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Abstract: Studies on anthocyanin biosynthesis have been mainly concentrated on the fruit, whereas few
have focused the mechanism of flower coloration in kiwifruit. Here, we report that the structural
gene, AeCHS, is involved in anthocyanin accumulation and indispensable for normal petal coloration
in Actinidia eriantha. Petals from three different species including Actinidia eriantha (red petals),
Actinidia hemsleyana (light pink petals) and Actinidia arguta (white petals) were selected for anthocyanin
determination and gene expression analysis. The anthocyanin components in A. eriantha were
significantly higher than in A. hemsleyana or A. arguta. Consistently, gene expression profiles
suggested that AeCHS expression in A. eriantha was higher than in A. hemsleyana or A. arguta. Cluster
analysis showed that AeCHS was clustered into a single group and distinctly separated from other
genes, indicating the expression pattern of AeCHS gene was different from any other. Additionally,
correlation analysis revealed AeCHS expression significantly correlated with anthocyanin content.
The complete coding sequence of AeCHS was cloned from petals of A. eriantha ‘Zaoxu’, showing
the length of AeCHS was 1170 bp encoding a protein of 389 amino acids. AeCHS was located in the
cytoplasm, indicating it is indeed a structural gene involved in anthocyanin biosynthesis. AeCHS
silencing performed by infiltration grafting-mediated virus-induced gene silencing (VIGS) reduced
petal anthocyanin content and bleached red petals in A. eriantha. Our results confirm a crucial role of
AeCHS in anthocyanin biosynthesis and accumulation in A. eriantha petals; furthermore, they offer
important basic information and constitute a reference point for further research.
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1. Introduction

Kiwifruit belongs to the genus Actinidia of the Actinidiaceae. It is a perennial deciduous fruit tree
originated in China [1] that comprises over 70 species that vary extensively with regard to fruit type
and flowers, most of them distributed in China [2]. The commercial cultivation of kiwifruit, one of
the four fruit trees successfully domesticated in the last century, has extended around the world [3].
The most important tissue in most fruit trees is ripened fruit flesh, because of their unique flavor and
delicious rich taste, which is highly valued in the market and therefore, of significant economic benefit
for producers. Thus, plant breeders are committed to developing new cultivars to cater for the market
demand. ‘Hayward,’ the most popular kiwifruit cultivar, has dominated global markets for many
years [4].
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In addition to the fruit, flowers are important during the growth and development of the kiwifruit
tree. Several Actinida species, such as A. eriantha, A. hemsleyana, A. longicarpa, A. arguta, A. polygama,
among others, show red, pink, or white petals at full bloom [5]. A. eriantha with bright colored petals
has the potential to be a suitable ornamental kiwifruit tree whose promotion and development has
recently started.

As is the case with red fruit coloration [6,7], red kiwifruit flowers are also due to the biosynthesis
and accumulation of anthocyanins [8,9], a kind of water-soluble pigments produced by a branch in the
flavonoid pathway that seemingly play an important role as attractants of insect and animal pollinators
and seed dispersers [10,11]. Further, as natural food pigments, anthocyanins are of importance not
only as plant endogenous compounds involved in a variety of biological responses but as natural plant
extracts with enormous potential for human health as well [12–17]. The Anthocyanin biosynthetic
pathway and the related genes including structural and regulatory genes have been extensively studied
in plants [18–30].

We have summarized schematically the components of the pathway possibly occurring in kiwifruit in
Figure 1, based on previous research on the biosynthetic pathway of anthocyanin [6,31,32]. Similarly, previous
studies showed that transcript abundance of most structural genes related to anthocyanin synthesis,
such as CHS (encoding chalcone synthase), F3H (encoding flavanone 3-hydroxylase), DFR (encoding
dihydroflavonol-4-reductase), and UFGT (encoding UDP-glucose: flavonoid 3-O-glycosyltransferase),
are highly correlated with anthocyanin accumulation [33–35].

Numerous studies have focused on anthocyanin biosynthesis in fruits, but few on the mechanism
of flower coloration. The overexpression of SVP3 gene in kiwifruit affects reproductive development
and suppresses anthocyanin biosynthesis in petals [9]. In addition, an R2R3 MYB transcription factor
(MYB110a) reportedly determined red petal color in a kiwifruit hybrid population [8]. These studies
provide a molecular basis for anthocyanin regulation of red petal coloration in kiwifruit; however, the
specific structural gene that plays a decisive role in the formation of red petals remains elusive.

With the advent of the post-genomic and molecular biological era, an increasing number of
combinations of omics and experimental systems are applied to unravel various biological phenomena.
In kiwifruit, two Actinidia species including Actinidia chinensis and Actinidia eriantha have allowed
the completion of genome sequencing [36–38], thus providing a sequence basis for the study of the
molecular mechanism underlying various biological traits. Nonetheless, functional genomic studies
in kiwifruit are still seriously limited compared with other model plants because of the late start of
molecular biology techniques and the long period of the genetic transformation system in this case,
where virus-induced gene silencing (VIGS) may be an ideal method to perform verification experiments
of gene function by silencing the correct target gene. VIGS used for functional characterization of
genes has been extensively reported in various plant species, including tobacco [39,40], rose [41–43],
cotton [44], pea [45], potato [46], tomato [47–49], apple [50], and strawberry [51]. Furthermore, VIGS
was recently successfully used in kiwifruit [52].

