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Abstract
Everolimus is an immunosuppressant with a small therapeutic index and large 
between-patient variability. The area under the concentration versus time curve 
(AUC) is the best marker of exposure but measuring it requires collecting many 
blood samples. The objective of this study was to train machine learning (ML) 
algorithms using pharmacokinetic (PK) profiles from kidney transplant recipi-
ents, simulated profiles, or both types, and compare their performance for everoli-
mus AUC0-12h estimation using a limited number of predictors, as compared to an 
independent set of full PK profiles from patients, as well as to the corresponding 
maximum a posteriori Bayesian estimates (MAP-BE). XGBoost was first trained 
on 508 patient interdose AUCs estimated using MAP-BE, and then on 500–10,000 
rich interdose PK profiles simulated using previously published population PK 
parameters. The predictors used were: predose, ~1 h, and ~2 h whole blood con-
centrations, differences between these concentrations, relative deviations from 
theoretical sampling times, morning dose, patient age, and time elapsed since 
transplantation. The best results were obtained with XGBoost trained on 5016 
simulated profiles. AUC estimation achieved in an external dataset of 114 full-
PK profiles was excellent (root mean squared error [RMSE]  =  10.8  μg*h/L) 
and slightly better than MAP-BE (RMSE  =  11.9  μg*h/L). Using more profiles 
(n = 10,035) did not improve the ML algorithm performance. The contribution 
of mixing patient and simulated profiles was significant only when they were in 
balanced numbers, with ~500 for each (RMSE = 12.5 μg*h/L), compared with 
patient data alone (RMSE = 18.0 μg*h/L).

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Assessing everolimus area under the concentration-time curve (AUC) requires 
either collecting many blood samples or using a pharmacokinetic (PK) model and 
Bayesian estimator with a few blood samples. Machine learning (ML) algorithms 
represent an alternative, provided they can be trained on large enough databases.
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INTRODUCTION

Everolimus is an inhibitor of the mammalian target of ra-
pamycin (mTOR) activity, in particular in lymphocytes.1 
It is a non-nephrotoxic drug that shows a synergistic 
immunosuppressive effect with calcineurin inhibitors 
(CNIs).2,3 It is characterized by a narrow therapeutic 
range and a large interindividual variability requiring 
concentration-based dose adjustments, similar to CNIs. 
Therapeutic drug monitoring (TDM) is therefore rec-
ommended—or, in certain countries, compulsory—for 
everolimus and, due to its high distribution in erythro-
cytes, dose individualization is generally based on trough 
whole blood concentrations.4

Two main markers are currently available to indi-
vidually adjust everolimus dose: the trough blood level 
(C0), which is widely used for practical and economic 
reasons, although it has inconsistently been associated 
with clinical outcomes, and the interdose area under the 
curve (AUC0-12h),5 which reflects overall exposure and is 
theoretically a better predictor of the drug pharmacody-
namics. Kovarik et al.6 actually found exposure-response 
relationships between everolimus AUC and the incidence 
of thrombocytopenia, hypertriglyceridemia, and hyper-
cholesterolemia. In the same study, he measured the in-
terindividual (coefficient of variation [CV] = 85.4%) and 
the intra-individual (interoccasion) (CV  =  40.8%) vari-
ability of the AUC, suggesting that TDM is needed and 
feasible, respectively. Another study showed that the in-
terindividual variability is larger for everolimus C0 than 
AUC0-12h (CV%  =  55% and 31%, respectively), as is the 
intra-individual variability (45% and 27%, respectively).7 
However, the interdose AUC is more difficult to measure 
than C0 because it requires collecting and analyzing many 
samples. In practice, everolimus AUC has been estimated 
using population pharmacokinetic (PopPK) models and 
maximum a posteriori Bayesian estimation (MAP-BE) 

based on limited sampling strategies.8 In 2005, the 
Immunosuppressant Bayesian Dose Adjustment (ISBA) 
expert system and website (https://abis.chu-limog​es.fr/
login) were launched to share tools able to estimate the 
interdose AUC of immunosuppressants using MAP-BE 
on the basis of three blood samples and some patient 
characteristics (type of graft, age, post-transplantation pe-
riod, and drug measurement assay).9 In 2018, a new ever-
olimus model was made available on ISBA, where each 
request posted is validated in less than 48 h by a trained 
pharmacologist.

Over the last 2 decades, machine learning (ML) has 
been successfully used in many applications in pharma-
cology, thanks to the huge and ever-increasing amount 
of data and computational power as well as to the im-
provement of learning algorithms.9,10 Extreme gradient 
boosting (XGBoost) is an ML algorithm where simple re-
gression trees are iteratively built by finding split values 
among all input variables to minimize prediction error. 
The iterative process constructs an additional regression 
tree of the same structure to minimize the residual errors 
of the previous regression tree.11 We found that XGBoost 
was particularly suited to estimate the AUC of other im-
munosuppressive drugs using limited sampling strategies 
and covariates.12,13 For tacrolimus in particular, we even 
trained in parallel such algorithms on massive simulated 
data rather than actual patient data, showing again better 
performance than usual MAP-BE.14 This was an import-
ant finding because, for many drugs such as everolimus, 
there is not enough patient data available to train ML al-
gorithms. However, the full potential of simulated data 
combined with patient data has not been explored yet. Is 
there an optimal number of simulations? Is patient data, 
even in rather low volume, still useful if a potentially in-
finite number of PK profiles can be simulated? If so, is 
there an optimal balance between patient and simulated 
data?

