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Abstract

Purposes: This study was conducted to identify the frequent mutations from reported 
Chinese Gitelman syndrome (GS) patients, to predict the three-dimensional structure 
change of human Na–Cl co-transporter (hNCC), and to test the activity of these mutations 
and some novel mutations in vitro and in vivo.
Methods: SLC12A3 gene mutations in Chinese GS patients previously reported in the 
PubMed, China National Knowledge Infrastructure, and Wanfang database were 
summarized. Predicted configurations of wild type (WT) and mutant proteins were 
achieved using the I-TASSER workplace. Six missense mutations (T60M, L215F, D486N, 
N534K, Q617R, and R928C) were generated by site-directed mutagenesis. 22Na+ uptake 
experiment was carried out in the Xenopus laevis oocyte expression system. In the study, 
35 GS patients and 20 healthy volunteers underwent the thiazide test.
Results: T60M, T163M, D486N, R913Q, R928C, and R959frameshift were frequent SLC12A3 
gene mutations (mutated frequency >3%) in 310 Chinese GS families. The protein’s 
three-dimensional structure was predicted to be altered in all mutations. Compared 
with WT hNCC, the thiazide-sensitive 22Na+ uptake was significantly diminished for all six 
mutations: T60M 22 ± 9.2%, R928C 29 ± 12%, L215F 38 ± 14%, N534K 41 ± 15.5%, Q617R 
63 ± 22.1%, and D486N 77 ± 20.4%. In thiazide test, the net increase in chloride fractional 
excretion in 20 healthy controls was significantly higher than GS patients with or without 
T60M or D486N mutations.
Conclusions: Frequent mutations (T60M, D486N, and R928C) and novel mutations (L215F, 
N534K, and Q617R) lead to protein structure alternation and protein dysfunction verified 
by 22Na+ uptake experiment in vitro and thiazide test on the patients.
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Introduction

Gitelman syndrome (GS, OMIM263800) is a recessively 
inherited salt-losing tubulopathy caused by mutations 
of SLC12A3 gene, which encodes the thiazide-sensitive 
human Na–Cl co-transporter (hNCC NM_000339.2; OMIM 
600968) (1, 2). More than 500 SLC12A3 gene mutations 
were found previously (http://www.hgmd.cf.ac.uk/ac/
index.php), and some frequent mutations were identified 
in Chinese, Japanese, and European patients (3, 4, 5, 6, 7, 
8, 9). Different frequent mutations of different populations 
indicate location and ancestral diversity of SLC12A3 gene 
mutation (3, 8). In different studies of Chinese GS patients 
(3, 4, 6, 10, 11), T60M, D486N, R913Q, and R928C were 
reported as the frequent mutations, which were consistent 
with our previous studies (12, 13, 14, 15, 16, 17, 18). Even 
though the functional impact of mutations on NCC 
proteins could be confirmed in the Xenopus laevis oocyte 
expression system in vitro (1, 7, 19, 20, 21, 22, 23) and GS 
mimic mouse models (24, 25) and thiazide test (13, 17, 
26, 27) in vivo, the functional characteristics of the most 
frequent NCC mutations and novel mutations of Chinese 
patients remain unknown. Few studies integrate the protein 
configurations with the function of hNCC mutations 
in vitro and in vivo. Herein, this study was conducted 
to summarize all reported SLC12A3 gene mutations in 
Chinese GS patients and our 105 cases, to identify the most 
frequent ones, to predict the protein configurations, and to 
test the activity of these mutations in vitro and in vivo.

Materials and methods

The study protocol was approved by the Ethics Committee 
on Human Studies at Peking Union Medical College 
Hospital (PUMCH), Chinese Academy of Medical Sciences 
and Peking Union Medical College, Beijing, China. The 
authors adhered to the Declaration of Helsinki, and 
patients of our hospital were included after providing their 
informed consent.