As perennial woody plants, grafting is the main reproductive mode for fruit trees, with the survival
rate of grafts depending on the affinity of rootstocks and scions [53]. Therefore, the combination of
grafting technology and VIGS may be a useful strategy to obtain information about a gene function of
interest. Therefore, we used infiltration grafting-mediated VIGS to verify the role of a target gene in
kiwifruit petal coloration.

To explore possible molecular mechanisms underlying petal coloration, a series of physiological
and biochemical experiments were carried out as well as a new try of infiltration grafting-mediated
VIGS, providing new insight for anthocyanin biosynthesis and accumulation of kiwifruit petals.
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Figure 1. Anthocyanin biosynthetic pathway in kiwifruit. PAL, phenylalanine ammonia-lyase; C4H, 
trans-cinnamate 4-hydroxylase; 4CL, 4-coumarate: CoA ligase; CHS, chalcone synthase; CHI, 
chalcone isomerase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-hydroxylase; F3′5′H, flavonoid 
3′,5′-hydroxylase; DFR, dihydroflavonol 4-reductase; LDOX, leucoanthocyanidin dioxygenase; 
UFGT, flavonoid 3-O-galactosyl transferase; UFGGT, flavonoid 3-O-galactoside-xylosyl transferase; 
FLS, flavonol synthase; LAR, leucoanthocyanidin reductase; ANR, anthocyanidin reductase. 

2. Materials and Methods 

2.1. Flower Materials 

Three types of flowers of different color, from three different Actinidia species including Actinidia 
eriantha ‘Zaoxu’, Actinidia hemsleyana NY-CY’, and Actinidia arguta ‘XX-RZ’, were collected from the 
National Kiwifruit Germplasm Garden (34.71569° N, 113.7122° E), at the Zhengzhou Fruit Research 
Institute of the Chinese Academy of Agricultural Sciences, Henan Province, China. The color of the 
petals of the three types of flowers at full blooming stage were red, light pink and white, respectively 
(Figure 2). For each Actinidia species, approximately 60 flowers were sampled from three independent 
vines. The petals were separated from the flowers, immediately frozen in liquid nitrogen, and stored 
at −80 °C until use for anthocyanin and RNA extraction. 

For grafting experiments, branches with one unopened bud to be used for scions were cut from 
the adult Actinidia eriantha vine and terminal part was removed. Actinidia valvata twigs were used as 

Figure 1. Anthocyanin biosynthetic pathway in kiwifruit. PAL, phenylalanine ammonia-lyase;
C4H, trans-cinnamate 4-hydroxylase; 4CL, 4-coumarate: CoA ligase; CHS, chalcone synthase; CHI,
chalcone isomerase; F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′-hydroxylase; F3′5′H, flavonoid
3′,5′-hydroxylase; DFR, dihydroflavonol 4-reductase; LDOX, leucoanthocyanidin dioxygenase; UFGT,
flavonoid 3-O-galactosyl transferase; UFGGT, flavonoid 3-O-galactoside-xylosyl transferase; FLS,
flavonol synthase; LAR, leucoanthocyanidin reductase; ANR, anthocyanidin reductase.

2. Materials and Methods

2.1. Flower Materials

Three types of flowers of different color, from three different Actinidia species including Actinidia
eriantha ‘Zaoxu’, Actinidia hemsleyana NY-CY’, and Actinidia arguta ‘XX-RZ’, were collected from the
National Kiwifruit Germplasm Garden (34.71569◦ N, 113.7122◦ E), at the Zhengzhou Fruit Research
Institute of the Chinese Academy of Agricultural Sciences, Henan Province, China. The color of the
petals of the three types of flowers at full blooming stage were red, light pink and white, respectively
(Figure 2). For each Actinidia species, approximately 60 flowers were sampled from three independent
vines. The petals were separated from the flowers, immediately frozen in liquid nitrogen, and stored at
−80 ◦C until use for anthocyanin and RNA extraction.
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rootstocks. Scions were grafted onto rootstocks by the traditional cleft grafting method and wrapped 
in transparent bags to keep high humidity conditions until bud opening. 

 
Figure 2. Flower phenotype in three different Actinidia species. The petal color of A. eriantha, A. 
hemsleyana, and A. arguta are red, light pink, and white, respectively. 

