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Numerous therapeutic peptides do not enter the clinical trials just because of their high hemolytic 
activity. Recently, we developed a database, Hemolytik, for maintaining experimentally validated 
hemolytic and non-hemolytic peptides. The present study describes a web server and mobile app 
developed for predicting, and screening of peptides having hemolytic potency. Firstly, we generated a 
dataset HemoPI-1 that contains 552 hemolytic peptides extracted from Hemolytik database and 552 
random non-hemolytic peptides (from Swiss-Prot). The sequence analysis of these peptides revealed 
that certain residues (e.g., L, K, F, W) and motifs (e.g., “FKK”, “LKL”, “KKLL”, “KWK”, “VLK”, “CYCR”, 
“CRR”, “RFC”, “RRR”, “LKKL”) are more abundant in hemolytic peptides. Therefore, we developed 
models for discriminating hemolytic and non-hemolytic peptides using various machine learning 
techniques and achieved more than 95% accuracy. We also developed models for discriminating 
peptides having high and low hemolytic potential on different datasets called HemoPI-2 and HemoPI-3. 
In order to serve the scientific community, we developed a web server, mobile app and JAVA-based 
standalone software (http://crdd.osdd.net/raghava/hemopi/).

Therapeutic peptides have a number of advantages over traditional drugs that are mainly based on small mole-
cules and antibodies1. In the recent years, a large number of databases have been published, revealing discovery 
of novel peptides with therapeutic properties ranging from antimicrobial2–4, antimalarial5, antiparasitic6, anti-
cancer7, cell penetrating8, tumor homing9, antihypertensive10 etc. Peptides have gained leverage over antibody 
and small molecule-based drugs as they possess better tissue penetration, high specificity and comparatively low 
production cost11,12. Though hundreds of potential therapeutic peptides have been discovered so far, only limited 
peptide-based drugs are in the market.

The major hurdles preventing therapeutic peptides from translating into drugs are their high toxicity, low 
metabolic stability and poor oral bioavailability1. In order to improve the stability of a peptide, a method HLP 
has been developed for designing peptides of desired half-life13. Toxicity is one of the major hurdles in design-
ing peptide-based therapeutics14. The toxicity of peptides can be broadly classified into three categories, namely 
cytotoxicity, hemotoxicity (lysis of red blood cells) and immunotoxicity. Recently, a method, ToxinPred, has 
been developed for predicting toxins (toxic proteins/peptides) and identification of residues/segments responsi-
ble for toxicity15. In the past, numerous methods have been developed for predicting different types of epitopes 
that can be used for predicting immunotoxicity/allergenicity of peptides16–19. To the best of our knowledge, 
limited attempts have been made so far to develop methods predicting hemolytic potency of peptides20–23. 
Experimental approaches for determining hemolytic potency of a large number of peptides is a labour-intensive, 
time-consuming and costly affair. In silico models may provide an alternative to the tedious experimental 
approach for predicting hemotoxicity of peptides. Recently, our group collected and compiled hemolytic peptides 
from the literature and various other resources, in order to create a repository of experimentally validated hemo-
lytic peptides24. In the present study, we developed various models for predicting hemotoxicity of peptides using 
different machines learning techniques. These models have been developed using various peptide features that 
include residue-based compositions, binary profiles, and hemolytic motifs. Further, we developed in silico tools 
for researchers working in the field of therapeutic peptides.
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Methods
Datasets.  For generating datasets, experimentally validated hemolytic peptides were extracted from 
Hemolytik database24 which is a comprehensive collection of peptides with their hemolytic potencies compiled 
from individual labs around the world using different protocols. Firstly, peptides were extracted having only nat-
ural amino acids. Since Hemolytik database covers peptide entries showing varing hemolytic potencies, peptides 
fulfilling the following criteria were considered as highly hemolytic and rest were considered as non-hemolytic.

Criteria for considering highly hemolytic peptides:

1.	 Half maximum Effective Concentration (EC50) or Hazardous Concentration (HC50) ≤ 100 μM
2.	 Minimum Hemolytic Concentration (MHC) ≤  250 μg/ml
3.	 >10% hemolytic activity upto 100 μM

HemoPI-1 dataset.  It consists of 552 experimentally validated hemolytic peptides, extracted using above cri-
teria from Hemolytik database as positive examples. For negative examples, an equal numbers of peptides were 
randomly extracted from proteins in Swiss-Prot25 while ensuring similar length distribution as that of positive 
examples. This dataset was randomly divided into 2 sub-datasets named ‘HemoPI-1 main’ dataset (80% data with 
442 positive and equal numbers of negative examples) and ‘HemoPI-1 validation’ dataset (20% data with 110 
positive and equal numbers of negative examples).

In order to make sure that random negative data is not biased, we created additional 5 random negative 
datasets (Random1, Random2, Random3, Random4, and Random5). These datasets were of equal size as that 
of HemoPI-1 negative dataset. Random negative datasets 1–5 were created using same procedure as that of 
HemoPI-1 negative dataset.

