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ABSTRACT: Li oxide garnets are among the most promising candidates for solid-
state electrolytes in novel Li ion and Li metal based battery concepts. Cubic
Li7La3Zr2O12 stabilized by a partial substitution of Zr4+ by Bi5+ has not been the
focus of research yet, despite the fact that Bi5+ would be a cost-effective alternative
to other stabilizing cations such as Nb5+ and Ta5+. In this study, Li7−xLa3Zr2−xBixO12
(x = 0.10, 0.20, ..., 1.00) was prepared by a low-temperature solid-state synthesis
route. The samples have been characterized by a rich portfolio of techniques,
including scanning electron microscopy, X-ray powder diffraction, neutron powder
diffraction, Raman spectroscopy, and 7Li NMR spectroscopy. Pure-phase cubic
garnet samples were obtained for x ≥ 0.20. The introduction of Bi5+ leads to an increase in the unit-cell parameters. Samples are
sensitive to air, which causes the formation of LiOH and Li2CO3 and the protonation of the garnet phase, leading to a further
increase in the unit-cell parameters. The incorporation of Bi5+ on the octahedral 16a site was confirmed by Raman spectroscopy.
7Li NMR spectroscopy shows that fast Li ion dynamics are only observed for samples with high Bi5+ contents.

1. INTRODUCTION

Li stuffed oxide garnets have received much scientific attention
as fast Li ion conductors. In particular, cubic Li7La3Zr2O12

(LLZO) with its excellent chemical and thermal stability as well
as its electrochemical inertness against Li metal is perfectly
suited to be used as solid electrolyte and protecting layer in the
next generation of all-solid-state Li ion and Li metal battery
concepts.1,2

Pure LLZO occurs in at least two structural polymorphs: a
low-temperature tetragonal (space group I41/acd) and a cubic
“high-temperature” phase (space group Ia3 ̅d).1,3 Since the Li
ion conductivity of the cubic phase is at least 2 orders of
magnitude higher (10−4 to 10−3 S cm−1 at room temperature)
in comparison to the tetragonal phase, the stabilization of the
cubic phase at room temperature is highly needed.3−5

Fortunately, the cubic polymorph can be stabilized at room
temperature by doping with supervalent cations such as
Al3+,2,5−8 Fe3+,9,10 and Ga3+,11−14 which are incorporated on
the 4-fold coordinated 24d/96h positions replacing Li+, Ce4+

replacing La3+ on the 8-fold coordinated 24c position,15 and
Mo6+,16,17 Nb5+,18 Ta5+,12,13,19−21 Sb5+,22 Te6+,23 W6+,24 and
Y3+25 replacing Zr4+ at the octahedrally coordinated 16a
position. It was recently shown by Xia et al. that a stabilization
of the cubic Ia3 ̅d modification can also be achieved by a partial
substitution of Zr4+ with Bi5+; the end member Li5La3Bi2O12

(LLBO) was already described by Murugan et al. and further
discussed in several other studies.26−30

The Li ion conductivity of LLZO at room temperature is still
1−2 orders of magnitude lower than that of widely used liquid
electrolytes or other superionic conductors: e.g., Li10GeP2S12,
and Li1+xAlxTi2−x(PO4)3 (LATP).31−33 Hence, there is great
interest in further improving its Li ion conductivity by
microstructural and crystal chemical engineering.
The Li ion conductivity of cubic LLZO depends on various

factors, such as, e.g., (i) amount of mobile charge carriers, (ii)
vacancy concentration, (iii) coordination number of Li ions,
(iv) strength and length of Li−O bond, and (v) microstructure
of samples.34−36

These factors are strongly influenced by the cations that are
added to stabilize the cubic Ia3 ̅d modification of LLZO. Since
Bi5+ has a larger ionic radius in comparison to Zr4+, the unit-cell
parameter a0 for Li5La3Bi2O12 (LLBO) is significantly larger in
comparison to that of LLZO stabilized with other dopant
elements (13.065 vs 12.97 Å).27,37