Patient recruitment and mutation analysis of 
SLC12A3 gene

This study was based on the GS cohort that was reported 
in our previous studies (12, 13, 14, 15, 16, 17, 18). From 
2004, hypokalemic patients who presented to Peking 
Union Medical College Hospital with potassium loss 
from the kidney, metabolic alkalosis, and normotension 
were included. SLC12A3 gene screening was performed to 

confirm the diagnosis of GS. The method of SLC12A3 gene 
direct sequencing was elaborated in our previous studies  
(12, 13). The most frequent mutations of the SLC12A3 gene  
in Chinese patients were identified as follows. PubMed, China 
National Knowledge Infrastructure, and Wanfang databases 
(Academic Search Engines for Chinese manuscripts) were 
searched with the keyword ‘Gitelman syndrome’ up to August 
2019, and all the literature published by Chinese researchers 
(with individual patient’s gene mutations available) were 
included. The same patient repeatedly reported in different 
articles by the same group was only counted once. Those 
studies that included apparent mistakes without reasonable 
explanation were excluded. Together with the mutations 
found in our laboratory, we calculated the type and number 
of mutated alleles. To avoid repetitive calculations, a 
heterozygous mutated allele that occurred in one family 
was counted only once and a homozygous mutated allele 
was counted twice. We defined the mutated allele, whose 
frequency was greater than 3%, as a frequent mutation.

Configuration prediction of WT and mutant 
hNCC proteins

Predicted three-dimensional structures of WT and mutant 
proteins were achieved using the iterative threading 
assembly refinement (I-TASSER) workplace (https://
zhanglab.ccmb.med.umich.edu/I-TASSER/) (28, 29). WT 
and nine mutant protein amino acid sequences (T60M, 
T163M, L215F, D486N, N534K, Q617R, R913Q, R928C, 
and R959frameshift) were sent to I-TASSER. The I-TASSER 
system used C-score to evaluate the accuracy of the models, 
C-score was typically in the range of (−5, 2); a higher value 
signified a model with more confidence and vice-versa 
(28). The model with highest C-score was chosen. The 
effect of mutations on protein configurations of NCC was 
visualized using PyMOL Viewer.

Construction of WT and mutated hNCC cDNA

Human renal total RNA was isolated from the 
paracancerous tissue collected from patients undergoing 
nephrectomy due to renal cancer by TRIzol® RNA 
extraction method (Life Technologies). The first strand 
of cDNA was generated according to the Reverse 
Transcription system manual (Promega). The hNCC 
cDNA was obtained by PCR with the forward primer 
5’-ATGGCAGAACTGCCCACAACAGAGAC-3’ and the 
reverse primer 5’-TTACTGGCAGTAAAAGGTGAGCACG-3’. 
Then, the hNCC cDNA was cloned into a PGEM-T vector 
(Promega). Three frequent mutations (T60M, D486N, and 
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R928C) and three novel mutations (L215F, N534K, and 
Q617R) were introduced into the hNCC-pGEM T vector by 
site-directed mutagenesis kit (TransGene, Beijing, China). 
The WT and mutant hNCC cDNA pGEM T vectors were 
confirmed by DNA direct sequencing.

Xenopus laevis oocyte transport assay

As described in previous studies (30, 31, 32, 33), human 
SLC12A3 cRNA mutant variants were prepared by in vitro 
transcription reaction utilizing the T7 or SP6 mMessage 
mMachine (Ambion). Freezing X. laevis oocytes (stages V 
and VI) were obtained from the lab of National Institute 
of Diabetes and Digestive and Kidney Diseases, National 
Institutes of Health Bethesda, MD, USA). They were 
transferred to calcium-containing OR-2 (1 mM CaCl2) and 
maintained at 18–20°C until injected with cRNA. Oocytes 
were injected utilizing a Nanoject II injector (Drummond 
Scientific, Broomall, PA, USA). Injection volumes were  
36.8 nL and cRNA concentrations were 1 ng/nL. Sham-
injected oocytes were injected with 36.8 nL of water. After 
injection, the oocytes were maintained in calcium-containing 
OR-2 at 18–20°C until the experiments were performed.