HemoPI-2 dataset.  To develop a method for discriminating peptides exhibiting high and low hemolytic potency, 
a second dataset named ‘HemoPI-2’ was created. In this dataset, instead of extracting peptides randomly from 
Swiss-Prot, a total of 462 peptides, which exhibited low hemolytic potency or peptides which do not fulfil the 
above criteria, were extracted from Hemolytik database. This dataset was also divided into 2 sub-datasets named 
‘HemoPI-2 main’ dataset (80% data with 442 positive examples and 370 negative examples) and ‘HemoPI-2 vali-
dation’ dataset (20% data with 110 positive examples and 92 negative examples).

HemoPI-3 Dataset.  In addition to the above two datasets, we have created third dataset HemoPI-3, which con-
sists of 1623 peptides. In order to create HemoPI-3, we extracted 686 unique peptides from database DBAASP 
v.2 (Database of Antimicrobial Activity and Structure of Peptides)26 and 937 unique peptides from database 
Hemolytik. We defined highly hemolytic and poorly hemolytic peptides using criteria given in Supplementary 
Table S1. Based on this criteria, we got 885 highly hemolytic (taken as positive examples) and 738 poorly hemo-
lytic peptides (taken as negative examples). This dataset was randomly divided into 2 sub-datasets (ensuring sim-
ilar length distribution) named ‘HemoPI-3 main’ dataset (80% data with 708 positive and 590 negative examples) 
and ‘HemoPI-3 validation’ dataset (20% data with 177 positive and 148 negative examples).

Cross-validation technique.  The validation is an essential part of any prediction method. In the pres-
ent study, a five-fold cross-validation technique was used to evaluate the performance of all the models. Here, 
sequences are randomly divided into five sets, of which four sets are used for training and the remaining fifth set 
for testing. The process is repeated five times in such a way that each set is used once for testing.

Machine learning approaches.  We have used machine learning approaches like SVMlight (Support Vector 
Machine)27, IBK (Nearest Neighbor)28, Multilayer Perceptron29, Logistic30, J4831 and Random Forest32 for the pre-
diction of hemolytic peptides. SVMlight is a freely available program based on support vector machine and allows 
the user to perform classification with different kernels (polynomial, radial basis function, sigmoidal function) 
and parameters. IBK, Multilayer Perceptron, Logistic, J48 and Random Forest algorithms were implemented 
using WEKA package29.

Input features for prediction.  Any classification algorithm requires a set of fixed length of input features 
for training, thus necessitating a strategy for encapsulating the global information about peptides of variable 
length in a fixed length format. The fixed length format was obtained from peptide sequences of variable length 
using amino acid composition (vector size 20), dipeptide composition (vector size 400) and binary profile of 
pattern (vector size 20 for each residue). The formulae to calculate these features are described elsewhere19,33.

Two sample logos.  The two sample logos were generated using online two sample logo software34. These 
logos provide the position specific frequency of amino acids in a peptide. Each logo consists of stacks of symbols, 
one stack for each position in the sequence. The overall height of the stack indicates the sequence conservation 
at that position while the height of symbols within the stack indicates the relative frequency of each amino acid 
at that position.

Quantitative Matrix.  Positional preferences of residues have been used and represented earlier in the lit-
erature in the form of quantitative matrices (QMs)15. QMs show the propensity of each amino acid/dipeptide/
property at each position in the positive (hemolytic) and negative (non-hemolytic) datasets. Three types of QMs 
have been generated:
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Single residue-based.  For each position, fraction of each amino acid is calculated for both positive and negative 
datasets. The final propensity value in each cell represents the subtraction of fraction of a particular residue in 
negative dataset from the fraction of that residue in the positive dataset. Thus a resultant matrix is of dimension 
N ×  M is formed, where N and M represent rows (number of single residues) and columns (number of positions; 
first 30 positions are taken into account) respectively. So in HemoPI, at single amino acid level, QM has dimen-
sions of 20 ×  30.

Dipeptide-based.  Here, for each position, fraction of each possible dipeptide is calculated for both positive and 
negative datasets and final propensity value represents the subtraction of fraction of a particular dipeptide in neg-
ative dataset from the fraction of that dipeptide in the positive dataset. Thus a resultant matrix is of dimensions 
20 ×  29.

Property-based.  Here, for each position, fraction of residues falling into a particular category of physicochem-
ical properties (11 categories in total) is calculated for both positive and negative datasets. The final propensity 
value represents the subtraction of fraction of those residues in a particular class in negative dataset from the 
fraction of residues in positive dataset. Thus the resultant matrix is of dimensions 11 × 30.

Above three types of matrices have been calculated for both HemoPI-1 and HemoPI-2 datasets.

Hybrid approach.  For better and biologically reliable prediction, we integrated motif-based approach with 
the machine learning-based method. We used “Motif—EmeRging and with Classes—Identification” (MERCI) 
software35 to extract motifs exclusively present in hemolytic and non-hemolytic peptides. In the case of HemoPI-1 
dataset, we extracted motifs exclusive to hemolytic peptides as the negative dataset of HemoPI-1 comprises of 
random peptides from Swiss-Prot while in case of HemoPI-2 dataset, motifs exclusive to hemolytic as well as 
non-hemolytic peptides were extracted. The motifs were extracted only from main datasets and not from vali-
dation datasets. In order to obtain relevant motifs, we used only those motifs which were present at least in ten 
seqeunces in the dataset. To predict the test sequence as hemolytic or non-hemolytic, we added +1 or −1 in the 
SVM score if the motif is present in the test sequence from the hemolytic or non-hemolytic peptides respectively.