We decided to study the LLZO−LLBO solid solution, in
order to systematically vary a0 and the Li content. Therefore,
we synthesized Li7−xLa3Zr2−xBixO12 (LLZBO) with varying Bi
contents (x = 0.10, 0.20, ..., 1.00) by solid-state synthesis at
comparatively low temperatures. By means of X-ray powder
diffraction (XRPD) and neutron powder diffraction (NPD) we
studied the exchangeability of Zr4+ by Bi5+ in the LLZO−LLBO
solid solution (LLZBO) and its stabilization effect on the cubic
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LLZO structure. The influence of Bi5+ on the microstructure
was evaluated by scanning electron microscopy (SEM) using
backscattered electrons (BSE) and secondary electrons (SE).
Energy-dispersive X-ray spectroscopy (EDX) measurements
were performed to investigate the chemical composition of
samples with regard to La, Zr, and Bi. Raman spectroscopy was
applied to obtain information on the site occupation behavior
of Bi5+. Finally, 7Li nuclear magnetic resonance (NMR) line
shape measurements were employed to study Li ion dynamics
as a function of a0 and composition.

2. EXPERIMENTAL SECTION
2.1. Synthesis. A series of Li7−xLa3Zr2−xBixO12 garnets with

intended mole fractions of Bi (xint) = 0.10, 0.20, ..., 1.00 was
synthesized by sintering in air. The starting materials were Li2CO3
(99%, Merck), La2O3 (99.99%, Roth), ZrO2 (99.0%, Roth), and Bi2O3
(99.0%, Merck). The reagents were weighed out in their intended
stoichiometric proportions with an excess of 10 wt % of Li2CO3 to
compensate for the loss of Li2O during sintering. The reagents were
mixed in an agate mortar and then cold-pressed into pellets with the
help of a uniaxial press. The pellets were put into an alumina crucible.
To avoid contamination with Al3+ from the crucible, the samples were
placed on a pellet of pure LLZO. During the first sintering step, the
samples were heated to 850 °C at a rate of 5 °C min−1 and calcinated
for 4 h. The resulting pellets were then removed from the furnace,
ground in an agate mortar, and ball-milled for 1 h in isopropyl alcohol
(FRITSCH Pulverisette 7, 800 rpm, 2 mm ZrO2 balls). After drying in
air, the powder was again cold-pressed into pellets. The sample pellets
were again placed on a pellet of pure LLZO and then put into an
alumina crucible. The final sintering step was performed at 850 °C for
8 h in air. Small fragments of the sintered pellets were ground in an
agate mortar and used for the XRPD, NPD, and NMR investigations.
Material used for the last two characterization methods was stored
under Ar. For SEM analysis, polycrystalline chips from the sample
pellets were embedded in epoxy resin. The surface was ground and
then polished using diamond paste. Relative densities of unaltered
samples have been measured by pycnometry. The influence of the Bi5+

content and the unit-cell parameters on the theoretical densities has
been considered by using theoretical densities obtained from Rietveld
refinement of XRPD data. In addition, the presence of extra phases has
also been taken into consideration.

2.2. SEM. Scanning electron microscopy investigations were
performed using a Zeiss Ultra Plus device to determine the grain
size and grain morphology of the samples. In particular, we put
emphasis on the investigation of the phase composition and the
chemical homogeneity, i.e. the distribution, of La, Zr, and Bi, using a
backscattered electron detector (BSE) and energy-dispersive X-ray
spectroscopy (EDX) measurements with an acceleration voltage of 20
kV.