Three days post-injection, the oocytes were transferred 
to Cl−-free ND96 medium (96 mM Na+- isethionate, 2 
mM K+-gluconate, 1.8 mM Ca2+-gluconate, 1 mM Mg2+-
gluconate, 5 mM Hepes, pH 7.4, 2.5 mM sodium pyruvate, 
and 5 mg/100 mL gentamicin) for 24 h. To begin uptake 
experiments, the oocytes were incubated in Cl−-free ND96 
medium containing 1 mM ouabain, 0.1 mM amiloride, and 
0.1 mM bumetanide for 30 min, following specified times 
(0.5~2 h) of uptake in K+-free NaCl medium (40 mM NaCl, 
56 mM sodium gluconate, 4 mM CaCl2, 1 mM MgCl2, and 
5 mM Hepes/Tris, pH 7.4) containing 1 mM ouabain, 0.1 
mM amiloride, 0.1 mM bumetanide, and 1 µCi/mL 22Na+. 
After incubation at room temperature, the oocytes were 
washed four times with ice-cold PBS. Individual oocytes per 
replicate were solubilized with 10% SDS, and internalized 
radioactivity was quantified by Automatic Gamma Counter 
(Perkin Elmer) as nmol/oocyte. Each data point represents 
the mean value of 10–15 oocytes. Each experiment was 
repeated a minimum of three times with similar results.

Thiazide test

Thiazide tests were performed according to the standard 
protocol as previously described (13, 14, 17, 18). Thirty-
five of our 105 GS patients signed the consent form and 
participated in the thiazide test. Twenty healthy volunteers 
underwent the thiazide test as well.

Statistical analysis

Normally distributed variables were expressed as the 
mean ± s.d. and were compared using unpaired t-tests. The 
differences in thiazide tests between healthy volunteers and 
each subgroup of GS patients were compared using unpaired 
t-tests. One-way ANOVA was performed to evaluate the 
thiazide test differences among three subgroups of GS 
patients, followed by least significant difference post hoc 
test for each two subgroups. Differences were considered 
significant when P < 0.05. All statistical analyses were 
performed with the statistical software 17.0 (SPSS).

Results

The frequent mutations of Chinese GS patients

A total of 105 GS patients from 101 non-consanguineous 
Chinese families in PUMCH were recruited in this study. 
Sixty-nine mutations, including 20 novel mutations, were 
identified in this cohort. In total, 83 papers were utilized 
in the study (Supplementary Table 1, see section on 
supplementary materials given at the end of this article). 
As shown in Fig. 1, 155 SLC12A3 gene mutations were 
detected in 338 Chinese GS patients from 310 unrelated 
families, including 112 missense mutations, 9 nonsense 
mutations, 11 splicing mutations, 16 small deletions, 
3 small insertions, 3 small indels, and 1 gross deletion. 
One patient carried five mutant sites (one homozygous 
nonsense mutation and three heterozygous missense 
mutations). Five patients, including two patients with 
two homozygous mutations and three patients with one 
homozygous mutation and two heterozygous mutations, 
carried four mutant sites. Twenty-seven patients carried 
three mutant sites. One hundred seventy-three patients 
carried compound heterozygous mutations. Fifty-six 
patients carried homozygous mutations. Seventy-six 
patients carried single heterozygous mutations.

Figure 2 shows the frequency and distribution of the 
155 mutations. The mutations were distributed in 25 of 26 
exons and their flanking intronic regions (except exon 19). 
T60M, T163M, D486N, R913Q, R928C, and R959frameshift 
were found to be the frequent mutations (mutated allele 
frequency greater than 3%). T60M was the most frequent 
mutation in the Chinese GS patients, with 75 mutated 
alleles (12.7%). The second most frequent mutation was 
D486N detected in 52 of all 591 mutated alleles (8.8%), 
followed by the mutant alleles of R913Q (3.9%), R928C 
(3.6%), T163M (3.2%), and R959frameshift (3.2%). These six 
mutations accounted for 35.4% of all 591 mutated alleles.
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Configuration prediction of WT and nine mutant 
hNCC proteins