2.2. Extraction and Determination of Anthocyanins and Precursors 

Considering that anthocyanins are sensitive to light and easy to degrade, the whole extraction 
process was carried out under dark conditions. The extraction procedure was carried out according 
to the modified protocol for the determination of anthocyanins in products of plant origin, of the 
Agricultural Industry Standards of the People’s Republic of China (NY/T2640-2014). Briefly, 
approximately two grams of petal tissue were ground and extracted in an 80:20:1 solution t of 
anhydrous ethanol, water, and formic acid. The extracts were passed through a syringe filter with a 
0.45-µm filter membrane (Jinteng, Tianjin, China) prior to chromatographic analysis. Qualitative and 
quantitative determination of anthocyanins and their precursors were conducted by ultra-
performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) 
(Agilent Technologies Inc., CA, USA). Dihydroquercetin (CAS: 480-18-2), dihydromyricetin (CAS: 
27200-12-0), cyanidin (CAS: 528-58-5), delphinidin (CAS: 528-53-0), cyanidin-3-O-galactoside (CAS: 
27661-36-5), cyanidin-3-O-xylose-galactoside (CAS: 31073-32-2), and delphinidin-3-O-galactoside 
(CAS: 28500-00-7) were used as authentic standards for constructing the corresponding standard 
curves for single point quantitation.  

In petal samples used for VIGS, measurements of total anthocyanin content were carried out 
using the Plant Anthocyanin Content Detection Kit (Solarbio, Beijing, China) according to 
manufacturer instructions. 

2.3. Total RNA Extraction, cDNA Synthesis, and qRT-PCR Analysis 

Total RNA was extracted from petals using the Quick RNA Isolation Kit (Huayueyang, Beijing, 
China) in accordance with manufacturer instructions. The integrity and concentration of RNA were 
assessed and determined by 1% agarose gel electrophoresis and micro ultraviolet spectrophotometry 
using NanoDrop 2000 (Thermo Fisher Scientific, MA, USA), respectively. Approximately 1 µg of total 
RNA was used for cDNA synthesis using RevertAid™ First Strand cDNA Synthesis Kit (Thermo 
Fisher Scientific, MA, USA) according to manufacturer instructions. Fifteen genes encoding enzymes 
involved in anthocyanin biosynthesis were obtained from Actinidia chinensis cv ‘Red 5′ [37] or 
‘Hongyang’ genomes [36]. Primers used for quantitative real-time polymerase chain reaction (qRT-
PCR) were designed using Primer-Blast online tool in the National Center for Biotechnology 
Information (NCBI, https://www.ncbi.nlm.nih.gov/tools/primer-blast/). The specific primer 
sequences of these fifteen genes used for qRT-PCR are listed in Table 1. The 20-µL reaction mixture 
contained 5 µL of double distilled water, 10 µL of SYBR Green I Master Mix (Roche, Basel, 
Switzerland), 1 µL of forward and reverse primers for each gene, and 3 µL of cDNA template (diluted 

Figure 2. Flower phenotype in three different Actinidia species. The petal color of A. eriantha,
A. hemsleyana, and A. arguta are red, light pink, and white, respectively.

For grafting experiments, branches with one unopened bud to be used for scions were cut from
the adult Actinidia eriantha vine and terminal part was removed. Actinidia valvata twigs were used as
rootstocks. Scions were grafted onto rootstocks by the traditional cleft grafting method and wrapped
in transparent bags to keep high humidity conditions until bud opening.

2.2. Extraction and Determination of Anthocyanins and Precursors

Considering that anthocyanins are sensitive to light and easy to degrade, the whole extraction
process was carried out under dark conditions. The extraction procedure was carried out according
to the modified protocol for the determination of anthocyanins in products of plant origin, of
the Agricultural Industry Standards of the People’s Republic of China (NY/T2640-2014). Briefly,
approximately two grams of petal tissue were ground and extracted in an 80:20:1 solution t
of anhydrous ethanol, water, and formic acid. The extracts were passed through a syringe
filter with a 0.45-µm filter membrane (Jinteng, Tianjin, China) prior to chromatographic analysis.
Qualitative and quantitative determination of anthocyanins and their precursors were conducted by
ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS)
(Agilent Technologies Inc., CA, USA). Dihydroquercetin (CAS: 480-18-2), dihydromyricetin (CAS:
27200-12-0), cyanidin (CAS: 528-58-5), delphinidin (CAS: 528-53-0), cyanidin-3-O-galactoside (CAS:
27661-36-5), cyanidin-3-O-xylose-galactoside (CAS: 31073-32-2), and delphinidin-3-O-galactoside (CAS:
28500-00-7) were used as authentic standards for constructing the corresponding standard curves for
single point quantitation.

In petal samples used for VIGS, measurements of total anthocyanin content were carried
out using the Plant Anthocyanin Content Detection Kit (Solarbio, Beijing, China) according to
manufacturer instructions.