Performance measures.  A five-fold cross-validation technique was used to classify hemolytic peptides on 
main datasets. For performance evaluation on validation datasets, the model was developed on main dataset and 
applied on validation dataset. Standard performance parameters like Sensitivity (Sn), Specificity (Sp), Accuracy 
(Acc) and Matthews correlation coefficient (MCC), were used to evaluate the performance of the method. The 
formula to calculate these parameters are described elsewhere33.

Physicochemical properties.  The amphiphilicity and other physicochemical properties have been 
calculated using AAindex database36. Physicochemical properties (along with AAindex code/identifier) i.e. 
Hydrophobicity (EISD840101), Hydrophilicity (HOPT810101), Steric Hinderance (CHAM810101), Net 
Hydrogen (FAUJ880109), Solvation (EISD860101), Charge (KLEP840101), Hydropathy (KYTJ820101), 
Amphiphilicity (MITS020101) and Weight (FASG760101) were provided for display along with prediction out-
put. For calculation of amphiphiliicty, hydrophilicity, hydrophobicity, steric hinderance, solvation and hydrop-
athy properties, we took the average of the AAindex values corresponding to all residues in a given peptide. For 
instance, equation 1 describes the calculation of amphiphilicity:
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where, CAI is the overall amphiphilicity of a peptide, N is the length of the peptide, AI is amino acid index value 
for amphiphilicity for nth residue in that peptide.

For Weight, Net Hydrogen and Charge, we simply took the sum of AAindex values of all residues in a peptide.

Results
Amino acid composition analysis.  First, to ascertain whether certain residues are dominated in hemolytic 
peptides, the percent average amino acid composition of hemolytic and non-hemolytic peptides were computed 
and compared. The results are shown in Figs 1 and 2. As seen in Figs 1 and 2, there are remarkable differences 
in the amino acid composition between hemolytic and non-hemolytic peptides. Certain residues like C, F, K, L 
and W were found to be dominating in hemolytic peptides as compared to non-hemolytic peptides in HemoPI-1 
dataset (Fig. 1A). Percent average amino acid compositions at both the termini (spilt amino acid composition) 
were also compared and found to be similar to the whole composition (Fig. 1B,C) in HemoPI-1 dataset. In case 
of HemoPI-2 dataset, L was found to be more abundant in hemolytic peptides while R was found to be higher in 
proportion in non-hemolytic peptides (Fig. 2).

Residue preference.  We next wanted to understand the position-wise preference of residues at both the 
termini. Therefore, frequency of occurrence of all amino acids at both the termini was examined. We observed 
that certain types of residues are preferred over others in hemolytic and non-hemolytic peptides at N- and 
C-terminus. In order to demonstrate the residue preference at different positions of these peptides, two sam-
ple logos were generated. The two sample logos of 15 N-terminal and C-terminal residues of hemolytic and 
non-hemolytic peptides are shown in Figs 3 and 4 respectively. As seen in Fig. 3A, in case of HemoPI-1 dataset, 
a clear preference of certain residues at particular positions at N-terminus was observed in hemolytic peptides. 
For example, G, L and K are preferred at first, second and third positions respectively (Fig. 3A). However at other 
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positions, L and K are preferred. Similar preference was observed at C-terminus (Fig. 3B). L and K are preferred 
at most of the positions. However, F and C were preferred at eighth and ninth positions respectively (Fig. 3B).

In case of HemoPI-2 dataset, at N-terminus of hemolytic peptides, a clear preference of hydrophobic residues 
was seen at various positions like F, L, and W are the most preferred residues at first, second and seventh positions 
while L is found to be preferred at most of the other positions (fifth, sixth, ninth, tenth, twelth, thirteenth and 
fourteenth positions) (Fig. 4A). On the contrary, at N-terminus of non-hemolytic peptides of HemoPI-2 data-
set, overall hydrophilic residues are preferred at various positions like K is preferred at second, third, sixth, and 
tenth positions, R at seventh, thirteenth and fourteenth positions, and H at eighth and fifteenth positions. Only 
two positions (fourth and fifth) are found to be preferred by hydrophobic residues i.e. V and W. At C-terminus 
of hemolytic peptides of HemoPI-2 dataset, similar to N-terminus, L is preferred at most of the positions (first, 
third, fourth, fifth, sixth, tenth and fourteenth positions) while it was only preferred at one position (fifteenth) in 
non-hemolytic peptides (Fig. 4B). Rest of the positions were preferred by G (at third, fifth and seventh positions), 
A (at tenth and twelfth positions), I (at first), K (at second), F (at fourth) and V (at sixth positions) (Fig. 4B).