WHAT QUESTION DID THIS STUDY ADDRESS?
It evaluated the contribution and limits of simulated data to train ML models to 
estimate everolimus AUC0-12h.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
An optimal amount of simulated data (n = 5016 PK profiles) optimized XGBoost 
AUC0-12h prediction, even rendering patient data useless, and yielded better per-
formance than Bayesian estimation.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
When limited data is available to train ML algorithms, simulations can be used. 
However, too many simulated data expose to overfitting, highlighting the need 
for independent patient datasets for external validation.

https://abis.chu-limoges.fr/login
https://abis.chu-limoges.fr/login
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The objective of this study was to compare different 
combinations of patient and simulated PK profiles for the 
training of an XGBoost algorithm able to estimate evero-
limus AUC0-12h using a limited number of predictors. The 
true performance was evaluated in external validation 
datasets of full concentrations profiles from kidney trans-
plant recipients, and then compared to that of MAP-BE in 
the same datasets.

METHODS

Patients and actual data

The everolimus AUC estimation and dose recommenda-
tion requests received on our ISBA website since 2018 for 
recipients of a renal transplant were extracted and cleaned 
using the Tidyverse framework. Data collection was ap-
proved by the regional ethics committee, and all patients 
gave their informed consent to participate in the study 
(EudraCT number 2006–0068 32–23 and 2009–0135 41–
28). Blood was collected at three sampling times at least: 
predose (C0), ~60 min (30–100 min, C1), and ~120 min 
(115–220 min, C2) after drug intake. Everolimus blood 
levels were measured using high-performance liquid 
chromatography coupled to tandem mass spectrometry. 
The other predictors available were the morning dose of 
everolimus, the time elapsed between transplantation and 
everolimus blood sampling, and patient age. The code 
used for data cleaning and data that support the findings 
of this study are available upon request from the corre-
sponding author. The data are not publicly available due 
to privacy or ethical restrictions.

Simulated data

We used the parameters of a previously published phar-
macokinetic (PK) model developed for everolimus in a 
population of adult kidney transplant recipients.16 PK 
profiles were simulated at steady-state over a 12-h inter-
val, uniformly for different drug doses (0.5, 1, 1.25, 1.5, 
1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 4, and 4.5 mg), using the 
mrgsolve R package.17 The proportional error was signifi-
cantly diminished to 0.01% (as compared to 13.9% in the 
original paper) to obtain less noisy, smoother simulated 
PK profiles, deliberately neglecting measurement errors 
to optimize algorithm training on unaltered, “true” AUC 
values. However, at the prediction step, gaussian noise 
with mean = 1.2% and SD = 3,9% (minimum = 0.0% and 
maximum  =  130.9%) was randomly added to the simu-
lated C1 and C2 sampling times, using the sdcMicro 
R package.18 The aim was to introduce uncertainty on 

input data so as to observe the algorithm prediction per-
formance in more realistic conditions. In addition, we 
kept the interindividual variability of the PK parameters 
described in the initial study (eta values), as well as that 
brought by the most important covariate, the ideal body 
weight. Indeed, in the original model, apparent volume of 
distribution of the central compartment after oral admin-
istration (V1/F) was a function of the ideal body weight. 
We simulated ideal body weight values using a truncated 
random normal distribution with mean ± SD (minimum-
maximum) = 68 ± 7.5 (52–83) kg (in accordance with the 
original article).

Datasets and analysis strategy

The present study used supervised learning from different 
training datasets to predict the interdose AUC, whose ref-
erence values had been obtained either through our ISBA 
expert system using MAP-BE and three everolimus blood 
concentrations for kidney transplant patients; or using 
the trapezoidal rule with the PKNCA R package for the 
simulated profiles.19 In order to maximize the diversity of 
the training sets when patient and simulated data were 
mixed, the simulated profiles were not obtained using 
our in-house PK model but using a model from the litera-
ture.16 We trained many ML algorithms, based on patient, 
simulated, or mixed data. Each training dataset was used 
in turn to build an XGBoost algorithm, tune the hyperpa-
rameters, and evaluate its performance by a single 10-fold 
cross-validation (random partition of the training set into 
10 parts). The algorithms were then evaluated on inde-
pendent subsets of the training sets by calculating the root 
mean square error (RMSE; expressed in μg*h/L) between 
the estimated and reference AUCs. Finally, the different 
algorithms were comparatively evaluated using two inde-
pendent datasets of everolimus full PK profiles in kidney 
transplant recipients.

Feature engineering

Everolimus blood concentrations (whether actually meas-
ured or simulated) were divided into three theoretical 
time classes: concentrations at trough (C0 sampled at 
t  =  0  min), 1  h (C1 sampled between 30 and 100 min), 
and 2 or 3 h (C2 sampled between 115 and 220 min). New 
variables were drawn for times 1 and 2 h corresponding to 
the relative deviation with respect to the theoretical times. 
For instance, if the sampling time was 1.06 h, the relative 
time difference with the theoretical time 1 h was (1.06–
1)/1  =  0.06. Other predictors corresponding to the dif-
ferences between the concentrations C1–C0, C1–C2, and 
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C2–C0 were created to add information about potentially 
delayed absorption peaks. Finally, the features tested as 
predictors of the interdose AUCs in the training set from 
actual patients were: patient age, time elapsed between 
transplantation and everolimus blood sampling, everoli-
mus morning dose, everolimus concentrations at times 0, 
1 h, and 2 h, relative deviation from the theoretical times, 
and differences between concentrations. In the training 
set of simulated profiles, as well as in the mixed training 
sets, the potential predictors were limited to: everolimus 
concentrations at times 0, 1 h, and 2 h, relative deviation 
from the theoretical times, differences between concen-
trations, and everolimus morning dose.