2.3. Total RNA Extraction, cDNA Synthesis, and qRT-PCR Analysis

Total RNA was extracted from petals using the Quick RNA Isolation Kit (Huayueyang, Beijing,
China) in accordance with manufacturer instructions. The integrity and concentration of RNA were
assessed and determined by 1% agarose gel electrophoresis and micro ultraviolet spectrophotometry
using NanoDrop 2000 (Thermo Fisher Scientific, MA, USA), respectively. Approximately 1 µg of total
RNA was used for cDNA synthesis using RevertAid™ First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific, MA, USA) according to manufacturer instructions. Fifteen genes encoding enzymes involved
in anthocyanin biosynthesis were obtained from Actinidia chinensis cv ‘Red 5′ [37] or ‘Hongyang’
genomes [36]. Primers used for quantitative real-time polymerase chain reaction (qRT-PCR) were
designed using Primer-Blast online tool in the National Center for Biotechnology Information (NCBI,
https://www.ncbi.nlm.nih.gov/tools/primer-blast/). The specific primer sequences of these fifteen
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genes used for qRT-PCR are listed in Table 1. The 20-µL reaction mixture contained 5 µL of double
distilled water, 10 µL of SYBR Green I Master Mix (Roche, Basel, Switzerland), 1 µL of forward and
reverse primers for each gene, and 3 µL of cDNA template (diluted 40 times). The LightCycler® 480
realtime PCR system (Roche, Basel, Switzerland) with a 96-well plate was used for qRT-PCR, and three
biological replicates were included for each condition. Kiwifruit β-actin served as reference gene for
normalization [54]. Relative quantification of gene expression level was performed using the 2(-Delta
C(T)) (2−∆∆Ct) method as described previously [55].

Table 1. Primers used for RT-qPCR.

Gene Forward Primer (5′ to 3′) Reverse Primer (5′ to 3′)

PAL GGACTGGGCTTTTGACAGGA CAGAGGTGCACCATTCCACT
C4H AGTCCAAATCACAGAGCCCG GTATCCACCGAGCTTTGCCT
4CL TTGGCCAGGGCTATGGAATG GCCAGTTTCGGGGTCGATAA
CHS ACAAAGCTCCTTGGTCTCCG CCCCCTTGTTGTTCTCTGCT
CHI TGCCATTAACGGGCAAGGAA TTGTAACGGCTTTGGCCTCT
F3H ACCATCACGCTCTTGCTTCA TGCTTGGTGGTCTGCATTCT
F3′H CACCCTCCTTAACCGTCACC CGGGCCATGGAAGCTATTGA

F3′5′H GTGGGAAAACCCGCTAGAGT TCCCATCCTTATGCCTGCAC
DFR CTTCCATGTCGCCACTCGTA CAGATTGGGGGTGTTGTTGC

LDOX TACCCGGAGGACAAAAGGGA GAGCCGACCCTCTTCAAGTC
UFGT CGTGGCAATAGCTGAAGCAC GAGTTCCACCCGCAATGAGT

UFGGT CACGTCCCGGAAACCCTAAA TGCTCTCCCCAAAATCGCAT
FLS GGCAGTGTACCATCGGTCAA TGTCATCCCCAACGAGCTTC
LAR GGTTCCTGCCATCGGAGTTT GAAGTAGGGCCACGAAGCAA
ANR GTACAACGTCCCCACCGATT TGAAGTAGGCGACGGATTGG
β-actin TGCATGAGCGATCAAGTTTCAAG TGTCCCATGTCTGGTTGATGACT

2.4. Cloning and Sequencing of AeCHS

The coding sequence of CHS (DTZ79_22g06860) from the genome of Actinidia eriantha ‘White’ was
selected as reference to design a primer [38]. The coding sequence (CDS) of AeCHS was amplified from A.
eriantha ‘Zaoxu’ red petal sample by specific primers 5′-ATGGTGACTGTCGAGGAAGTTC-3′(forward)
and 5′-CTAAGTGCACAGGCTATGGAGC-3′(reverse) using high-fidelity DNA polymerase
KOD-Plus-Neo (TOYOBO, Osaka, Japan). The amplified product was inserted into the pMD18-T vector
(TsingKe Biological Technology, Beijing, China) by using the TA cloning method. The construct was
transformed to E. coli DH5α competent cells cultured on LB agar plates with ampicillin and incubated
at 37 °C. After PCR detection, positive clones were sequenced by the Sanger system (Sangon Biotech,
Shanghai, China).

2.5. Subcellular Localization

The CDS of AeCHS without the stop codon was amplified from A. arguta by
specific primers 5′-CCCAAGCTTGGGATGGTGACTGTCGAGGAAGTTC-3′ (forward primer) and
5′-TGCCTGCAGGCAAGTGCACAGGCTATGGAGC-3′ (reverse primer) containing Hind III and Pst I
restriction enzymatic sites. The PCR product was recombined with the plant binary expression vector
pHB to form CaMV 2×35S:AeCHS:YFP. The empty pHB vector only with the YFP gene (2×35S:YFP)
was used as positive control. Two constructs were introduced into A. tumefaciens strain EHA105 using
a freeze-thaw method. A. tumefaciens strains were kept at 28 °C in LB medium supplemented with
kanamycin, resuspended in infiltration buffer containing 10 mM MgCl2, 10 mM MES and 200 µM
acetosyringone to an OD600 of 0.6–1.0, and left to stand for 2 h at room temperature before infiltration.
Subsequently, the A. tumefaciens solution was infiltrated into 5–6-week-old N. benthamiana leaves with a
1-ml needleless syringe. Infiltrated plants were placed under dark conditions at room temperature for
the first 24 h and then under 16 h light and 8 h dark for another 24 h; YFP fluorescence was observed
with a Leica TCS SP5 confocal laser scanning microscope (Leica Microsystems, Wetzlar, Germany).
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2.6. Construction of Silencing Vector for Virus-induced Gene Silencing (VIGS)