Quantitative Matrix.  Single residue-based QM.  For HemoPI-1 dataset, at first position, residues F, G and 
K are preferred in positive dataset as compared to negative dataset. For the first 15 positions, residues K and L are 
preferred. In HemoPI-2 dataset, residue L is preferred at 2nd, 9th and 13th positions.

Dipeptide-based QM.  At first position, FL dipeptide is preferred in HemoPI-1 dataset followed by KW. Similarly, 
FL is most preferred at first position (followed by IL) in HemoPI-2 dataset.

Property-based QM.  First position is occupied by positively charged, large and hydrophobic residues in positive 
dataset, while negatively charged, small and polar residues are abundant in negative dataset in HemoPI-1 dataset. 
Similar to HemoPI-1 dataset, in HemoPI-2 dataset also, hydrophobic residues span positions from 1 to 17.

Motif analysis.  In order to understand whether any specific motifs are present in hemolytic or non-hemolytic 
peptides, we have extracted motifs using MERCI software. Sequence analysis of peptides in HemoPI-1 main data-
set revealed the presence of “FKK”, “LKL”, “KKLL”, “KWK”, “VLK”, “CYCR”, “CRR”, “RFC”, “RRR”, “LKKL” etc., 
motifs specifically found in many hemolytic peptides. For extracting motifs which can discriminate between 
hemolytic peptides with high and low potency, we analysed sequence motifs in HemoPI-2 main dataset. Motifs 
like “ALW”, “GCS”, “AAAK”, “KLLS”, “LGKL”, “LLKKV”, “AKAAL”, “KVLKA”, “HIF” etc., are exclusively present in 

Figure 1.  Amino acid composition of HemoPI-1 dataset peptides. Percent average amino acid composition of:  
(A) whole peptides, (B) N-terminal residues and (C) C-terminal residues between hemolytic and non-hemolytic 
peptides of HemoPI-1 dataset.
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hemolytic peptides having high potency while motifs “KKG” and “QN” are present only in low potent hemolytic 
peptides. These motifs can therefore be used in the prediction algorithm to enhance the accuracy and reliability 
of the prediction of hemolytic/non-hemolytic peptides.

Machine learning-based prediction models.  The preliminary analysis suggested that hemolytic peptides 
can be discriminated from non-hemolytic peptides on the basis of amino acid composition, binary profiles and 
motifs. Therefore, various machine learning approaches were used to develop models using these features as input:

Amino acid composition-based model.  In the past, amino acid composition as a feature has been used in vari-
ous machine learning approaches to classify different types of peptides15,16,19. Therefore, first SVM models were 
developed using whole amino acid composition as input feature on HemoPI-1 and HemoPI-2 main datasets. 
The performances of these models are summarized in Table 1. For HemoPI-1, SVM model achieved an accuracy 
of 95.3% with MCC value 0.91. In case of HemoPI-2, SVM model achieved accuracy of 76.4% with MCC value 
0.53 (Table 1). In case of HemoPI-3, we achieved an accuracy of 77.98% with MCC value 0.56 using SVM models 
(Supplementary Table S2). We also developed models using other classifiers like IBK, Multilayer Perceptron, 
Logistic, J48 and Random Forest using whole composition as input feature and performances of these models 
were found to be similar to the SVM-based model (Table 1 and Supplementray Table S3). Therefore, on rest of the 
features, models were developed using SVM only.

Next, we have created terminus-datasets (NT10, CT10, NTCT10, NT15, CT15 and NTCT15) consisting of 
first and last 10 and 15 residues from N- and C-terminus respectively as described elsewhere33. SVM models 
developed on these sub-datasets using amino acid composition as input performed more or less similar to the 
whole composition-based model (Table 2). For HemoPI-1, model achieved a maximum accuracy of 96.3% with 
MCC value 0.93 on NTCT15 dataset while in case of HemoPI-2, maximum accuracy of 77.5% with MCC value 
0.55 on NTCT10 dataset (Table 2) was achieved. Similarly, on dataset HemoPI-3, our model achieved an accuracy 
of 81.0% with MCC value 0.61 on NTCT15 sub dataset (Supplementary Table S2).

In order to ensure that the random negative selection in HemoPI-1 dataset is not biased, we made 5 
more random datasets and observed their average amino acid composition and prediction performance. 
The results were in agreement with that of the negative dataset taken in original HemoPI-1 negative dataset 
(Figure S1 and Supplementary Table S4). These datasets contain exact positive peptides but equal number 
of random negative peptides from Swiss-Prot. Average amino acid compositions for five random negative 

Figure 2.  Amino acid composition of HemoPI-2 dataset peptides. Percent average amino acid composition of:  
(A) whole peptides, (B) N-terminal residues, and (C) C-terminal residues between hemolytic and non-hemolytic 
peptides of HemoPI-2 dataset.
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datasets (Random1-Random5) showed the similar trend as that of HemoPI-1 dataset (Supplementary Figure S1). 
Maximum accuracy ranged from ~93% to ~95% on main datasets (Supplementary Table S4).