The C-score results of five models of WT hNCC and nine 
mutations predicted by I-TASSER system are shown in 
Supplementary Table 2. The configuration of six frequent 
mutations (T60M, T163M, D486N, R913Q, R928C, and 
R959frameshift) is presented in Fig. 3, and the predicted 
structure of three novel mutations found in our early 
admitted GS patients (L215F, N534K, and Q617R) are 
shown in Supplementary Fig. 1. In the WT configuration, 
there was no β-sheet structures, which were found in the 
C-terminus of all mutations. The predicted secondary 

structure of the 60th residue was changed from loop of WT 
threonine (Fig. 3A) to an α-helix of methionine mutation 
(Fig. 3A′); similarly, in the 215th residue, leucine mutated 
to phenylalanine (Supplementary Fig. 1A and A′). When 
the 163th residue threonine mutated to methionine, the 
end of the first transmembrane α-helix changed from A166 
to Q165, and the beginning of the second transmembrane 
α-helix transformed from V169 to I168 subsequently  
(Fig. 3B and B′). On the WT hNCC protein configuration, 
913th residue arginine was between two α-helices. When 
it mutated to glutamine, it was located between a β-sheet 
and an α-helix (Fig. 3D and D′). R959frameshift was the 
mutation effect of c.2877_2878delAG, and this mutation 
was predicted to change the amino acids 959–968 and 
result in a premature stop codon at amino acid 969, leading 
to a truncated protein (Fig. 3F and F′).

22Na+ uptake activity of six missense mutations

We selected three missense mutations of the six frequent 
mutations and three novel mutations detected in our 
early admitted GS patients to test the 22Na+ uptake 
activity. The sequence of six missense mutations (T60M, 
L215F, D486N, N534K, Q617R, and R928C) are presented 
in Fig. 4. The localization of each selected mutation on 
the predicted topology of hNCC is shown in Fig. 5A. T60M 
was an important phosphorylation site located within 
the N-terminus, L215F was positioned on the edge of the 
third transmembrane segment, D486N was located in the 
fourth intracellular loop, N534K was a transmembrane 
mutation, and Q617R and R928C were located in the 
C-terminus.

22Na+ uptake rates were demonstrated in Fig. 5B 
and C. WT hNCC transported 22Na+ robustly, whereas 
sham injections lacked activity. In comparison with WT 
hNCC (100 ± 12.6%), the thiazide-sensitive 22Na+ uptake 
was significantly diminished for all mutants (T60M 
22 ± 9.2%, R928C 29 ± 12%, L215F 38 ± 14%, N534K 
41 ± 15.5%, Q617R 63 ± 22.1%, and D486N 77 ± 20.4%) 
(percentage of the 22Na+ transport capacity of WT) (Fig. 
5B). Furthermore, 100 µM metolazone (a hNCC blocker) 
inhibited the uptake of 22Na+ in WT and mutant hNCC-
expressing oocytes to background levels observed in 
sham injections (data were not shown). The rates of NCC 
mutants-mediated 22Na+ uptake were lower than 22Na+ 
transport capacity of WT at every time point (0.5–2 h), but 
the metolazone-sensitive 22Na+ uptake by WT and NCC 
mutants was all linear up for 2 h of incubation (Fig. 5C), 
which indicated better specificity between the transport 
activity and the genetic mutation.