Two types of TRV vector, pTRV1 and pTRV2, were selected for the VIGS experiment [47]. A 252
bp specific fragment of AeCHS coding sequence was amplified from Actinidia eriantha ‘Zaoxu’ cDNA
by PCR using specific primer 5′-CCGGAATTCCGG CCTGCTATTTTGGACCAAGTGG-3′ (forward
primer) and 5′-CGGGGTACCCCG CTAAGTGCACAGGCTATGGAGC-3′ (reverse primer) containing
EcoR I and Kpn I restriction enzymatic sites (Figure S1). This fragment was cloned into the EcoR I and
Kpn I sites of the pTRV2 vector to generate the pTRV2:AeCHS vector. The empty pTRV1 and pTRV2
vectors were used as controls. Three constructs were introduced into A. tumefaciens strain GV3101
using a freeze-thaw method, and then stored at −80 °C for further use.

2.7. Infiltration Grafting-mediated VIGS Experiment

For the virus-induced gene silencing (VIGS) experiment in A. eriantha petal, a modified infiltration
grafting method was performed based on a previous study [43]. Briefly, A. tumefaciens strain GV3101
containing three TRV vectors including pTRV1, pTRV2 and pTRV2:AeCHS were grown at 28 °C for
16–24 h in LB medium (10 mM MES, 100 µM AS) supplemented with kanamycin and rifampicin.
Activated A. tumefaciens cells were collected by centrifugation for 5 min at 1000 g, and resuspended
in infiltration buffer (10 mM MgCl2, 10 mM MES, 400 µM AS). Scions with a newly cut wound
were submerged in 1:1 infiltration mixture consisting of pTRV1 and pTRV2:AeCHS (OD600, 0.8),
and subjected to vacuum (DZF-60, RongFeng, Shanghai, China) at −25 kPa for 5 min. The 1:1 mixture
of pTRV1 and pTRV2 was used as control. Treated scions were grafted onto Actinidia valvata twigs to
use as rootstocks.

2.8. Graph Making and Statistical Analysis

GraphPad Prism5 (GraphPad Software Inc., San Diego, CA, USA) was used for chart preparation.
R-3.4.2 was used to obtain the heat map and to conduct cluster analyses. DNAman software
(Lynnon Biosoft, USA) was used for sequence alignment. Data are means and standard deviations
and were analyzed using Student’s t-tests. Differences among different groups were considered
statistically significant at P ≤ 0.05. IBM SPSS Statistics 20 (IBM, New York, USA) was used to test
significant differences.

3. Results

3.1. Phenotype Observation and Anthocyanin Content Analysis

Phenotype observation and comparison among the three kinds of Actinidia petals revealed that
A. eriantha petal color were of a more intense and darker red color than the other two Actinidia species
A. hemsleyana and A. arguta (Figure 2). Analysis of anthocyanins and their precursors by UPLC-MS/MS
revealed significant differences in the content of seven anthocyanin components among the three
types of petals under study. Seven components were detected in A. eriantha petals whose content
were significantly higher than those recorded for A. hemsleyana and A. arguta. In A. eriantha petals,
cyanidin-3-O-xylose-galactoside content was the highest, reaching 25.65 mg kg−1 FW (Figure 3D),
followed by delphinidin-3-O-galactoside (Figure 3G) and cyanidin-3-O-galactoside (Figure 3C). In A.
hemsleyana and A. arguta petals, only four to five components were detected, and at very low levels
(Figure 3A-G). This result correlated well with the visible phenotype, indicating anthocyanins, especially
cyanidin-3-O-xylose-galactoside, seems to be associated with the formation of red color in petals.
The total anthocyanin content in A. eriantha was significantly higher than that in A. hemsleyana and A.
arguta (Figure 3H), which was consistent to petal phenotype.
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petals. (H) Total anthocyanin content in three typed petals. Data are means ± SE of three replicates. 
Error bars represent standard error of means. Columns with different lowercase letters are 
significantly different at P ≤ 0.05. Data were analyzed with Student’s t-test. 

3.2. Expression and Cluster Analysis of Genes Involved in Anthocyanin Biosynthesis 

To investigate the cause of the difference in red, light pink, and white petals, petal samples of 
the three Actinidia species were used to analyze the gene expression level by qRT-PCR. The expression 
profile of anthocyanin biosynthetic genes, including PAL, C4H, 4CL, CHS, CHI, F3H, F3′H, F3′5′H, 
DFR, LDOX, UFGT, UFGGT, FLS, LAR, and ANR, were investigated (Figure 4A). Except for two genes, 
namely, 4CL and CHS, whose expression was very high in A. eriantha, most of the other genes showed 
no obvious expression rules. Only one gene, CHS, was expressed to significantly high levels in A. 
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Figure 3. Anthocyanin components contents and their precursors including dihydroquercetin,
dihydromyricetin, cyanidin, delphinidin, cyanidin-3-O-galactoside, delphinidin-3-O-galactoside and
cyanidin-3-O-xylose-galactoside. (A) Dihydroquercetin content in three typed petals. (B) Cyanidin
content in three typed petals. (C) Cyanidin-3-O-galactoside content in three typed petals.
(D) Cyanidin-3-O-xylose-galactoside in three typed petals. (E) Dihydromyricetin content in three typed
petals. (F) Delphinidin content in three typed petals. (G) Delphinidin-3-O-galactoside in three typed
petals. (H) Total anthocyanin content in three typed petals. Data are means ± SE of three replicates.
Error bars represent standard error of means. Columns with different lowercase letters are significantly
different at P ≤ 0.05. Data were analyzed with Student’s t-test.