2.3. XRPD. X-ray powder diffraction patterns were recorded with a
Bruker D8 Advance DaVinci Design diffractometer with a Lynxeye
solid-state detector using Cu Kα radiation to characterize the synthetic
products in terms of all phases present and to determine the symmetry
of the garnet. Data were collected in the range 10° ≤ 2θ ≤ 80°. For a
precise determination of the unit-cell parameter a0, separate
measurements were performed with addition of a silicon standard
with a well-known lattice constant (a0 = 5.43088 Å) to each sample.
XRPD patterns were recorded on fresh samples immediately after
synthesis as well as on samples that were stored in air for 1 and 3
weeks, respectively. The unit-cell parameter a0 was determined by
Rietveld refinement using the program Topas V2.1 (Bruker).

2.4. NPD. Neutron powder diffraction measurements were
performed at the Institut Laue-Langevin (ILL) in Grenoble, France.
Powder diffraction data were collected at room temperature in
constant wavelength mode with λ = 1.594 Å at the D2B diffractometer.
Experiments were performed with a step width of 0.04° in the range
5.8° ≤ 2θ ≤ 159.7°. Data treatment and refinement were carried out
with the FULLPROF suite of programs.38 In all data evaluations, the
La, (Zr + Bi), and O atom positions were refined using anisotropic
atomic displacement parameters; the atomic displacement factor for
the Li1 positions was refined isotropically while that of Li2 was set to
3.5 to avoid large correlations with the occupation factor. Site
occupancies on Li sites were then allowed to refine unconstrained and
(Zr + Bi) was fixed to full occupation of this site; however, the relative

Figure 1. SEM-BSE images of Li7−xLa3Zr2−xBixO12 with different magnifications.
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amounts of Bi and Zr were allowed to refine freely. The results for Bi
and Zr occupancies agree well with those of XRPD refinements.
2.5. Raman Spectroscopy. Raman spectra of the sample pellets

were collected at room temperature with a Thermo Scientific DXR
Raman microscope using a 10 mW depolarized internal laser light
source with an excitation wavelength of 780 nm. The Raman
microscope was equipped with a high-resolution grating, allowing
the collection of Raman spectra from 50 to 1800 cm−1 with a spatial
resolution (fwhm) of 2 cm−1.
2.6. 7Li NMR Lines. For the 7Li NMR line shape measurements

under static, i.e., nonrotating, conditions the samples were ground in
an agate mortar and fire-sealed under vacuum in DURAN glass
ampules (ca. 4 cm in length and 0.5 cm in diameter) to permanently
protect the powders from any moisture or air. 7Li NMR measurements
were performed using a Bruker Avance III spectrometer, which was
connected to a shimmed cryomagnet (Bruker) with a nominal external
magnetic field of B0 = 7.04 T; the 7Li resonance frequency ω0/2π was
116.4 MHz. 7Li NMR spectra were recorded with the saturation
recovery pulse sequence. In our case, this sequence contained 10 π/2

pulses to destroy any longitudinal magnetization M. After a constant
waiting time, the magnetization recovered was flipped into the (xy)′
plane via a final π/2 pulse to detect the free induction decay. Fourier
transformation and subsequent phase correction led to the spectra
shown in this work.

3. RESULTS
3.1. Crystal Size, Morphology, and Chemical Compo-

sition As Seen by SEM and SEM-EDX. After the final
sintering step, the sample pellets have a yellow color, the
intensity of the color rising with increasing Bi content. Polished
samples were examined by SEM-BSE. Figure 1 shows SEM-
BSE images of samples with different Bi contents. The grain
size of the samples is around 1−3 μm. Single grains show an
isometric shape. The Bi concentration does not have a
significant effect on the grain size, but an improved
densification is noted for samples with higher Bi concen-
trations. SEM-EDX measurements of La, Zr, and Bi show that

Figure 2. XRPD patterns of as-synthesized Li7−xLa3Zr2−xBixO12 samples. Peaks at 2θ = 28.6°, marked with open circles, are attributed to small
amounts of La2Zr2O7, while peaks at 2θ = 31.8°, marked with black squares, are attributed to Li2CO3.