Exploratory data analyses

A correlation matrix and scatterplots were drawn to ex-
plore the correlations between AUC and predictors in the 
actual patient dataset, using the GGally R package.20

Preprocessing of the data

For all the ML analyses, the tidymodels framework was 
used. No preprocessing was applied to the data because 
XGBoost methods do not require normalization prior to 
analysis. There were no missing data in the predictors. 
Data splitting between training datasets (75%) and test 
datasets (25%) was performed by random selection of pa-
tients (or simulated cases).

Training of XGBoost algorithms

The algorithms were tuned by searching the hyperparam-
eter combination associated with the lowest RMSE and 
highest R2 between estimated and reference AUC values, 
using 10-fold cross-validation. In brief, the best combina-
tion of hyperparameters was investigated in 90% of each 
training dataset in turn (analysis subset) and evaluated 
in the remaining 10% (assessment subset) and this pro-
cess was repeated 10 times by circular permutation. The 
hyperparameters tuned among a grid of 30 random com-
binations were: the number of predictors randomly sam-
pled at each split (mtry, between 1 and 11), the minimum 
number of data points required for the node to be split 
further (min_n between 1 and 40), the maximum depth 
of the tree (tree_depth, between 1 and 15), and the rate 
at which the boosting algorithm adapted from iteration-
to-iteration (learn_rate, between 0 and 0.08). In a second 
time, the best hyperparameter combinations were evalu-
ated by means of another set of 10-fold cross-validation to 

assess the mean RMSE and R2 and their SDs in the cor-
responding training dataset and draw the scatter plots of 
estimated versus reference AUC. Finally, AUC estimation 
was evaluated in the respective test datasets by calculat-
ing RMSE, R,2 normalized RMSE (RMSE divided by the 
mean of reference AUCs), relative mean prediction error 
(MPE), as well as through the number and proportion of 
estimates with absolute MPE greater than 20%. The code 
used for the simulation of PK profiles and XGBoost train-
ing is provided as Supplementary Text S1.

External evaluation of machine learning 
AUC estimates by comparison with full PK 
profiles, and comparison with maximum a 
posteriori Bayesian estimates

The independent validation dataset comprised full PK 
profiles from the PIGREC trial (NCT00812786; 0, 0.33, 
0.66, 1, 1.5, 2, 3, 4, 6, 8, 9, and 12 h postdose) and from 
the Everold trial (NCT01028092; 0, 0.33, 0.75, 1, 1.66, 2, 
4, 6, 8, 10, and 12 h postdose). Concentrations at 0, 1, and 
2  h, everolimus dose, blood sampling times, and time 
elapsed between transplantation and everolimus blood 
sampling were extracted from the independent PK da-
tabases to predict the AUC using the ML algorithms as 
compared with the MAP-BE used in ISBA. The full con-
centration profiles were used to calculate the trapezoi-
dal AUC (chosen as the reference) using the DescTools 
package.21 The performance of the ML algorithms and 
of MAP-BE was evaluated by comparing the estimated 
AUCs to the trapezoidal AUCs in terms of RMSE and 
relative MPE, and the proportion of bias out of the ±20% 
interval. Additionally, the scatter plots of predicted ver-
sus reference AUCs and residuals versus predicted AUCs 
were drawn on the same graph for visual comparison of 
the different approaches.

RESULTS

Patients and data

The cleaned dataset extracted from ISBA used as patient 
data training set consisted of 508 everolimus AUC0-12h 
from 177 patients. The characteristics of the training 
and test sets of patient data are reported in Table 1. The 
median AUC0-12h was 101 (interquartile range [IQR] 73, 
142] μg*h/L. The independent validation patient data-
set comprised 114 PK profiles of 10–12 samples and in 
this group the coefficient of determination R2 between 
C0 and the reference trapezoidal AUC0-12h (n = 114) was 
only 0.776.
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Exploratory data analyses

The correlation matrix between everolimus AUC0-12h 
and predictors from patient PK profiles is presented in 
Figure S1, showing that the strongest correlations (>0.8) 
were between AUC0-12h and C0 or C2h.

XGBoost algorithms, training, and test sets

The best-tuned hyperparameter values for each algorithm 
are presented in Table S1. The results in the training sets 
obtained after 10-fold cross-validation and in the respec-
tive test sets are shown in Table 2. Among the test sets, 
the lowest RMSE (6.7 μg*h/L) was obtained using 10,035 
simulated profiles.

External evaluation versus the trapezoidal 
AUC in an independent dataset

The best results (RMSE  =  10.8  μg*h/L) were obtained 
using 5016 simulated profiles without patient data 
(Table  2). Focusing on the simulated profiles, Figure  1 
presents the performances of XGBoost in the training and 
the external validation datasets according to the number 
of simulations used (including additional models trained 
on n = 250, 500 or 15,051 simulated profiles). It shows that 

the higher the number, the better the performance in the 
training set, whereas in the independent dataset RMSE 
followed a U shape curve with a minimal value for 5016 
simulations.

Figure  2 presents the scatter plots and residual plots 
of estimated versus reference AUCs in the external val-
idation dataset for four models: the algorithm based on 
the patient data only (n = 508); the best model mixing pa-
tient and simulated data (n = 508 and 500, respectively); 
the best model using only simulated data (n = 5016), and 
MAP-BE for comparison. There was no systematic bias. 
For our best model (5016 simulations), we also explored 
the possibility of adding more variability in the sampling 
times (Table S3), and it negatively affected the results in 
the test set, and a little bit in the validation set.