Figure 1
Number of different mutation types found in Chinese GS patients (A) and 
the number of mutant sites detected in each patient (B). (A) A total of  
155 SLC12A3 gene mutations were detected in 338 Chinese GS patients 
from 310 unrelated families, including 112 missense mutations (72.3%),  
9 nonsense mutations (5.8%), 11 splicing mutations (7.1%), 16 small 
deletions (10.3%), 3 small insertions (1.9%), 3 small indels (1.9%), and 1 
gross deletion (0.6%). (B) Five mutant sites were detected in 1 patient,  
4 mutant sites were found in 5 patients, 3 mutant sites were carried by  
27 patients, 2 mutant sites (compound heterozygous, CH) were detected 
in 173 patients, 2 mutant sites (homozygous, Homo) were found in  
56 patients, and single heterozygous mutation was carried by 76 patients.
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Figure 2
Frequency and distribution of the 155-detected mutations and 591-mutated alleles. A total of 338 Chinese patients from 310 unrelated families were 
diagnosed by SLC12A3 gene sequencing, and 155 mutations and 591 mutated alleles were detected in these families. T60M, T163M, D486N, R913Q, 
R928C, and R959frameshift were the most frequent mutations (mutated allele frequency greater than 3%). On the horizontal axis, each bar represents 
one mutation (there is no relationship with the actual position in the exon). The dotted line corresponds to an allele frequency of 3% (n = 17.73).

Figure 3
Predicted configuration of WT and six frequent mutant hNCC proteins. Figures A–F are configurations of WT hNCC proteins with local amplification of T60 
(A), T163 (B), D486 (C), R913 (D), R928 (E), and R959 (F). Figure A′–F′ are the configurations of corresponding mutant hNCC proteins with local amplification 
of M60 (A′), M163 (B′), N486 (C′), Q913 (D′), C928 (E′), and 959frameshift (F′).
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Thiazide test

The thiazide test results are presented in Fig. 6, the net 
increase in chloride fractional excretion (FECl) in 20 
healthy controls of our previous study was 4.46 ± 1.04% 
(13, 17), which was significantly higher than the three 
subgroups of GS patients. The net increase in FECl after 
thiazide application in 3 GS patients with T60M mutation 
was 2.07 ± 0.62%, in 7 GS patients with D486N mutation 
was 1.13 ± 1.19%, and in 25 GS patients without any 
T60M or D486N mutation was 0.92 ± 1.09%. No apparent 
difference was found among the subgroups.

Discussion

In this study, among 338 Chinese GS patients from 310 
unrelated families, T60M, T163M, D486N, R913Q, R928C, 
and R959frameshift were proved to be the frequent SLC12A3 
gene mutants with altered protein’s three-dimensional 

structure. Notable dysfunction of the mutated hNCC 
protein was confirmed by 22Na+ uptake experiment carried 
out in the X. laevis oocyte expression system and thiazide 
test in GS patients. It was the first time integrating the 
genetic mutation, hNCC protein structure and function in 
vitro and in vivo, which might facilitate the understanding 
of the genetic features of Chinese GS patients, as well as 
correlate the genotype with phenotype of GS.

Until now, more than 500 SLC12A3 gene mutations 
have been found in GS patients of different ethnicity. In 
this study, we proved that T60M, D486N, T163M, R913Q, 
R928C, and R959frameshift were the frequent SLC12A3 
gene mutations in the largest sample of Chinese GS 
patients (n = 338), published by Chinese investigators on 
PubMed and Chinese databases. It was consistent with the 
results of several previous studies, including the mutations 
of T60M, T163M, D486N, S710X, R871H, R913Q, R928C, 
R959frameshift, IVS13-191C>T, and IVS21+253C>T (Table 1)  
(3, 4, 6, 10, 11, 18). T60M, L858H, and R642C were found to 
be the frequent mutations in Japanese articles (8, 9). Eight 

Figure 4
DNA sequence results of six mutated hNCC-pGEM 
T vectors. The DNA sequence results of six 
mutated hNCC-pGEM T vectors (T60M, L215F, 
D486N, N534K, Q617R, and R928C). The 
mutations’ sequence results are listed at the left 
column and the corresponding sites of WT are 
presented at the right column. The sites of 
mutations are denoted by red arrows.
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frequent mutations – L272P, A313V, c.1180+1G>T, G741R, 
L859P, R861C, c.2883+1G>T, and C994Y – were identified 
in two large genetically diagnosed European GS patients 
cohorts (5, 7). None of the European GS patients’ frequent 
mutations were identical with the hotspot mutations 
in Chinese or Japanese GS patients, indicating that the 
distribution of SLC12A3 gene mutations may differ from 
the location and ethnicities.