Table 1. Refined Bi5+ Content xref, Relative Density, and Unit-Cell Parameters a0 of LLZBO Derived from Rietveld Refinement
of XRPD Data Collected Immediately after Synthesis as well as after Air Exposure for 1 and 3 Weeks, Respectively

a0 (Å)

xint xref rel density (%) as synthesized after 1 week after 3 weeks

0.10 0.155 69 13.00265(57) 13.01189(23) 13.05982(40)
0.20 0.187 71 13.00222(27) 13.03072(31) 13.06170(43)
0.30 0.283 72 13.00547(48) 13.04424(33) 13.06736(39)
0.40 0.404 68 13.01373(53) 13.04441(28) 13.07248(47)
0.50 0.495 70 13.01896(72) 13.05463(25) 13.08688(20)
0.60 0.602 72 13.02295(17) 13.05933(33) 13.08769(12)
0.70 0.708 74 13.02912(29) 13.07479(23) 13.08501(18)
0.80 0.806 80 13.03307(31) 13.07065(23) 13.08578(15)
0.90 0.893 85 13.03699(37) 13.07647(23) 13.08517(21)
1.00 1.000 89 13.04522(31) 13.06803(33) 13.08144(25)
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sample compositions for these elements are well in agreement
with the intended stoichiometries. Very frequently, a fine-
grained phase was found between single LLZBO grains. This
phase is interpreted as a mixture of LiOH and Li2CO3 that
formed during processing and polishing of samples.
3.2. Phase Composition and Unit-Cell Parameters As

Seen via XRPD. The XRPD pa t te rn s o f the
Li7−xLa3Zr2−xBixO12 (xint = 0.10−1.00) are shown in Figure 2.
The phase compositions of the samples were evaluated by
Rietveld analysis. All samples exhibit reflections indicating cubic
Ia3̅d symmetry. For the sample with xint = 0.10, Rietveld
refinement shows about 66% of tetragonal LLZO and 34% of
cubic garnet. Some samples show a small peak at 2θ = 28.6° (d
= 3.12 Å), which can be attributed to La2Zr2O7, while other
samples show a reflection at 2θ = 31.8° (d = 2.81 Å), indicating
the presence of small amounts of Li2CO3. If Zr and Bi contents
on the octahedral 16a site are allowed to refine freely during
Rietveld refinement, the refined Bi contents xref obtained from
these refinements are well in accordance with the intended Bi
contents xint (see Table 1). Reflections show a relatively broad
peak shape, especially at high 2θ angles.
As shown in Figure 3 and Table 1, the unit-cell parameters of

LLZBO samples increase with increasing Bi content. For low Bi

concentrations, the lattice parameter a0 is around 13.00 Å and
increases up to 13.04 Å for the sample with xint = 1.00. This
observation is in agreement with Vegard’s law, as 6-fold
coordinated Bi5+ shows an ionic radius of 0.76 Å, which is larger
than that of 6-fold coordinated Zr4+ (0.72 Å).37 The correlation
between the intended Bi content xint and the unit-cell
parameter a0 of LLZBO can be expressed by a simple linear
regression: a0 = 0.0494xint + 12.994. A comparison with other
studies on LLZBO shows that the unit-cell parameters obtained
in this work are systematically higher; however, the slope of the
linear regression is in agreement with other studies on LLZBO
and LLBO.26−28 The comparatively large unit-cell parameter
might not only be attributed to the increase caused by the
substitution of Zr4+ by Bi5+; it also seems to be related to a
partial protonation of LLZBO due to a reaction of the garnet
phase with moisture from the air, as this behavior was described
for similar compounds as well.39,40 This is also indicated by the
presence of Li2CO3 as mentioned above, as Li2CO3 can result
from the reaction of CO2 from air with LiOH, which is a side
product of the protonation of LLZO-type materials.41−43