DISCUSSION

In this work, based on our previous experience with ML 
tools to estimate overall exposure to other immunosup-
pressive drugs,13-15 we used XGBoost ML algorithms 
to estimate the interdose AUC of everolimus in renal 
transplant recipients. Because we had a more limited 
training dataset with actual patient data than with other 
immunosuppressants, we trained ML algorithms on pa-
tient, simulated, and mixed data and compared the esti-
mates obtained in an independent database from kidney 

T A B L E  1   Characteristics of the features used for the training and validation of the first XGBoost algorithm based on 508 patient 
pharmacokinetic profiles

Train set (n = 381) Test set (n = 127)
External validation 
set (n = 114)

Time between transplantation and tacrolimus blood 
concentrations, months

3.95 [1.97, 11.84] 3.95 [1.97, 11.84] 14.76 [4.97, 105.90]

AUC0-12h, μg*h/L 102 [74, 142] 101 [73, 145] 96 [69, 125]

Patient age, year 47 [35, 57] 47 [39, 57] 50 [40, 59]

Morning dose, mg 1.50 [0.75, 1.50] 1.50 [0.75, 1.50] 1.00 [0.56, 2.00]

Trough level (C0), μg/L 5.4 [3.7, 7.9] 5.5 [3.5, 8.6] 5.4 [3.9, 7.4]

Concentration at 1 h; C1, μg/L 14.2 [9.2, 20.5] 13.3 [8.7, 19.9] 15.2 [10.2, 21.0]

Concentration at 2 h; C2, μg/L 13.2 [9.0, 18.4] 12.9 [9.2, 18.3] 11.5 [8.4, 15.6]

Deviation from the 1-h theoretical time, % 0 [0, 0] 0 [0, 0] 0 [0, 0]

Deviation from the 2-h theoretical time, % 0 [0, 4] 0 [0, 2] 0 [0, 0]

Concentration difference between C1 and C0 8.5 [4.2, 13.1] 7.2 [3.3, 11.9] 9.5 [5.6, 14.1]

Concentration difference between C1 and C2 1.5 [−1.3, 4.6] 0.3 [−2.1, 3.6] 3.6 [0.6, 6.4]

Concentration difference between C2 and C0 7.1 [4.7, 10.8] 7.3 [4.3, 10.0] 5.8 [3.9, 9.1]

Reference AUCs: number of samples 3 3 10–12

Reference AUCs: method used Same MAP-BE Trapezoidal rule

Note: Medians [interquartile ranges] are presented here.
Abbreviations: AUC, area under the curve; ISBA, Immunosuppressant Bayesian Dose Adjustment; MAP-BE, maximum a posteriori Bayesian estimation; 
XGBoost, extreme gradient boosting, an optimized gradient boosting machine learning method.
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T A B L E  2   Performance of the XGBoost algorithms at estimating everolimus AUC0-12h in the different sorts of training, testing, and 
external validation datasets

Train set 
(n = 75%)

Test set 
(n = 25%)

External validation set 
(n = 114 full PK profiles)

XGBoost XGBoost
XGBoost 
(n = 114)

MAP-BE 
(n = 94a)

508 patient PK profiles RMSE, μg*h/L 15.2 15.4 18.0 11.9

Normalized RMSE (%) 13.5 13.8 17.2 11.2

R2 0.921 0.922 0.873 0.952

Relative MPE (%) 1.9 4.5 4.5 3.0

Number of MPE out of the 
±20% interval n

41 (10.8%) 20 (15.7%) 17 (14.9%) 7 (7.4%)

500 simulated + 508 patient PK profiles RMSE, μg*h/L 32.1 23.3 12.5 11.9

Normalized RMSE (%) 24.9 17.2 11.9 11.2

R2 0.880 0.942 0.939 0.952

Relative MPE (%) −0.4 0.8 0.0 3.0

Number of MPE out of the 
±20% interval n

50 (6.6%) 26 (10.3%) 5 (4.4%) 7 (7.4%)

1003 simulated PK profiles RMSE, μg*h/L 18.5 19.0 18.6 11.9

Normalized RMSE (%) 12.6 12.8 17.8 11.2

R2 0.970 0.970 0.919 0.952

Relative MPE (%) 1.7 1.6 9.4 3.0

Number of MPE out of the 
±20% interval n

39 (5.2%) 13 (5.2%) 22 (19.3%) 7 (7.4%)

1003 simulated + 508 patient PK profiles RMSE, μg*h/L 19.2 10.7 14.1 11.9

Normalized RMSE (%) 13.6 7.8 13.4 11.2

R2 0.967 0.986 0.924 0.952

Relative MPE (%) 0.5 0.0 1.2 3.0

Number of MPE out of the 
±20% interval n

50 (4.4%) 17 (4.5%) 8 (7.0%) 7 (7.4%)

2508 simulated PK profiles RMSE, μg*h/L 13.4 15.1 11.4 11.9

Normalized RMSE (%) 8.6 10.2 10.9 11.2

R2 0.987 0.982 0.951 0.952

Relative MPE (%) 0.1 0.1 1.4 3.0

Number of MPE out ofthe 
±20% interval n

8 (0.4%) 4 (0.6%) 8 (7.0%) 7 (7.4%)

2508 simulated + 508 patient PK profiles RMSE, μg*h/L 12.5 14.7 12.2 11.9

Normalized RMSE (%) 8.5 10.2 11.7 11.2

R2 0.987 0.981 0.942 0.952

Relative MPE (%) 0.3 0.2 2.2 3.0

Number of MPE out of the 
±20% interval n

39 (1.7%) 17 (2.3%) 7 (6.1%) 7 (7.4%)

5016 simulated PK profiles RMSE, μg*h/L 14.1 11.2 10.8 11.9

Normalized RMSE (%) 9.3 7.3 10.3 11.2

R2 0.985 0.990 0.956 0.952

Relative MPE (%) 0.1 0.1 1.6 3.0

Number of MPE out of the 
±20% interval n

9 (0.2%) 2 (0.2%) 7 (6.1%) 7 (7.4%)