To our limited knowledge, we first integrally predicted 
the configuration alternation and investigated function 
change of the frequent mutations in the SLC12A3 gene. 
Both the change of secondary structure and three-
dimensional structures were predicted to be altered in 
four frequent mutations (T60M, T163M, R913Q, and 
R959frameshift), as well as in the novel mutation – L215F. 
The visible differences in the whole protein configuration 
caused by base substitution or bases deletion indicated 
these mutation were pathogenic. Among the six frequent 
mutations, T60 was an important phosphorylation site, 
and was very important for the membrane expression of 
hNCC and phosphorylation of the adjacent T46 and T55 
sites (24). D486N was located in the fourth intracellular 
loop, and the mutation effect was not well-studied. R928C 

Figure 5
Location of the six studied SLC12A3 mutations in the predicted hNCC 
protein and the result of 22Na+ uptake experiment. (A) The schematic 
topological representation of hNCC consists of the intracellular N- and 
C-terminal domains and 12 transmembrane segments. We studied the 
function of the mutations labeled T60M, L215F, D486N, N534K, Q617R, 
and R928C. (B) Metolazone-sensitive 22Na+ uptake was measured in 
oocytes injected with H2O, WT (open bars), or mutant SLC12A3 cRNAs 
(black bars). The uptake values are shown as percentages of WT 22Na+ 
transport (WT was set as 100%). (C) Time course of 22Na+ uptake in WT 
and hNCC mutant-injected X. laevis oocytes. X. laevis oocytes were 
microinjected with the following SLC12A3 cRNAs: WT, sham, and mutants 
T60M, L215F, D486N, N534K, Q617R, and R928C. Data were presented as 
the mean ± s.e.m. and compared using unpaired t-tests. *P < 0.05 indicates 
a significant difference compared with WT SLC12A3-injected oocytes. Each 
data point represents the mean value of 10–15 oocytes.

Figure 6
The thiazide test result verified hNCC dysfunction in GS patients, while no 
apparent difference was found among the GS patients with or without 
T60M or D486N mutation. The net increase in chloride fractional 
excretion (FECl) undergoing thiazide test in 20 healthy controls (4.46 ± 
1.04%), 3 GS patients with T60M mutation (2.07 ± 0.62%), 7 GS patients 
with D486N mutation (1.13 ± 1.19%), and 25 GS patients without any 
T60M or D486N mutation (0.92 ± 1.09%). One-way ANOVA was performed 
to evaluate the differences among three subgroups of GS patients, 
followed by least significant difference post hoc test for each two 
subgroups. The differences in thiazide test between healthy volunteers 
and each subgroup of GS patients were compared using unpaired t-tests.
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(SNP rs12708965) was reported as a polymorphism, but 
it was believed to be deleterious and considered disease-
causing (34). The sodium and chloride transport ability of 
these mutant hNCC proteins remains to be determined. 
Herein, we constructed six missense mutant hNCC, 
including three frequent mutations (T60M, D486N, and 
R928C) and three novel mutations (L215F, N534K, and 
Q617R) and assessed their function status directly by 22Na+ 
uptake experiments on the X. laevis oocyte expression 
system in vitro. Compared with WT hNCC protein, 22Na+ 
uptake capacity of the six mutant proteins varied from 22 to 
77%, which may explain diversity in clinical presentation 
in GS patients. Regarding the in vitro functional study of 
NCC, a few NCC variants were studied by X. laevis oocyte 
system previously (1, 7, 19, 20, 21, 22).