3.2. Expression and Cluster Analysis of Genes Involved in Anthocyanin Biosynthesis

To investigate the cause of the difference in red, light pink, and white petals, petal samples of the
three Actinidia species were used to analyze the gene expression level by qRT-PCR. The expression
profile of anthocyanin biosynthetic genes, including PAL, C4H, 4CL, CHS, CHI, F3H, F3′H, F3′5′H,
DFR, LDOX, UFGT, UFGGT, FLS, LAR, and ANR, were investigated (Figure 4A). Except for two genes,
namely, 4CL and CHS, whose expression was very high in A. eriantha, most of the other genes showed
no obvious expression rules. Only one gene, CHS, was expressed to significantly high levels in A.
eriantha, thus reaching significant differences with respect to the other genes analyzed. In order to
find out the expression patterns of genes involved in anthocyanin biosynthesis, cluster analysis was
performed by the R-3.4.2 language package. Cluster analysis showed that CHS was clustered into a
single class and was distinctly separated from the rest of the genes (Figure 4B), possibly indicating that
the expression pattern of CHS was different from others. In addition, correlation analysis revealed
that AeCHS expression was significantly correlated to anthocyanin content (Table 2), which clearly
indicates CHS might be the key gene controlling anthocyanin biosynthesis in A. eriantha petals.
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Table 2. Correlation analysis between content of anthocyanin components precursors and expression level of fifteen genes involved in anthocyanin biosynthesis.

Anthocyanins and
Precursors PAL C4H 4CL CHS CHI F3H F3’H F3’5’H DFR LDOX UFGT UFGGT FLS LAR ANR

Dihydroquercetin 0.528 −0.738 * 0.432 0.423 −0.746 * −0.14 0.003 0.135 0.595 0.255 0.208 −0.639 0.14 0.421 −0.793 *
Cyanidin −0.163 −0.529 0.925 ** 0.939 ** −0.625 −0.742 * 0.739 * −0.387 −0.102 −0.586 −0.585 −0.858 ** −0.665 0.951 ** −0.437
Cyanidin-3-O-
galactoside −0.793 * 0.169 0.657 0.688 * 0.038 −0.904 ** 0.984 ** −0.782 * −0.742 * −0.947 ** −0.958 ** −0.356 −0.962** 0.720 * 0.253

Cyanidin-3-O-xylose-
galactoside −0.066 −0.633 0.971 * 0.977 ** −0.703 * −0.672 * 0.584 −0.295 −0.011 -0.528 −0.514 −0.923 ** −0.608 0.965 −0.496

Dihyromyricetin 0.052 −0.720 * 0.960 ** 0.960 ** −0.790 * −0.585 0.558 −0.181 0.099 −0.448 −0.421 −0.961 ** −0.527 0.952 ** −0.591
Delphinidin −0.055 −0.632 0.953 ** 0.966 ** −0.709 * −0.682 * 0.662 −0.296 −0.016 −0.529 −0.517 −0.921 ** −0.61 0.966 ** −0.497
Delphinidin-3-O-
galactoside −0.122 −0.598 0.985 ** 0.995 ** −0.679 * −0.725 * 0.668 * −0.349 −0.07 −0.585 −0.573 −0.920 ** −0.664 0.990 ** −0.459

‘*’ indicates correlation is significant at the 0.05 level (2-tailed); ‘**’ indicates correlation is significant at the 0.01 level (2-tailed). The gray shadow mark represents the expression level of
candidate gene CHS is significantly correlated to 6 anthocyanins at 0.05 and 0.01 level.
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3.3. Sequence Analysis and Alignment of AeCHS

As mentioned above, CHS might be the key gene controlling anthocyanin biosynthesis in A.
eriantha petals. Therefore, the full-length cDNA of AeCHS was cloned from A. eriantha ‘Zaoxu’ petals.
The length of AeCHS is 1170 bp encoding a protein of 389 amino acids. A comparison of the cDNA
sequences showed CHS had nucleotide divergence in Actinidia species or cultivars, including A. eriantha
‘Zaoxu,’ A. eriantha ‘White,’ A. chinensis ‘Hongyang’ and A. chinensis ‘Red 5′ (Figure 5A). Protein
alignment suggested that there were two amino acid differences between A. eriantha and A. chinensis
(Figure 5B), and phylogenesis showed that A. eriantha and A. chinensis were clustered into one class,
(Figure 5C), which indicated CHS is different in different Actinidia species.
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Figure 5. Sequence alignments of DNA and protein, and construction of phylogenetic tree. (A) DNA
sequence alignment of CHS in different Actinidia species and cultivars. (B) Protein sequence alignment
of CHS in different Actinidia species and cultivars. (C) Construction of the phylogenetic tree based
on amino acid sequences. AeCHS, the complete coding sequence was identified and cloned from
Actinidia eriantha ‘Zaoxu’ petals. DTZ79_22g06860, gene ID of CHS in Actinidia eriantha ‘White’;
Achn109041/Ach00g109041.1, Gene ID of CHS in Actinidia chinensis ‘Hongyang’; Acc02004.1, Gene ID
of CHS in Actinidia chinensis ‘Red 5′.