(Continues)
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Train set 
(n = 75%)

Test set 
(n = 25%)

External validation set 
(n = 114 full PK profiles)

XGBoost XGBoost
XGBoost 
(n = 114)

MAP-BE 
(n = 94a)

5016 simulated + 508 patient PK profiles RMSE, μg*h/L 11.1 9.2 12.7 11.9

Normalized RMSE (%) 7.4 6.4 12.1 11.2

R2 0.990 0.992 0.939 0.952

Relative MPE (%) 0.2 0.3 2.7 3.0

Number of MPE out of the 
±20% interval n

44 (1.1%) 16 (1.2%) 6 (5.3%) 7 (7.4%)

10,035 simulated PK profiles RMSE, μg*h/L 7.6 6.7 12.6 11.9

Normalized RMSE (%) 5.0 4.3 12.1 11.2

R2 0.996 0.997 0.942 0.952

Relative MPE (%) 0.0 0.0 −1.2 3.0

Number of MPE out of the 
±20% interval n

3 (0.0%) 0 (0.0%) 7 (6.1%) 7 (7.4%)

10,035 simulated + 508 patient PK profiles RMSE, μg*h/L 7.6 7.5 13.7 11.9

Normalized RMSE (%) 5.0 4.9 13.1 11.2

R2 0.996 0.996 0.929 0.952

Relative MPE (%) 0.1 0.1 2.6 3.0

Number of MPE out of the 
±20% interval n

41 (0.5%) 13 (0.5%) 9 (7.9%) 7 (7.4%)

Note: The performance of the MAP-BE actually used in the online ISBA expert system is displayed here, in the last column of the table, for comparison 
purposes.
Abbreviations: AUC, area under the curve; ISBA, Immunosuppressant Bayesian Dose Adjustment; MAP-BE, maximum a posteriori Bayesian estimation; MPE, 
mean prediction error; Normalized RMSE, root mean square error divided by the mean of reference AUCs; PK, pharmacokinetic; RMSE, root mean square 
error; XGBoost, extreme gradient boosting, an optimized gradient boosting machine learning method.
aFor 20 profiles, MAP-BE could not be used because the morning dose was missing.

T A B L E  2   (Continued)

F I G U R E  1   Plot of everolimus AUC0-12h prediction RMSE in the training (blue) and the external validation (orange) datasets, according 
to the number of simulations used to train the XGBoost algorithm. Points represent the performance of each XGBoost model, lines are a 
smoothed representation of trends. AUC0–12h, 0–12-h area under the concentration-time curve; RMSE, root mean square error; XGBoost, 
extreme gradient boosting, an optimized gradient boosting machine learning method
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transplant recipients with extensive-sampling with trap-
ezoidal AUCs (reference AUCs) and MAP-BE AUC esti-
mates based on a three-point limited sampling strategy, as 
used by our ISBA expert system. Different sizes of simu-
lated training datasets were therefore compared based on 
several indicators, but primarily imprecision (i.e., RMSE). 
The performances of the ML algorithms trained on 5016 
simulations without patient data yielded the best results. 
However, RMSE represents imprecision in the dataset 
and cannot be interpreted as the absolute error in a given 
patient. In our study, Figure 2 shows that absolute errors 
were lower for smaller reference AUCs.

The results in the training sets obtained after 10-fold 
cross-validation and in the respective test sets (Table  2) 
gradually improved with the number of simulated profiles 
(from 1003 up to the 10,035), yielding RMSE from 19.0 
down to 6.7 μg*h/L in the test sets. This apparently un-
limited decrease in RMSE was a sign of overfitting. When 
we evaluated the mixing of simulated and patient data, we 
noted that adding 500 simulated to the 508 patient pro-
files seemed to penalize the model as compared to patient 
data alone (RMSE = 23.3 μg*h/L and 15.4 in the test set, 
respectively). This is probably due to the wide diversity 
of profiles to be handled in this fairly small training set. 
In contrast, adding the 508 patients’ profiles to 10,035 

simulations increased the RMSE from 6.7 to 7.5 μg*h/L in 
the test set. This was a second sign of model overfitting 
due to the huge number of simulated profiles in the train-
ing set.

In a second step, all the models were externally eval-
uated using as references the trapezoidal AUCs of an in-
dependent patient dataset. Adding the 508 patient AUCs 
to the 2508, 5016, or 10,035 simulated profiles for training 
did not improve the performances of the algorithm at this 
validation step. With 5000 simulations or less, prediction 
RMSE was roughly equivalent in the training and the val-
idation datasets. With 10,000 simulations or more, RMSE 
was still decreasing in the training datasets, whereas it 
was slowly increasing in the independent patient data-
set, showing overfitting to the parametric model used for 
simulations.

In addition, as shown in Figure 2, the two algorithms 
trained on patient data (even partially) did worse for the 
highest AUC values than those trained only on simulated 
data (n  =  5016), or than MAP-BE. The lowest RMSE 
(10.8 μg*h/L) in the external validation dataset (optimum) 
was obtained with 5016 simulated profiles. However, this 
precise optimal number of simulated profiles may not be 
generalized to all types of datasets, depending on the type 
of PK profiles, interindividual variability, data quality, etc.