Figure 3.  Two sample logos of hemolytic and non-hemolytic peptides of HemoPI-1 dataset. The figure 
depicts the two sample logos of: (A) first fifteen residues (N-terminus) and (B) last fifteen residues (C-terminus) 
of hemolytic (enriched) and non-hemolytic (depleted) peptides, where size of residue is proportional to its 
propensity.

Figure 4.  Two sample logos of hemolytic and non-hemolytic peptides of HemoPI-2 dataset. The figure 
depicts the sequence logos of: (A) first fifteen residues (N-terminus) and (B) last fifteen residues (C-terminus) 
of hemolytic (enriched) and non-hemolytic (depleted) peptides, where size of residue is proportional to its 
propensity.
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Dipeptide-based model.  Dipeptide composition encapsulates the global information of the amino acid fraction 
as well as the local order of amino acids and is used as feature in many prediction methods15,19. Thus, we have 
developed SVM models based on dipeptide composition on HemoPI-1 and HemoPI-2 main datasets which per-
formed more or less similar to the composition-based models. Results are shown in Table 3. HemoPI-1 model 
achieved a maximum accuracy of 95.0% with MCC value of 0.90. For HemoPI-2, maximum accuracy achieved 
was 79.0% with MCC value of 0.58. SVM model achieved an accuracy of 82.38% with MCC value 0.64 on dataset 
HemoPI-3 (Supplementary Table S5).

Binary profile-based model.  In preliminary analysis, it was found that certain residues are also preferred at var-
ious positions at N- and C-terminus. To incorporate this position specific information in the model, we have 
generated binary profile patterns of peptides. In binary pattern, a vector of dimension 20 represents a residue, and 
for n residues the input vector of dimension is 20 ×  n. Results are shown in Table 4. In case of HemoPI-1 main 
dataset, the binary model achieved a maximum accuracy of 95.7% with MCC value of 0.91. On HemoPI-2 main 
dataset, maximum accuracy achieved was 77.1% with MCC value of 0.54. SVM model achieved an accuracy of 
80.57% with MCC value 0.60 on dataset HemoPI-3 (Supplementary Table S6).

Hybrid model.  In order to improve the performance of the SVM hybrid model, we integrated the information 
obtained from motif analysis of HemoPI-1 and HemoPI-2 main datasets in the prediction of hemolytic and 
non-hemolytic peptides. The hybrid approach has been used in previous prediction methods to improve the 

Methods Sn (%) Sp (%)
Acc 
(%) MCC

HemoPI-1 main dataset

  SVM 95.7 94.8 95.3 0.91

  IBK 95.5 93.7 94.6 0.89

  Multilayer Perceptron 93.9 92.8 93.3 0.87

  Logistic 93.4 93.7 93.6 0.87

  J48 89.6 88.5 89.0 0.78

  Random Forest 94.1 94.6 94.3 0.89

HemoPI-2 main dataset

  SVM 76.0 76.8 76.4 0.53

  IBK 75.6 76.0 75.7 0.51

  Multilayer Perceptron 74.0 74.1 74.0 0.48

  Logistic 64.5 68.1 66.1 0.32

  J48 79.0 60.0 70.3 0.40

  Random Forest 77.8 77.8 77.8 0.56

Table 1.   The performance of amino acid composition-based models developed using various machine 
learning techniques for predicting hemotoxicity of peptides. These models were developed and evaluated using 
five-fold cross-validation. Sn: Sensitivity; Sp: Specificity; Acc: Accuracy; MCC: Matthews correlation coefficient.

Approach Sn (%) Sp (%) Acc (%) MCC

HemoPI-1 main dataset

  NT10 93.8 92.9 93.3 0.86

  CT10 84.4 89.0 87.0 0.74

  NTCT10 95.7 94.0 94.9 0.90

  NT15 93.8 95.7 94.8 0.90

  CT15 89.7 93.8 91.8 0.84

  NTCT15 96.5 96.1 96.3 0.93

HemoPI-2 main dataset

  NT10 71.6 71.1 71.4 0.43

  CT10 67.7 70.1 68.8 0.38

  NTCT10 77.9 77.0 77.5 0.55

  NT15 74.9 73.9 74.5 0.49

  CT15 74.3 69.9 72.4 0.44

  NTCT15 77.7 76.2 77.0 0.54

Table 2.  Performance of amino acid composition-based SVM models for predicting hemotoxicity of 
peptides using five-fold cross-validation. Sn: Sensitivity; Sp: Specificity; Acc: Accuracy; MCC: Matthews 
correlation coefficient; NT10: first 10 residues from N-terminus; CT10: last 10 residues from C-terminus; 
NTCT10: NT10+ CT10.
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prediction accuracy15,37. If there was no motif detected in the test sequence then amino acid composition was 
used as input feature for prediction using machine learning method. The results of hybrid approach are presented 
in Table 5. In the case of HemoPI-1, we achieved a maximum accuracy of 95.3% with MCC value of 0.91. For 
HemoPI-2, maximum accuracy achieved was 78.0% with MCC value of 0.56 (Table 5).