3.4. Subcellular Localization Analysis of AeCHS

To determine the subcellular localization of the AeCHS protein, AeCHS was first predicted by online
tool PSORT (https://www.genscript.com/tools/wolf-psort). After putting AeCHS protein sequence into
retrieval system, corresponding prediction results that called neighbors were presented in online page.
Prediction results showed that 12 neighbors were located in cytoplasm among 14 nearest neighbors,
which indicated that the AeCHS protein was located in the cytoplasm. To verify this result, a subcellular
localization experiment was performed by transient injection assays in N. benthamiana leaves. Vectors
inserted with AeCHS:YFP and only YFP were constructed (Figure 6A). The positive control 2×35S:YFP
was diffuse in the cytoplasm and concentrated in the nucleus. In contrast, the 2×35S:AeCHS:YFP
fusion protein signal was detected only in the cytoplasm (Figure 6B), which indicated that AeCHS
seemed likely to be a structural gene encoding chalcone synthase controlling anthocyanin biosynthesis.
The same results were obtained in three independent experiments.

https://www.genscript.com/tools/wolf-psort
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Figure 6. Subcellular localization. (A) Vector construction of 2×35S:YFP and 2×35S:AeCHS:YFP.
(B) Subcellular localization of AeCHS in Nicotiana benthamiana leaves. Experiments were repeated three
times. Cells expressing AeCHS:YFP fusion gene showed fluorescence in cytoplasm. Cells expressing
empty plasmid with YFP tag was used as a control.

3.5. Silencing of AeCHS in A. eriantha Petals

Available approaches to gene silencing are limited and rarely reported in Actinidia. A novel
approach, namely, an infiltration grafting-mediated VIGS system was applied in A. eriantha petals.
The results showed A. eriantha ‘Zaoxu’ scions infiltrated with pTRV1/pTRV2:AeCHS virus displayed
bleached petals at about twenty days after infiltration grafting. In contrast, control scions infiltrated
with pTRV1/pTRV2 displayed normal petal color (Figure 7). In addition to phenotypic changes
resulted from AeCHS silencing, pigment content and gene expression were analyzed to investigate
whether silencing of AeCHS could induce other changes at molecular level in A. eriantha ‘Zaoxu’ petals.
Total anthocyanin content in pTRV1/pTRV2:AeCHS infiltrated petals was significantly lower than
that in pTRV1/pTRV2 infiltrated petals (Figure 8A). Transcript abundance of AeCHS was reduced in
pTRV1/pTRV2:AeCHS infiltrated petals by approximately 85%, reaching a highly significant difference
at 0.001 probability level (Figure 8B). Besides AeCHS, the relative expression level of other genes
involved anthocyanin biosynthesis showed different changing trend in different typed petal samples.
Compared to control and not treated petals, the expression of LBGs (late synthetic genes) including
LDOX, UFGT and UFGGT was lower in silencing petals (Figure 8C).
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Figure 8. Total anthocyanin content and expression level of AeCHS and other genes involved in
anthocyanin biosynthesis for VIGS samples. (A) Total anthocyanin analyses in silenced lines 1 and 2,
control and untreated petal samples. (B) Expression profiles of AeCHS in silenced lines 1 and 2, control
and untreated petal samples. Data are means ± SE of three replicates. Asterisks indicate significant
differences calculated using Duncan’s test (*** P ≤ 0.001). (C) Expression level of related genes involved
in anthocyanin biosynthesis in silenced lines 1 and 2, control and untreated petal samples. Different
letters denote statistical significance using one-way ANOVA, P < 0.05.

4. Discussion

4.1. Anthocyanin Changes in Three Types of Petals

Anthocyanins dominate flower coloration in most plant species. We measured the concentrations
of anthocyanins and their precursors in three types of petals including, A. eriantha, A. hemsleyana,
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and A. arguta, with red, light pink, and white color petals, respectively. The content of different
anthocyanins components showed similar variation trends in the three types of petals. Except for
cyanidin-3-O-galactoside, the content of other anthocyanins and their precursors in A. eriantha petals
was significantly higher than that in A. hemsleyana or A. arguta. In addition, the concentration
of cyanidin-3-O-xylose-galactoside was significantly higher than that of other anthocyanins and
anthocyanins precursors, followed by delphinidin-3-O-galactoside and cyanidin-3-O-galactoside.
These results not only indicate that the formation of the red color of petals is due to accumulation of
anthocyanin components, additionally, they suggest that cyanidin-3-O-xylose-galactoside is the main
anthocyanin component primarily responsible for the red color in petals of A. eriantha, which partially
agrees with Fraser [8], who suggested that the red petal phenotype in the interspecific Actinidia
population results from a mixture of anthocyanins, with cyanidin-3-O-galactoside present in the
greatest concentration, and with cyanidin-3-O-xylose-galactoside and cyanidin-3-O-glucoside also
present in significant amounts. However, the reasons for this difference need to be further explored.