F I G U R E  2   Scatter plots and residual 
plots of machine learning predicted versus 
reference everolimus AUC0-12h in the 
external validation dataset. The thin black 
line represents y = x. The colored lines 
were obtained by linear regression for 
each version of the XGBoost algorithm: in 
green, the model trained on patient data 
only (n = 508); in blue, the model trained 
on a balanced mix of patient (n = 508) and 
simulated (n = 500) data; in purple the 
best model, based on simulated data only 
(n = 5016); in red, the MAP-BE currently 
available through our online expert 
system ISBA. AUC, area under the curve; 
ISBA, Immunosuppressant Bayesian 
Dose Adjustment; MAP-BE, maximum a 
posteriori Bayesian estimation; XGBoost, 
extreme gradient boosting, an optimized 
gradient boosting machine learning 
method
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It is worth noting that C0 values were not so well-
correlated with the reference AUCs (R2  =  0.776) cal-
culated using the trapezoidal rule with greater than or 
equal to 10 samples from an unprecedented number 
of full PK profiles in kidney transplant recipients (114 
profiles at median 14.8 [IQR = 5.0, 105.9] months post-
transplantation in our independent validation data-
base). Estimating AUC from C0 could therefore lead to 
great uncertainty (Table  S2). Chan et al. compared C0 
to incomplete AUC (AUC0-5) in 92 patients at 1, 3, and 
6  months post-transplantation and found R2 values of 
0.59, 0.81, and 0.83, respectively.5 Our results suggests 
that C0 is not as good a surrogate of the AUC, contrary 
to what was repeatedly claimed (e.g., Shipkova et al. 
TDM 20167), and, in this respect, no better than for tac-
rolimus (Brunet et al. TDM 201922). Consequently, ad-
justing everolimus dose on the AUC rather than on C0, 
at least in certain patients or situations, might improve 
patient outcome.

One strength of the present study is to have trained and 
validated ML algorithms of everolimus exposure predic-
tion on two independent datasets, both larger than those 
generally used in PK studies. In 2012, Moes et al.16 trained 
a PK model on 52 PK profiles and developed an MAP-BE 
with a 2-point LSS (C0 and C2) yielding R2 = 0.90 in the 
training step, but it was not validated in an independent 
validation dataset. Similarly, Robertsen et al. proposed a 
PK model to describe everolimus PK in whole blood and 
in peripheral blood mononuclear cells,8 with a slightly 
better performance than our model trained on patient data 
(RMSE = 9.9% and 10.6%, respectively), but their Bayesian 
estimator was trained on a very small dataset (n = 20) and 
validated on an even smaller one (n = 4). In the study by 
Zwart et al.,23 a model was built using only one observed 
concentration (C0) to estimate the AUC0-12, based on 322 
PK profiles. The normalized RMSE was 17.4% and 16.3% 
at less than or equal to 6 and greater than or equal to 
6 months post-transplant, respectively. However, because 
their data were collected from routine clinical care, their 
reference AUCs were calculated using less samples for 
each profile (n = 4, up to 7 in the best case) than in our 
study (n = 10–12).

Despite training on a rather large set of data (as com-
pared with previous literature reports), the performance 
of our XGBoost algorithm was just slightly better than that 
of our previous MAP-BE. We even observed some abso-
lute errors >20% in the validation dataset. These atypical 
cases were either overestimated because of unusual flat 
profiles or underestimated because of very high peak con-
centrations at 1 h (see Figure S2). These situations were 
probably better covered by the simulation approach, an-
ticipating a large number of possibilities in an artificial 

way (variability in doses, clearances, ideal body weights…). 
Figure 2 clearly shows improved predictions when AUC 
greater than 200 μg*h/L. Because we receive many less re-
quests for everolimus AUC0-12h estimation on our ISBA ex-
pert system than for tacrolimus or mycophenolic, it would 
take many more years to reach the same amount of actual 
patient data to improve the ML algorithms and reach the 
same level of accuracy and precision as we did for these 
two drugs.13,14 For this reason, we chose to enhance ML by 
extending the training dataset through mixing patient and 
simulated profiles, or by relying only on a large number of 
simulations, as a test that could be extrapolated to other 
drugs. The last strategy was found to be the most power-
ful because it yielded very good performances across the 
whole range of AUC values in the external validation 
dataset.

The predictions obtained in the current work with ML 
are of similar quality to those obtained with MAP-BE. 
The latter only used the morning dose, three concentra-
tions, and their respective times to provide an excellent 
estimation of the full trapezoidal AUC0-12h, whereas the 
XGBoost algorithm trained on actual patient data used 
two more predictors, the time elapsed between trans-
plantation and everolimus blood sampling, and patient 
age. However, these additional predictors presumably 
did not add much information to estimate AUC0-12h, be-
cause algorithms built exclusively from simulated data 
without such covariates performed as well or better. In 
the context of MAP-BE, this has been initially described 
years ago by Sheiner et al.24 for digoxin: the addition of 
covariates does not carry as much information as one 
additional plasma concentration. This is confirmed by 
the excellent prediction performance in the independent 
patient dataset, where age and post-transplantation time 
were not available. Moreover, long before this work, the 
MAP-BE used here as a comparator was built using ca. 
30–40 profiles. Consequently, this study also illustrates a 
fundamental difference between XGBoost and MAP-BE: 
data-driven algorithms cannot be any better than the data 
available (e.g., here, the training set included very few 
patient PK profiles with AUC values <50 or >200 μg*h/L) 
whereas compartmental PK models, if well designed, are 
expected to be valid even beyond values used to develop 
them.

We trained XGBoost ML algorithms on a large number 
of everolimus PK profiles simulated using a PopPK model 
from the literature and obtained better results than algo-
rithms trained on a 10-fold smaller database of patient 
data, or on mixed databases of patient and simulated PK 
data. XGboost estimation based on three concentration-
time points only (no other covariate) provided accurate 
and precise estimation of everolimus interdose AUC in a 
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large independent dataset of everolimus full PK profiles 
from kidney graft recipients. These algorithms can be 
used as alternatives to our previously developed Bayesian 
estimator available through our ISBA expert system 
(https://abis.chu-limog​es.fr/login) and will soon be im-
plemented in a dedicated web interface (for research 
purposes only), together with the recently published ML 
algorithms for tacrolimus and mycophenolate mofetil.