Approach Sn (%) Sp (%) Acc (%) MCC

HemoPI-1 main dataset

  Whole peptide 94.6 94.3 94.5 0.89

  NT10 87.0 96.8 92.5 0.85

  CT10 87.5 90.1 89.0 0.78

  NTCT10 94.1 94.0 94.0 0.88

  NT15 92.7 94.7 93.8 0.88

  CT15 90.4 92.8 91.6 0.83

  NTCT15 94.8 95.1 95.0 0.90

HemoPI-2 main dataset

  Whole peptide 77.6 79.2 78.3 0.57

  NT10 69.8 69.7 69.8 0.39

  CT10 69.1 69.8 69.4 0.39

  NTCT10 73.2 81.7 77.0 0.55

  NT15 75.3 72.5 74.1 0.48

  CT15 71.2 78.3 74.3 0.49

  NTCT15 78.6 79.5 79.0 0.58

Table 3.  Performance of dipeptide composition-based SVM models for predicting hemotoxicity of 
peptides using five-fold cross-validation. Sn: Sensitivity; Sp: Specificity; Acc: Accuracy; MCC: Matthews 
correlation coefficient; NT10: first 10 residues from N-terminus; CT10: last 10 residues from C-terminus; 
NTCT10: NT10+ CT10.

Approach Sn (%) Sp (%) Acc (%) MCC

HemoPI-1 main dataset

  NT10 90.5 96.1 93.7 0.87

  CT10 85.0 93.4 89.6 0.79

  NTCT10 93.8 97.5 95.7 0.91

  NT15 92.7 97.0 95.0 0.90

  CT15 89.0 91.5 90.3 0.81

  NTCT15 94.0 96.7 95.3 0.91

HemoPI-2 main dataset

  NT10 70.7 72.2 71.4 0.43

  CT10 70.0 71.4 70.6 0.41

  NTCT10 78.9 74.6 77.1 0.54

  NT15 70.9 75.8 73.1 0.46

  CT15 67.5 77.4 71.8 0.45

  NTCT15 77.0 77.0 77.0 0.54

Table 4.   Performance of binary profile-based SVM models for predicting hemotoxicity of peptides 
using five-fold cross-validation. Sn: Sensitivity; Sp: Specificity; Acc: Accuracy; MCC: Matthews correlation 
coefficient; NT10: first 10 residues from N-terminus; CT10: last 10 residues from C-terminus; NTCT10: 
NT10+ CT10.

Datasets Sn (%) Sp (%) Acc (%) MCC

HemoPI-1 main 96.0 94.6 95.3 0.91

HemoPI-2 main 78.3 77.6 78.0 0.56

HemoPI-1 validation 96.4 99.1 96.4 0.93

HemoPI-2 validation 78.2 78.3 75.7 0.51

Table 5.  Performance of hybrid model for predicting hemotoxicity of peptides. Sn: Sensitivity; Sp: Specificity; 
Acc: Accuracy; MCC: Matthews correlation coefficient.
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Performance on validation dataset.  In order to evaluate the performance of our best method we have 
created a validation dataset of 110 hemolytic peptides and equal number of non-hemolytic peptides, which have 
not been included in the training, feature selection and parameters optimization of the model. Our hybrid models 
achieved accuracy of 96.4% and 75.7% with MCC values 0.93 and 0.51 for HemoPI-1 and HemoPI-2 validation 
datasets respectively, as shown in Table 5, demonstrating that these models are useful or effective in real life.

Implementation of Webserver
To the best of authors’ knowledge, no web service is available to date, which can predict hemolytic nature of pep-
tides. Thus, in order to assist the scientific community, we have implemented our best method in a user-friendly 
web server ‘HemoPI’ with many other useful tools for the users. HemoPI has the following modules:

(i) Hemolytic Potency: This module predicts whether a given peptide is hemolytic or not. We have provided 
5 options for the prediction. Model 2 (based on HemoPI-2 dataset, option 3) has been selected by default. User 
can select any of the 5 options to predict the haemolytic nature of the peptide. User has to submit the peptide 
sequence in single letter code and server will predict the hemolytic nature of the peptide. Besides the prediction, 
server will also generate all the possible substitution mutants (analogs) of query peptide with a single mutation in 
each mutant (depicted in red color) to find out the best analog with desired hemolytic acitivity. Server will rank 
the peptide analogs based on simple normalized score derived from the SVM score. SVM score has been trans-
formed to obtain the normalized score which is directly proportional to the probability of a peptide being hemo-
lytic. Peptides are ranked by probability, between 0 and 1, of being hemolytic i.e. 1 very likely to be hemolytic, 0 
very unlikely to be hemolytic. This is like structure activity relationship which is often carried out in the wet lab 
to understand the crucial residues responsible for the activity. Therefore, this module is very helpful for the user 
in optimizing the hemolytic potency of therapeutic peptides. Along with this, server also calculates important 
physicochemical properties in an aesthetic tabular format.

(ii) Virtual Screening: This module works in a similar fashion to ‘Hemolytic Potency’ module. The only 
difference is that, in this module, user can submit multiple peptide sequences (in FASTA format) at a time. Thus, 
user can screen a library of peptides instead of a single peptide.