As a monogenic disease, many studies tried to correlate 
phenotype to genotype (1, 3, 6, 10, 12, 35). Riveira-Munoz 
et  al. reported that genotype and gender may determine 
the clinical severity in their cohort of GS patients (1). In 
addition, our previous study found that serum magnesium 
level may indicate the severity of clinical presentation 
(12). T60M and D486N were top two hotspot mutations 
in Chinese GS patients, and the result of the in vitro 
experiment illustrated apparent function difference 
between them. With regard to the in vivo functional 
investigation of NCC, two mouse models were generated 
to mimic the GS pathophysiological procedure (24, 25), 
and the thiazide test also determined the patient’s hNCC 
function status directly (13, 14, 17, 26, 27, 36, 37, 38). Herein, 
we compared the thiazide test result among our GS patients 
with or without T60M or D486N mutations. However, till 
now, no obvious difference was observed among the three 
subgroups of GS patients. The inconsistency between 
22Na+ uptake experiment in vitro and thiazide test in vivo 

may be caused by small sample size, limitation of in vitro 
experiment and genetic heterogeneity. The expression and 
function of hNCC protein may be influenced by epigenetic 
modifications and silent polymorphisms (1). More severe 
phenotype was observed in male patients compared with 
their female siblings who carried the same mutations  
(1, 35, 39). However, no significant difference was found in 
thiazide test result between male and female GS patients 
in this study. T60M carriers in Han populations have 
markedly lower blood pressure and slightly higher fasting 
plasma glucose compared with normal controls (40).

Although we tried to summarize all reported Chinese 
GS patients’ mutations, there were still three studies 
excluded as the individual mutations were unavailable 
(4, 6, 41), and this result may cause deviation in the 
calculation of mutation frequency. In addition, 76 of 
338 Chinese GS patients (22.5%) were only detected 
with single heterozygous mutation, and the percentage 
of single heterozygous mutation patient in other large 
cohort studies varied from 9.4 to 22.6% (5, 6, 7, 11). More 
mutations may be detected if multiplex ligation-dependent 
probe amplification can be used to search for large 
rearrangements. Whether there is clinical presentation 
difference between these single heterozygous mutation GS 
patients and other GS patients need further study. More GS 
patients with only T60M or D486N mutation participating 
in the thiazide test may help us to better understand 
phenotype–genotype correlation of this disease.

In conclusion, we first integrally proved the protein 
structure alternation, as well as 22Na+ uptake experiment in 
vitro and thiazide test on patients verified the dysfunction 
of mutated hNCC proteins, in Chinese GS patients with 
frequent mutations (T60M, D486N, and R928C) and novel 
mutations (L215F, N534K, and Q617R). Future studies are 

Table 1 Frequent mutations in published papers and this study.

Author (reference number)
Number of GS 

patients Frequent mutations Country or district (published year)

Maki et al. (8) 7 T60M Japan (2004)
Qin et al. (10) 13 T60M China (2009)
Vargas-Poussou et al. (5) 396 A313V, c.1180+1G>T, G741R, L859P, R861C, 

c.2883+1G>T, and C994Y
European countries (2011)

Glaudemans et al. (7) 163 L272P, G741R, and c.2883+1G>T The Netherland and other 
European countries (2012)

Tseng et al. (6) 117 R959frameshift, T60M, T163M, S710X, 
IVS13-191C>T, R871H, and IVS21+253C>T

China (2012)

Jiang et al. (18) 125 families T60M, D486N, and R913Q China (2015)
Wang et al. (4) 42 D486N China (2016)
Ma et al. (3) 49 T60M and D486N China (2016)
Zeng et al. (11) 133 T60M, D486N, R913Q, and R928C China (2019)
Fujimura et al. (9) 185 L858H and R642C Japan (2019)
This study 310 families T60M, T163M, D486N, R913Q, R928C, and 

R959frameshift
China
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needed to reveal the underlying pathogenic mechanism in 
GS and to evaluate the phenotype–genotype correlations 
to improve the prognosis of GS.

Supplementary materials
This is linked to the online version of the paper at https://doi.org/10.1530/
EC-21-0262.
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