AUTHOR CONTRIBUTIONS
M.L. and P.M. wrote the manuscript. J.-B.W., P.M., and 
M.L. designed the research. J.D. designed one of the mod-
eling programs. M.L. and J.-B.W. trained the algorithms. 
M.L., P.M., and J.-B.W. analyzed the data.

CONFLICTS OF INTEREST
The authors declared no competing interests for this work.

ORCID
Marc Labriffe   https://orcid.org/0000-0001-5840-8904 
Jean-Baptiste Woillard   https://orcid.
org/0000-0003-1695-0695 
Jean Debord   https://orcid.org/0000-0002-3309-1100 
Pierre Marquet   https://orcid.org/0000-0001-7698-0760 

REFERENCES
	 1.	 Schuler W, Sedrani R, Cottens S, et al. SDZ RAD, a new rapamy-

cin derivative: pharmacological properties in vitro and in vivo. 
Transplantation. 1997;64(1):36-42. doi:10.1097/​00007890-​1997​
07150-​00008

	 2.	 Nashan B, Curtis J, Ponticelli C, et al. Everolimus and reduced-
exposure cyclosporine in de novo renal-transplant recipients: 
a three-year phase II, randomized, multicenter, open-label 
study. Transplantation. 2004;78(9):1332-1340. doi:10.1097/01.
tp.0000140486.97461.49

	 3.	 Vitko S, Tedesco H, Eris J, et al. Everolimus with optimized cy-
closporine dosing in renal transplant recipients: 6-month safety 
and efficacy results of two randomized studies. Am J Transplant. 
2004;4(4):626-635. doi:10.1111/j.1600-6143.2004.00389.x

	 4.	 Kirchner GI, Meier-Wiedenbach I, Manns MP. Clinical pharma-
cokinetics of everolimus. Clin Pharmacokinet. 2004;43(2):83-
95. doi:10.2165/00003088-200443020-00002

	 5.	 Chan L, Hartmann E, Cibrik D, Cooper M, Shaw LM. 
Optimal everolimus concentration is associated with risk 
reduction for acute rejection in de novo renal transplant re-
cipients. Transplantation. 2010;90(1):31-37. doi:10.1097/
TP.0b013e3181de1d67

	 6.	 Kovarik JM, Kahan BD, Kaplan B, et al. Longitudinal assessment 
of everolimus in de novo renal transplant recipients over the 
first post-transplant year: pharmacokinetics, exposure-response 
relationships, and influence on cyclosporine. Clin Pharmacol 
Ther. 2001;69(1):48-56. doi:10.1067/mcp.2001.112969

	 7.	 Shipkova M, Hesselink DA, Holt DW, et al. Therapeutic drug 
monitoring of Everolimus: a consensus report. Ther Drug Monit. 
2016;38(2):143-169. doi:10.1097/FTD.0000000000000260

	 8.	 Robertsen I, Debord J, Åsberg A, Marquet P, Woillard JB. A 
limited sampling strategy to estimate exposure of Everolimus 
in whole blood and peripheral blood mononuclear cells in 
renal transplant recipients using population pharmacoki-
netic modeling and Bayesian estimators. Clin Pharmacokinet. 
2018;57(11):1459-1469. doi:10.1007/s40262-018-0646-5

	 9.	 Saint-Marcoux F, Woillard JB, Jurado C, Marquet P. Lessons 
from routine dose adjustment of tacrolimus in renal trans-
plant patients based on global exposure. Ther Drug Monit. 
2013;35(3):322-327. doi:10.1097/FTD.0b013e318285e779

	10.	 Badillo S, Banfai B, Birzele F, et al. An introduction to ma-
chine learning. Clin Pharmacol Ther. 2020;107(4):871-885. 
doi:10.1002/cpt.1796

	11.	 Woillard JB, Salmon Gandonnière C, Destere A, et al. A machine 
learning approach to estimate the glomerular filtration rate in 
intensive care unit patients based on plasma Iohexol concentra-
tions and covariates. Clin Pharmacokinet. 2021;60(2):223-233. 
doi:10.1007/s40262-020-00927-6

	12.	 Chen T, Guestrin C. XGBoost: a scalable tree boosting system. 
Proceedings of the 22nd ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining. KDD ’16. ​Association for 
Computing Machinery; 2016:785-794. doi:10.1145/2939672.2939785

	13.	 Woillard JB, Labriffe M, Debord J, Marquet P. Tacrolimus expo-
sure prediction using machine learning. Clin Pharmacol Ther. 
2020;30:361-369. doi:10.1002/cpt.2123

	14.	 Woillard JB, Labriffe M, Debord J, Marquet P. Mycophenolic 
acid exposure prediction using machine learning. Clin 
Pharmacol Ther. 2021;24:370-379. doi:10.1002/cpt.2216

	15.	 Woillard JB, Labriffe M, Prémaud A, Marquet P. Estimation 
of drug exposure by machine learning based on simulations 
from published pharmacokinetic models: the example of 
tacrolimus. Pharmacol Res. 2021;167:105578. doi:10.1016/j.
phrs.2021.105578

	16.	 Moes DJAR, Press RR, den Hartigh J, van der Straaten T, 
de Fijter JW, Guchelaar HJ. Population pharmacokinet-
ics and pharmacogenetics of everolimus in renal trans-
plant patients. Clin Pharmacokinet. 2012;51(7):467-480. 
doi:10.2165/11599710-000000000-00000

