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ABSTRACT Burkholderia gladioli is a Gram-negative bacterium associated with cystic
fibrosis infections. Here, we describe the genome sequence of B. gladioli phage
Maja. Maja is most related to another Burkholderia phage, BcepF1, and may be a
temperate phage, despite the absence of repressor or integrase homologs in its
genome sequence.

B urkholderia gladioli is a Gram-negative bacterium formerly classified as Pseudomonas
(1). Although originally regarded essentially as a phytopathogen (2), B. gladioli can

also colonize the lungs of cystic fibrosis patients (3, 4). Additionally, B. gladioli and the
closely related species B. cepacia are associated with multidrug resistance (5). For the pur-
pose of finding phage for therapeutic applications, B. gladioli phage Maja was isolated,
and its genome annotation was performed.

Maja was isolated in 2019 from a soil sample from Hermann Park in Houston, TX
(GPS coordinates, 29.7135373, 295.3910571). The filtered soil extract (soil sample mixed
with phosphate-buffered saline [PBS] buffer) was enriched overnight against a B. gladioli
clinical isolate (strain BgPK) in tryptic nutrient broth at 37°C. Phage was purified and
propagated from the enrichment using B. gladioli strain BgPK as the host on tryptic nutri-
ent broth agar at 37°C by the soft-agar overlay method (6). Phage genomic DNA was
extracted from the precipitated phage particles and purified using a Wizard DNA
cleanup kit as previously described (7). DNA libraries were prepared using an Illumina
TruSeq Nano kit with 300-bp inserts. Genome sequencing was performed on an
Illumina MiSeq instrument using v2 300-cycle chemistry. FastQC (www.bioinformatics
.babraham.ac.uk/projects/fastqc) and FastX-Toolkit v0.0.14 (http://hannonlab.cshl
.edu/fastx_toolkit/download.html) were used for the quality control and trimming of
a total of 383,974 sequence reads. De novo genome assembly was done by SPAdes
v3.5.0 (8). As a result, a single contig was assembled with 270.6-fold sequence coverage.
The closure of the genome sequence was done by PCR (forward, 59-CTTAGAAAGCCGCCC
ATAGA-39; reverse, 59-GGTATCGACATGGCGAAGAA-39) and confirmed to be complete
by Sanger sequencing. The structural annotation of the genome was performed with
GLIMMER v3.0 (9) and MetaGeneAnnotator v1.0 (10). TransTermHP v2.09 was used for the
prediction of rho-independent termination sites (11), and tRNAs were detected by
ARAGORN v2.36 (12). Gene function prediction mainly relied on conserved domain
searches with InterProScan v5.22 (13) and sequence similarity search by BLAST
v2.2.31 at a 0.001 maximum expectation value (14). Specifically, the sequence simi-
larity search was set at an E value of ,0.001 against the NCBI nonredundant and
Swiss-Prot/TrEMBL databases (15). Transmembrane domains were found and anno-
tated using TMHMM v2.0 (16). Several structural predictions were performed with
HHpred v3.2.0 (17). In addition, progressiveMauve v2.4 calculated genome-wide
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DNA sequence similarity to top BLAST nucleotide hits (18). All annotation tools
(except HHpred) were used in the Center for Phage Technology Galaxy and Web
Apollo platforms hosted at https://cpt.tamu.edu/galaxy-pub (19–21). All software
was used with default parameters unless otherwise specified.

Phage Maja has a 68,393-bp genome sequence with 54.5% GC content. A total of
114 protein-coding genes were predicted, with a coding density of 92.4%. Overall, 33
protein coding genes were assigned a function. Comparative genomics and BLASTp
analysis revealed that Maja is most related to another Burkholderia phage, BcepF1
(GenBank accession number NC_009015), both on the nucleotide level (56.8% nucleo-
tide identity as determined by progressiveMauve) and on the protein level (sharing 90
similar proteins by BLASTp at E, 0.001), but Maja’s genome sequence contains a 15-
kb region where the sequence identity is very low (not possible to align by BLASTn at
E, 0.001) to all other known phages. Several structural genes were predicted, includ-
ing the tail fiber, baseplate, and tail sheath proteins. In addition, two free-standing
homing endonuclease genes, one GIY-YIG and the other HNH, were predicted in the
genome sequence. Four lysis genes were identified, including two spanin genes, two
endolysin genes, one glycosyl hydrolase, and one transglycosylase. Finally, many Maja
genes exhibit high similarity to bacterial genes, suggesting that Maja may be temper-
ate despite the absence of repressor or integrase homologs, or recently derived from a
temperate ancestor, which could explain its low GC content (54.5%) compared to that
of its host (;68%) (22).

Data availability. The genome sequence of Maja is available in GenBank under
accession number MT708549. The associated BioProject, SRA, and BioSample accession
numbers are PRJNA222858, SRR11558342, and SAMN14609647, respectively.
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