3.3. Stability of LLZBO in Air. To study the stability of
LLZBO in air, samples were ground in an agate mortar and
stored under air for 1 and 3 weeks, respectively. XRPD
measurements including a silicon standard were performed to

investigate the formation of secondary phases as well as to
determine the unit-cell parameters. The evolution of the unit-
cell parameters as a function of the Bi content and the duration
of exposure is shown in Figure 3 and Table 1. It is clearly visible
that the unit-cell parameters increase if samples are stored
under air. This increase is attributed to the protonation of the
garnet phase, which was also reported by other studies on
LLZO.39,40 The protonation reaction also causes the formation
of Li2CO3. The presence of small amounts of Li2CO3 in aged
samples was confirmed by XRPD measurements due to the
presence of an additional reflection at d = 4.16 Å. The peak
width of LLZO reflections, especially at high 2θ angles,
increases even further in comparison to XRPD patterns of fresh
samples; however, attempts to perform a fit using two different
LLZBO garnets with different unit-cell parameters did not lead
to a significant improvement. Attempts were also made to
perform a structural refinement using the I4̅3d model, which
was recently reported for protonated Li oxide garnets and
LLZO garnets stabilized with certain cations such as Ga3+ and
Fe3+.40,44−47 As the characteristic 310 reflection of space group
I4 ̅3d, which appears at d = 4.10 Å (2θ = 21.6°) for LLZO
garnets with a unit-cell parameter of 12.97 Å, would shift to
larger d values due to the increasing unit-cell parameters of
LLZBO, it might be possible that the additional reflection at d
= 4.16 Å (2θ = 21.35°) is related to the phase transformation to
the I4̅3d space group. Rietveld refinement showed that, even
for strongly protonated LLZBO samples with large unit-cell
parameters of 13.08 Å, this characteristic 310 reflection of space
group I4 ̅3d would be located at d = 4.138 Å (2θ = 21.45°).
Therefore, the additional reflection at d = 4.16 Å (2θ = 21.35°)
is attributed to the 110 reflection of Li2CO3 and not to a
LLZBO garnet phase with space group I4̅3d. In addition, the
evolution of a small peak at 2θ = 31.8° (d = 2.81 Å) can also be
related to Li2CO3. The presence of Li2CO3 was also confirmed
by evaluation of NPD measurements as well as by Raman
spectroscopy.

3.4. NPD. Results of neutron powder diffraction generally
confirmed the results obtained by XRPD. Refinement results of
2 different NPD measurements are shown in Figures S1 and S2
in the Supporting Information. As the samples were stored
under an Ar atmosphere, NPD samples were only slightly
affected by protonation and aging, in comparison to samples
from XRPD measurements. The Li2CO3 contents were
quantified for all LLZBO samples, yielding about 2% Li2CO3.
Small contents of LiOH were found as well. As determined by
XRPD, the sample with xint = 0.10 still shows both tetragonal
I41/acd and cubic Ia3 ̅d garnet modifications. In contrast to the
evaluation of XRPD data, a model with two different cubic
(space group Ia3 ̅d) LLZBO phases was used for the evaluation
of NPD data of samples with xint ≥ 0.30, as the data quality and
resolution of data obtained from NPD are better than those
obtained from XRPD. This model consists of an LLZBO phase
that is unaffected or only slightly affected by protonation and a
second LLZBO phase which is strongly affected by protonation
on the 96h site, therefore showing a larger unit-cell parameter.
For this second phase only H+ was assumed to occupy 96h;
fractional atomic coordinates are close to those reported
recently for protonated LLZO with space group Ia3 ̅d.48 In the
unprotonated material, the Li content decreases with increasing
Bi content, for both the Li1 and Li2 sites to similar extents;
however, data overlap is large so that no additional detailed
structural parameters can be extracted. Unit-cell parameters of
unprotonated and protonated LLZBO phases of different