4.2. Screening, Cloning and Subcellular Localization of AeCHS

Anthocyanin biosynthesis has been extensively studied in different plant tissues including fruits,
flowers, and seeds, among others. Anthocyanin accumulation is determined by structural genes
including, PAL, C4H, 4CL, CHS, CHI, F3H, F3′H, F3′5′H, DFR, LDOX, UFGT, UFGGT, FLS, LAR and
ANR. The key structural gene participating in anthocyanin biosynthesis is different in different plant
species. Furthermore, the key structural gene in different tissues within the same plant species also
varies. Previous research has shown that the gene involved in the last step, UFGT, is the key structural
gene involved in anthocyanin biosynthesis and that it determines anthocyanin accumulation in many
fruits, such as pear [56], peach [57] and kiwifruit [6]. In a previous study, using transcriptome analysis
we concluded that AaLDOX is a key structural gene involved in anthocyanin biosynthesis in A. arguta
fruit [58].

Most studies have focused on fruit tissues, whereas flower tissues, have scarcely been documented
despite being equally important tissues determining the phenotype of any cultivar. By measurement
and comparison of transcription abundance of the 15 structural genes mentioned above in the three
different types of Actinidia petals under study here, we found that the regulation of CHS expression was
different from that of other genes. The expression level of CHS in A. eriantha petals was significantly
higher than that in A. hemsleyana or in A. arguta petals (Figure 4A). Cluster analysis showed that CHS
was clustered into a single class distinctly separated from the rest of the genes (Figure 4B), possibly
indicating that the expression pattern of CHS seems to be different from others and CHS might be the
key gene controlling anthocyanin biosynthesis in A. eriantha petals. Therefore, we selected CHS as
candidate structural gene for subsequent research. Through homologous cloning, we obtained the
AeCHS complete coding sequence with 1170 bp encoding a protein of 389 amino acids from A. eriantha
cv ‘Zaoxu’ petal and sequence alignment showed AeCHS was highly conserved in Actinidia species
(Figure 5). Furthermore, subcellular localization experiments conducted by transient injection assays
in N. Benthamiana leaves showed that AeCHS is located in the cytoplasm, which indicates AeCHS is
indeed a structural gene encoding chalcone synthase participating in anthocyanin biosynthesis and
controlling anthocyanin accumulation. These results prove that the key structural gene responsible for
color is different in different plant tissues.

4.3. Infiltration Grafting-mediated VIGS

Although the VIGS methodology was reported a long time ago [47], its application is still quite
limited in fruit trees compared with other model plant species. There have been few successful reports
of VIGS application, such as in apple [50], strawberry [51] and recently in kiwifruit [52]. In perennial
woody plants, such as fruit trees, grafting is the main reproductive mode; therefore, here we used the
new experimental method known as infiltration grafting-mediated VIGS to silence the target gene
in A. eriantha petals based on the previous experience with the application of the VIGS method in
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roses [43]. The petal phenotype of silenced AeCHS was obviously white at the upper part of the
petal, while the control phenotype, i.e., without silenced AeCHS, was the normal red color (Figure 7).
Total anthocyanin content of silenced petal AeCHS was significantly lower than that of control petals
(Figure 8A); furthermore, analysis of the expression level showed that the abundance of AeCHS
transcripts in the AeCHS-silenced petals was less than 80% of that in control petals at twenty days
after infiltration grafting (Figure 8B). In addition, the expression level of LBGs including LDOX, UFGT
and UFGGT involved in anthocyanin biosynthesis in silencing petals was significantly lower than that
in control and non-treated petals (Figure 8C). This might suggest silencing of AeCHS might reduce
anthocyanin biosynthesis and accumulation mainly by repressing expression of LBGs in A. eriantha
petal. However, the specific mechanism needs further study to prove. Since there are different copies
for different genes of the anthocyanin pathway, the derived conclusion might be limited by the results
of one gene copy. Therefore, it is necessary to understand the expression and function of each gene
copy in further research.

Altogether, these results suggest that infiltration grafting-mediated VIGS might be an effective
method to silence a target gene, and silencing AeCHS could significantly reduce the number of
AeCHS transcripts and total anthocyanin content, thus resulting in abnormal coloration of A. eriantha
petals. After removal of the flowers and the transparent bags from the stalk, the graft union can
continue growing healthy (Figure 9). Therefore, we conclude that AeCHS is a key structural gene
involved in anthocyanin biosynthesis and that it is indispensable for petal normal coloration in A.
eriantha. However, this conclusion is not consistent with previous studies that confirmed that UFGT,
and not AeCHS, is the key structural gene controlling anthocyanin biosynthesis and accumulation in
Actinidia red petals [8,9]. The reason for the discrepancy might be the difference in materials used for
experimentation, as different materials have different key genes playing a key role in anthocyanin
biosynthesis. The specific molecular mechanism leading to this difference needs further study.
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