(iii) Protein Mapping: This is a very important module and useful to identify the various regions in a protein 
molecule, which can be hemolytic. For this, user may submit a protein sequence and server will first generate all 
possible overlapping peptide segments and then rank these peptides based on their scores. Thus, user can identify 
the possible hemolytic regions in a protein sequence.

(iv) Quantitative Matrices: ‘Q. Matrices’ module contains three types of matrices a) Single residue-based 
QM, b) Dipeptide-based QM and c) Property-based QM. These have been displayed for both HemoPI-1 and 
HemoPI-2 datasets. User can sort the specific positions to get an idea of most/least-preferred residues at each 
position for all three types of QMs. Numerical value in each cell is direct indicative of propensity in positive data-
set. Numerical value-based gradient color-coding helps to easily identify the much-preferred residues (higher 
values in green color) and least preferred (negative values in chocolate color).

HemoPI web service is freely accessible at http://crdd.osdd.net/raghava/hemopi/.

HemoPI Standalone Software.  We developed JAVA-based standalone software in order to let the users 
apply and analyze the peptide sequences offline. The software has been developed on JDK 8 and has been tested to 
work on JDK 7 as well. It mainly consists of a back-end prediction engine and a front-end user interface. The predic-
tion engine itself can be used as a standalone library and plugged in to achieve the classification results. Common 
to all the modules, users can either paste or write flat text file consisting of peptide sequences or upload them from 
the file system. The model file has to be uploaded which may be a LIBSVM or SVMlight trained model with different 
versions. The users can either explicitly state the model file version and type or leave it for automatic detection if not 
known beforehand. The results will either be stored in a user supplied result file or a result file automatically. The 
users can select the physicochemical properties to be calculated for the results. The results are displayed in a table 
where each row consists of peptide sequences, their probability scores along with the different physicochemical 
properties selected by the user. Each row when clicked creates a recursive list of all the possible combination of valid 
peptide sequences with the same columns as in the parent table. The values in the columns can be sorted by clicking 
the column tabs. We have also provided an example to show the sample result table and process.

The software has been bundled as zipped jar files having all the necessary libraries and example files, which can 
be downloaded from http://crdd.osdd.net/raghava/hemopi/HemoPI.zip.

HemoPI Mobile App.  We have also developed mobile application ‘HemoPI’ which can be installed on the 
android mobile phones. This app contains two modules that are described below:

(i) Predict: This module is used to predict the hemolytic property of the input peptide sequence. A user needs 
to type the peptide sequence followed by pressing/tapping on the ‘Predict’ button. In the next step, the result is 
displayed as the probability score of the query peptide.

(ii) Mutant: This module is used to generate mutant analogs of the input peptide sequence and predict the 
hemolytic nature of each of them. In this module, a user enters the peptide sequence, and presses/taps the ‘Mutant’ 
button. In the next step, the user needs to enter the sequence position number to generate the single mutant ana-
logs of the peptide sequence at that position. The result is displayed in a tabular format having sequence of the 
mutant analog its prediction score.

The ‘HemoPI’ mobile app is provided in standard “apk” file format, which can be downloaded from http://crdd.
osdd.net/raghava/hemopi/HemoPI.apk. Since this app is currently not available on Google play services, the users 
should at first allow it to be installed on their android device by going to their security tab in settings and allow third 
party apps to be installed. The app does not access any sensitive information on the mobile except its own resources.

http://crdd.osdd.net/raghava/hemopi/
http://crdd.osdd.net/raghava/hemopi/HemoPI.zip
http://crdd.osdd.net/raghava/hemopi/HemoPI.apk
http://crdd.osdd.net/raghava/hemopi/HemoPI.apk
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Discussion
The aim of this study was to develop an in silico prediction method for predicting hemolytic nature of therapeutic 
peptides. The conversion of potential peptide lead molecules into drug molecules is heavily dependent on their 
non-hemolytic activity apart from their therapeutic activity. An ideal therapeutic peptide molecule should pos-
sess high therapeutic index i.e. high therapeutic activity and minimum hemolytic activity. However, a number 
of potential therapeutic peptides have been found hemolytic to varied extent. Therefore, over the last decade, 
much attention has been focused to minimize the hemolytic potency of these peptides without compromising 
their therapeutic activity. In an experimental lab, this can be achieved by generating different analogs of existing 
therapeutic peptide followed by screening of these analogs for their low hemolytic activity. The whole procedure 
is not only time-consuming but labor-intensive also. Therefore, in silico tool, which can predict whether a peptide 
will be hemolytic or not before its synthesis, will not only be economical but also will save the time and labor con-
sumed in their synthesis and evaluation. In this regard, we have made an attempt to develop a dedicated compu-
tational method, which can predict whether a given peptide exhibits hemolytic activity or will be non-hemolytic 
in nature.