Figure 3. Unit-cell parameters a0 of as-synthesized LLZBO samples
(black dots) and LLZBO samples after storage under air for 1 week
(red squares) and 3 weeks (green triangles), respectively.
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samples obtained by Rietveld refinements of NPD data are
shown in Table S1 and Figure S3 in the Supporting
Information; the corresponding structural data of selected
samples are given in Table S2 in the Supporting Information.
Unit-cell parameter values for unprotonated LLZBO samples
are similar to values of as-synthesized values obtained from
XPRD; while the unit-cell parameters of protonated LLZBO
phases are similar to XRPD-derived values of samples that have
been stored in air for 1 week. The discontinuity of the unit-cell
parameter between samples with xint = 0.70 and xint = 0.80
might be related to different alteration stages that could not be
resolved. Rietveld refinements yield protonated garnet contents
between 22% and 34%.
3.5. Raman Spectroscopy. Raman spectra of LLZBO

samples are shown in Figure 4.

In general, the obtained spectra show a good coincidence
with other spectra of cubic LLZO stabilized with different
aliovalent cations.16,19,43,49,50 In addition to the characteristic
LLZO bands, additional bands at 156, 195, and 1090 cm−1 were
observed for all samples. These bands can be assigned to
Li2CO3.

41,51−53 Considering the evolution of the Raman
spectra depending on the variation in the Zr/Bi ratio, the
most prominent features are two bands at ∼590 and ∼650
cm−1, respectively, which show a distinct trend, depending on
the Bi content. The band at ∼590 cm−1 gets more intense and
slightly shifts to lower wavenumbers with increasing Bi content,
whereas at the same time the intensity of the band at ∼650
cm−1 decreases and the band shifts toward higher wave-
numbers. Bands in this region are interpreted as M−O
breathing modes of the octahedral 16a position. Mukhopad-
hyay et al. observed that the Zr−O associated band appears at
640 cm−1, whereas a Ta−O associated band is present at 720
cm−1.19 This effect was due to a shorter bond length of Ta−O
in comparison to Zr−O. Rettenwander et al. observed an
analogous effect for Li7−2xLa3Zr2−xMo6+xO12, as they observed
the appearance and intensity increase of a band at ∼770 cm−1

with increasing Mo content of the garnet.16 The evolution of
the Raman spectra of LLZBO can be explained similarly. The
progression of the band at 590 cm−1 is considered as an effect

of the extended bond length of Bi−O bonds in comparison to
Zr−O bonds, as the ionic radius of Bi5+ is larger than that of
Zr4+, resulting in the appearance of a band at smaller
wavenumbers, which slightly shifts to lower wavenumbers
with increasing Bi contents, in accordance with the slightly
increasing unit-cell parameters of the LLZBO samples with
increasing Bi contents. Another interesting feature can be
observed in the low-wavenumber region between 200 and 400
cm−1, in particular for samples with high Bi5+ contents (xint =
0.80−1.00). Raman spectra show a broadening of the bands in
this region. The broad bands were also found in other studies
and have been attributed to disorder caused by the migration of
highly mobile Li+ ions along the Li+ diffusion pathways.43,49,54

These observations are well in accordance with results of 7Li
NMR spectroscopy.

3.6. Static 7Li NMR Spectra: Line Narrowing. NMR line
shapes of the quadrupole 7Li nucleus (spin quantum number I
= 3/2) are sensitive to both local and long-range Li ion hopping
processes. In addition to possible quadrupolar effects, at low
temperatures dipolar interactions broaden the spectra; such
interactions are averaged with increasing diffusivity of the spin-
carrying ions. Thus, by a comparison of line shapes of samples
with different compositions at the same temperature,
preliminary information on Li ion dynamics can be deduced.
For this purpose, static 7Li NMR spectra of Li7−xLa3Zr2−xBixO12
(xint = 0.10−1.00) were recorded at three different temper-
atures at a Larmor frequency of ω0/2π = 116.4 MHz (see
Figures 5 and 6).

