
invasion. Although difficult, targeting the
stromal fibroblasts remains an attractive
strategy in the fight of aggressive cancers
because of the interdependence of the
CAF and the cancer cells. In addition, it

may be valuable to determine when during
the neoplastic process targeting the CAF is
most effective: in the initiating stages of
tumorigenesis or whether the strategy can
be effective in an established, even meta-
static cancer.

Summary

The arousal of the stroma is a key and
transformative event in the invasive
stages of tumorigenesis in many solid
tumors. Stromal fibroblasts can be trans-
formed through paracrine signaling of
adjacent k-ras overexpressing epithelial
cells. The fibroblast then undergoes pheno-
typic change into a myofibroblast that is
mediated through palladin, a cytoskeletal
protein essential in cell motility. However,
this change is insufficient to cause fibro-
blast-assisted cancer cell invasion and

migration. For the latter events to occur,
an additional wounding or inflammatory
signal is required. The presence of these
three events (overexpression of k-ras,
palladin-expression in the fibroblasts
and inflammatory signal) instigates the
dynamic relationship between the stroma
and the mutated epithelial cell. These three
events are sufficient for the activated
myofibroblast to tunnel through the extra-
cellular matrix and provide avenues for the
dysplastic and cancerous epithelial cells to
follow. Abrogation of palladin or the
inflammatory signal is sufficient to shut
down the process.13 Future studies will help
elucidate the role of epithelial-mesenchymal
transition to enhance the migration of
cancer cells through the fibroblast-created
tunnels and the potential for chemother-
apeutic targeting of the initiating events in
cancer invasion.
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