In order to discriminate hemolytic peptides from non-hemolytic peptides, we have used various machine 
learning classifiers to develop models as shown in Fig. 5. All machine learning approaches require positive 
and negative datasets for training. Therefore, dataset generation is very important. In this study, we have 
downloaded the sequences of hemolytic peptides from Hemolytik database and considered these sequences 
as positive examples (HemoPI-1). Creating negative dataset is equally important. Since, very few peptides 
are reported in the literature, which are non-hemolytic; therefore, we generated random sequences from 
Swiss-Prot proteins of similar length to hemolytic peptides and considered them as negative examples. Though 
there is a possibility that few of these random sequences may be hemolytic, but the probability is very low. 
Also this approach of creating negative dataset is used in many previous methods15,19, especially when negative 
examples are not available in the literature. Next, to make it more reliable, we have developed another datasets 
HemoPI-2 and HemoPI-3, where negative dataset is different from that of the HemoPI-1. In these datasets, 
all the peptide sequences and their hemolytic activity were downloaded from Hemolytik database as well as 
from DBAASP v.2 database and the sequences were classified into positive and negative datasets. One of the 
major limitations is that there is no clear definition of hemolytic peptides reported in the literature. Therefore, 
to overcome this limitation, we have set a few criteria to define hemolytic and non-hemolytic peptides as 
described in methods. By doing so, all highly hemolytic peptide sequences were considered as positive data-
set and rest poor hemolytic and non-hemolytic peptides were considered as negative datasets. The models 
developed on this dataset will discriminate high hemolytic peptides from poor hemolytic peptides. An overall 
prediction approach is shown in Fig. 5.

Preliminary sequence analysis using sequence logo revealed few residues (K, L, F, W, G), which are dom-
inant in hemolytic peptides. Most of these residues are generally hydrophobic in nature and are prominent 
in both N- and C-terminal regions of hemolytic peptides. The importance of hydrophobic residues towards 
the hemolytic activity of antimicrobial peptides has already been reported previously20,38–40. In fact, new and 
potent antimicrobial peptides have been designed by substituting residues that reduce the overall lipophilic-
ity of the peptides20,38. The differences in the residue preference of hemolytic and non-hemolytic peptides 
prompted us to develop SVM models using amino acid composition, dipeptide composition and binary 
profiles as input features. Models developed with these features performed reasonably well. However the 
performance of all models developed on HemoPI-1 main dataset was better than the models developed 
on HemoPI-2 main dataset. This is due the fact that in HemoPI-2, positive examples consist of peptides 
with high hemolytic potencies, while negative examples consist of peptides, which are analogs of hemo-
lytic peptides used as positive examples exhibiting no, or low hemolytic potencies. Therefore, peptides in 
both the classes contain similar properties including amino acid composition and thus they are difficult to 
discriminate.

We have also extracted various motifs, which are present in hemolytic (e.g., “ALW”, “GCS”, “AAAK”, etc.) and 
non-hemolytic (e.g., “KKG” and “QN”) peptide sequences. We have developed a hybrid model by combining the 
motif information with our machine learning approach to improve the prediction of hemolytic peptides. We have 
also evaluated the performance of our best models on validation dataset. Our models performed reasonably well 
on validation dataset suggesting that the models can discriminate hemolytic and non-hemolytic sequences with 
good accuracy in real life. The implementation of the algorithm in the form of a user-friendly web server allows 
the experimental researchers to predict and even design a peptide with desirable hemolytic property. HemoPI 
service is also available in the form of JAVA-based standalone software as well as mobile application, which can 
be used on the go.

Conclusion
HemoPI is a unique and much needed in silico method, which can predict hemolytic nature of peptides. 
Optimization of hemolytic properties of peptide lead molecules is very essential but difficult, time-consuming 
and labor-intensive task in wet laboratory. In this regard, HemoPI will assist the experimental biologists by pre-
dicting hemolytic properties of peptides before their synthesis. HemoPI will also be useful in designing peptides 
or their analogs with desired non-hemolytic activity. Therefore, we believe that development of HemoPI will 
accelerate the peptide-based drug discovery.

Limitations and Future Prospects
In the present study, we have made an attempt to develop a much needed in silico method to predict hemo-
lytic nature of the peptides. Development of datasets of hemolytic and non-hemolytic peptides is very chal-
lenging. One of the limitations is that there is no clear definition of hemolytic peptides in the literature. Most 
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of the peptides (except few) show hemolysis to some extent at some concentration (may be at higher concen-
tration). From the collected data, it was found that same peptide was reported to cause hemolysis to different 
extents in different studies. Another limitation is that peptides have been tested at different concentrations 
in different studies with different units like EC50, HC50, MHC and % hemolysis, etc, which make it more 
difficult to decide which peptide is hemolytic and which is non-hemolytic. It is also observed that a peptide 
shows 10% hemolysis at 50 μM concentration while another shows 9% hemolysis at 10 μM. Therefore, it is not 
easy to decide which one is hemolytic and which one is non-hemolytic? In addition, there is no uniformity 
in the data reported in the literature. Ideally, hemolysis should be evaluated at different concentrations of 
a peptide and its HC50 should be calculated but in most of the cases only a single concentration has been 
reported in research articles. So it becomes even more challenging to classify the peptides as hemolytic or 
non-hemolytic.

Though we have used the latest data for developing models, our team will update the datasets as soon as 
the new data is available. In addition, we will compare our method with new methods, if any developed in the 
future.

Figure 5.  Schematic representation of HemoPI approach. 
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