While at a Bi content of xint > 0.60 the line width (full width
at half-maximum), when read off at 273 K, ranges from
approximately 6 to ca. 7 kHz, it clearly drops down to only 850
Hz when xint = 1.00 is reached (Figure 5). Importantly, already
at xint = 0.80 a narrow top superimposes the broad Gaussian-
shaped line which characterizes the central line of the other
samples (see Figure 6). The narrow component is the first
indication of a fast-diffusing spin subensemble having access to
jump pathways with low activation barriers. At xint = 1.00 the
narrow line governs almost the whole NMR spectrum (Figure
6), which reveals that almost all Li ions participate in fast ion

Figure 4. Raman spectra of Li7−xLa3Zr2−xBixO12 samples (x = 0.10,
0.20, ..., 1.00). Bands at 156, 195, and 1090 cm−1, marked with stars,
are attributed to Li2CO3. Two vertical lines have been added to
highlight the shifting of bands.

Figure 5. 7Li NMR line width (fwhm = full width at half-maximum,
116 MHz) as a function of temperature T. The lines are drawn to
guide the eye. The higher the Bi content, the faster the Li ions
exchange among the crystallographic sites in the garnets. See the text
for further explanations.
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exchange. The central line of the sample with xint = 1.00 does
not change further with increasing temperature; at T > 273 K
the shape of the spectra remains unchanged, demonstrating that
the extreme narrowing regime was already reached at 273 K
(Figure 5). On consideration of a rigid-lattice line width, νrl, on
the order of a few kilohertz, at 273 K (and also higher
temperatures) the Li jump rate τ−1 is estimated to be at least of
the same order of magnitude. This is in contrast to the samples
with xint > 0.60: up to T ≈ 310 K only the rigid-lattice regime is
detected (Figure 5). The corresponding mean Li jump rate
turns out to be much lower than νrl and, hence, has no effect on
the line width. Hence, significant Li ion dynamics, able to
average homonuclear dipole−dipole couplings, is only observed
for samples with large amounts of Bi incorporated. The change
in rigid-lattice line width with increasing xint, cf. the samples
with xint < 0.60, presumably reflects a decreasing Li−Li distance
to which νrl is sensitive.
Li diffusivity averages not only magnetic dipolar but also

electric quadrupolar interactions. These effects result from the
interaction of the quadrupole moment of the Li nucleus with a
nonvanishing electric field gradient at the nuclear site. In
contrast to the situation with no electric field gradient, the four
Zeeman levels are perturbed so that, in the case of a
polycrystalline sample, a powder pattern shows up (Figure 6).
Li diffusivity also affects this pattern, leading to averaged
quadrupole satellite lines at sufficiently high temperatures. For
xint < 0.80 the NMR lines reveal distinct patterns (see also the
inset shown for the sample with xint = 0.10 in Figure 6). The

90° singularities, marked in Figure 6 with dots, point to
coupling constants in the order of 60 kHz. The larger the xint
value, the higher the Li exchange among the electrically
different Li sites. Sufficiently fast exchange causes the pattern to
vanish. At T values much higher than those covered in this
study, the emergence of a new, fully averaged quadrupole
powder pattern is expected, characterized by a reduced
coupling constant.