	17.	 Elmokadem A, Riggs MM, Baron KT. Quantitative systems phar-
macology and physiologically-based pharmacokinetic model-
ing with mrgsolve: a hands-on tutorial. CPT Pharmacometrics 
Syst Pharmacol. 2019;8(12):883-893. doi:10.1002/psp4.12467

	18.	 Templ M, Kowarik A, Meindl B. Statistical disclosure control 
for micro-data using the R package sdcMicro. J Stat Softw. 
2015;67(1):1-36. doi:10.18637/jss.v067.i04

	19.	 Denney W, Duvvuri S, Buckeridge C. Simple, automatic 
noncompartmental analysis: the PKNCA R package. J 
Pharmacokinet Pharmacodyn. 2015;42:S65-S107. doi:10.1007/
s10928-015-9432-2

	20.	 Schloerke B, Cook D, Larmarange J, et al. GGally: Extension to 
“Ggplot2.”; 2021. Accessed April 8, 2021. https://CRAN.R-proje​
ct.org/packa​ge=GGally

	21.	 Signorell A, Aho K, Alfons A, et al. DescTools: Tools for 
Descriptive Statistics; 2021. Accessed April 8, 2021. https://
CRAN.R-proje​ct.org/packa​ge=DescT​ools

	22.	 Brunet M, van Gelder T, Åsberg A, et al. Therapeutic drug mon-
itoring of tacrolimus-personalized therapy: second consen-
sus report. Ther Drug Monit. 2019;41(3):261-307. doi:10.1097/
FTD.0000000000000640

https://abis.chu-limoges.fr/login
https://orcid.org/0000-0001-5840-8904
https://orcid.org/0000-0001-5840-8904
https://orcid.org/0000-0003-1695-0695
https://orcid.org/0000-0003-1695-0695
https://orcid.org/0000-0003-1695-0695
https://orcid.org/0000-0002-3309-1100
https://orcid.org/0000-0002-3309-1100
https://orcid.org/0000-0001-7698-0760
https://orcid.org/0000-0001-7698-0760
https://doi.org/10.1097/00007890-199707150-00008
https://doi.org/10.1097/00007890-199707150-00008
https://doi.org/10.1097/01.tp.0000140486.97461.49
https://doi.org/10.1097/01.tp.0000140486.97461.49
https://doi.org/10.1111/j.1600-6143.2004.00389.x
https://doi.org/10.2165/00003088-200443020-00002
https://doi.org/10.1097/TP.0b013e3181de1d67
https://doi.org/10.1097/TP.0b013e3181de1d67
https://doi.org/10.1067/mcp.2001.112969
https://doi.org/10.1097/FTD.0000000000000260
https://doi.org/10.1007/s40262-018-0646-5
https://doi.org/10.1097/FTD.0b013e318285e779
https://doi.org/10.1002/cpt.1796
https://doi.org/10.1007/s40262-020-00927-6
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1002/cpt.2123
https://doi.org/10.1002/cpt.2216
https://doi.org/10.1016/j.phrs.2021.105578
https://doi.org/10.1016/j.phrs.2021.105578
https://doi.org/10.2165/11599710-000000000-00000
https://doi.org/10.1002/psp4.12467
https://doi.org/10.18637/jss.v067.i04
https://doi.org/10.1007/s10928-015-9432-2
https://doi.org/10.1007/s10928-015-9432-2
https://cran.r-project.org/package=GGally
https://cran.r-project.org/package=GGally
https://cran.r-project.org/package=DescTools
https://cran.r-project.org/package=DescTools
https://doi.org/10.1097/FTD.0000000000000640
https://doi.org/10.1097/FTD.0000000000000640


1028  |      LABRIFFE et al.

	23.	 Zwart TC, Moes DJAR, van der Boog PJM, et al. Model-
informed precision dosing of Everolimus: external valida-
tion in adult renal transplant recipients. Clin Pharmacokinet. 
2021;60(2):191-203. doi:10.1007/s40262-020-00925-8

	24.	 Sheiner LB, Beal S, Rosenberg B, Marathe VV. Forecasting indi-
vidual pharmacokinetics. Clin Pharmacol Ther. 1979;26(3):294-
305. doi:10.1002/cpt1979263294

SUPPORTING INFORMATION
Additional supporting information may be found in the 
online version of the article at the publisher’s website.

How to cite this article: Labriffe M, Woillard J-B, 
Debord J, Marquet P. Machine learning algorithms 
to estimate everolimus exposure trained on 
simulated and patient pharmacokinetic profiles. 
CPT Pharmacometrics Syst Pharmacol. 2022;11:​
1018-1028. doi:10.1002/psp4.12810

https://doi.org/10.1007/s40262-020-00925-8
https://doi.org/10.1002/cpt1979263294
https://doi.org/10.1002/psp4.12810

	Machine learning algorithms to estimate everolimus exposure trained on simulated and patient pharmacokinetic profiles
	Abstract
	INTRODUCTION
	METHODS
	Patients and actual data
	Simulated data
	Datasets and analysis strategy
	Feature engineering
	Exploratory data analyses
	Preprocessing of the data
	Training of XGBoost algorithms
	External evaluation of machine learning AUC estimates by comparison with full PK profiles, and comparison with maximum a posteriori Bayesian estimates

	RESULTS
	Patients and data
	Exploratory data analyses
	XGBoost algorithms, training, and test sets
	External evaluation versus the trapezoidal AUC in an independent dataset

	DISCUSSION
	AUTHOR CONTRIBUTIONS
	CONFLICTS OF INTEREST
	REFERENCES