4. DISCUSSION
The main goal of this study is to observe the influence of a
partial substitution of Zr4+ by Bi5+ in LLZO and the
stabilization of the cubic phase. Pure-phase cubic samples
were obtained for Bi contents xint ≥ 0.20, which is consistent
with the results of previous studies.26 It has to be noted that
pure-phase cubic garnet samples are obtained by comparatively
low Bi contents, as much higher dopant concentrations are
needed if other substituting cations, such as Ta5+ and Nb5+, are
used as substituents for Zr4+.50,55 Rietveld refinement of XRPD
data confirms a systematic increase of the unit-cell parameter
with increasing Bi5+ content; additionally, the increase of the
unit-cell parameter is partially caused by a protonation of the
garnet phase. The increase of the unit-cell parameter due to
protonation and the observation of Li2CO3 from NPD as well
as from Raman spectroscopy indicate that LLZBO is unstable
in air. As NPD samples, which have been stored under Ar
directly after the synthesis, already show the first signs of
protonation, the protonation might already start during the
cooling of samples in the furnace. Reactions with H2O and CO2
from the air cause the formation of LiOH and Li2CO3 and lead
to a protonation of the garnet, which has negative effects on the
ionic conductivity.40−44,55−59 Due to the small grain size of the
samples and the high porosity of the pellets, both being side
effects of the low sintering temperature, the samples provide a
large surface for interactions with air. LLZBO samples from this
study seem to be very prone to these reactions, as the increase
of the lattice parameter was observed after less than 1 week of
storage in air. Even samples characterized by XRPD
immediately after synthesis show indications for the aging
process mentioned above. Li2CO3 was partially also docu-
mented from XRPD measurements of samples immediately
after synthesis; however, small concentrations of Li2CO3 are
hardly observable by XRPD. LLZBO samples stored under Ar
were less affected by the aging process, as the unit-cell
parameters obtained by NPD, where samples have been stored
under Ar, were lower than those obtained from XRPD.
However, even NPD samples showed indications for the aging
process such as the formation of Li2CO3 and the presence of
protonated LLZBO. Therefore, the exposure of LLZBO to air
should be strictly avoided. In addition, an enhancement of the
density of LLZBO samples would also be beneficial, as the
surface area of LLZBO grains available for interaction with air
would decrease. An increase in the density of LLZBO samples
will also have positive effects on the Li ion conductivity.
Results from 7Li NMR spectroscopy show that fast Li ion

diffusivity for LLZBO is only achieved for high Bi contents. As
the samples have been stored under Ar, the samples have not
been significantly affected by protonation and the results show
a very clear trend as a function of the Bi content. Xia et al.
studied the Li ion conductivity of cubic LLZBO with x = 0.20
and obtained a Li ion conductivity of 2.6 × 10−5 S cm−1.26 The
results from this study indicate that higher Li ion conductivities
might be achieved by using samples with higher Bi contents.

Figure 6. Static 7Li NMR spectra of Li7−xLa3Zr2−xBixO12 (xint = 0.10−
1.00) recorded at ω0/2π = 116.4 MHz and 273 K. Full line narrowing
is reached at xint = 0.90; at this composition, quadrupole intensities are
significantly averaged due to Li jump processes. The sample with xint =
0.80 already reveals a two-component line shape representing fast and
slow Li ions. See the text for further explanation.
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Also for Ta-stabilized LLZO, the highest conductivities were
reported for Ta contents of 0.60 atoms per formula unit.60 The
results of Xia et al. also show that an increase of the density of
samples, either by higher sintering temperatures or by the
introduction of Al3+ that acts as a sintering aid, are beneficial for
the Li ion conductivity. As stated above, an improved
preparation route for LLZBO will be necessary to obtain
satisfying electrochemical performances. As Ga3+ seems to be
an even more effective sintering aid for LLZO in comparison to
Al3+, it may be worth preparing and studying Ga-bearing
LLZBO samples as well.

5. CONCLUSIONS
The cubic modification of LLZO can be stabilized by a
substitution of Zr4+ with Bi5+. Samples prepared by a low-
temperature synthesis route show a broad peak shape in XRPD
and are sensitive to moisture and CO2 content in air, which
leads to the protonation of LLZBO and the formation of LiOH
and Li2CO3. This aging has been proven by NPD and Raman
spectroscopy as well. The incorporation of Bi into the LLZO
structure leads to the evolution of an additional band in the
Raman spectra at ∼590 cm−1. 7Li NMR spectroscopy shows
that fast translational Li ion dynamics are only observed for
samples with large amounts of Bi incorporated.
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