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ABSTRACT The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform
essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a
model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of
Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can
be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology
of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis,
remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and
hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid
transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while
the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell–based injury
repair, cancer-promoting processes, and communication between the intestine and nervous system.
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Physiology

The Drosophila excretory system: overview

The goal of excretion is to maintain physiological homeo-
stasis through the elimination of potentially harmful sub-

stances (Nation 2015). As in humans, a kidney-like organ
(Malpighian tubules) and a large intestine-like organ (hind-
gut) are principally involved in insect excretion by the ali-
mentary canal (Figure 1, A and B), although we note that
other specialized cell types outside the gut (e.g., the nephro-
cytes; Helmstädter and Simons 2017) perform specific roles
related to sequestration from the hemolymph. Here, we focus
on the renal system and hindgut excretory.
The structure and function of the excretory system can be
convenientlymodeled by the Berridge analysis of gut function
(Berridge 1970). As the cuticle is highly impermeable, ex-
changes of everything except oxygen, carbon dioxide, and
water vapor must take place along the length of the alimen-
tary canal. Of the three regions, the foregut is lined with
highly impermeable cuticle, and the hindgut with cuticle of
restricted permeability. The midgut is considered to provide
the absorptive cycle, in which digestion and uptake of

nutrients takes place, whereas the excretory cycle features
the generation of primary urine by the Malpighian tubules,
followed by selective reabsorption by the hindgut (Berridge
1970). WithinDrosophila, the alimentary canal is arranged in
a stereotypically looped structure, and the tubules and hind-
gut have carefully specified locations in the body cavity of
both larvae and adults (Figure 1A).

The four Malpighian tubules first secrete a primary urine
from the open circulatory system or hemolymph, which is
added to themidgut contents as they pass posteriorly into the
hindgut. The hindgut processes this material and forms
wastematerial, or excreta, while also selectively reabsorbing
other hindgut contents back to the hemolymph (Figure 1B).
Both the Malpighian tubules and hindgut contain special-
ized anatomical regions and cell types with unique struc-
tural features (Figure 1, C–E) that aid in distinct aspects of
excretion.

Malpighian tubule physiology

Overview of tubule structure and function: Insect renal
tubules were first described and named by Marcello Malpighi
in the 17th century (Malpighi 1669).Drosophila has two pairs
of tubules, with each pair feeding into a short common ureter
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that connects to the junction of the midgut and hindgut, just
ahead of the pylorus. The tubules are nonidentical: the pair
on the right is longer and always ramifies anteriorly, associ-
ating with the anterior midgut, whereas the pair on the left is
shorter, ramifies posteriorly, and associates loosely with the
hindgut. The tubule plan is established by the time the insect

hatches from the embryo and persists into adulthood.
This persistence through metamorphosis is unusual for a
Drosophila tissue (see Hindgut development section for com-
parison). Although the tubule physiologically shuts down
during pupation (as evidenced by loss of apical microvilli),
it does not undergo extensive remodeling from larva to adult,

Figure 1 Physiology of the Mal-
pighian tubules and hindgut. (A)
Location of the Malpighian tubules
and hindgut in adult Drosophila.
Tubules are in red and hindgut is
blue/purple. (B) Diagram of flow
of contents into and out of the
Drosophila Malpighian tubules and
hindgut. Coloring as in A. (C) Do-
mains of the Malpighian tubules.
(D) Major cell types of the Malpigh-
ian tubules. Nuclei are indicated. (E)
Major cell types of the hindgut. Mi-
tochondria and nuclei are indi-
cated. (F) Overview of Malpighian
tubule ion exchange in principal
and stellate cells. Key ions, trans-
port regulators, and second mes-
sengers discussed in the text are
highlighted. (G) Overview of rectal
papillar reabsorption and excretion,
with select exchange of ions and
water indicated. A is adapted from
Chintapalli et al. (2012). C, D, and F
are adapted from Dow (2009). MT,
Malpighian Tubule.
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and cell number does not change. As the cells get larger, they
increase their ploidy, rather than divide.

Despite their tiny size (1.5–3mm long, 35 mm wide, and
each containing �200 cells; Wessing and Eichelberg 1978;
Sözen et al. 1997; Yerushalmi et al. 2018; Martínez-Corrales
et al. 2019) the tubules transport fluid at a record-breaking
rate (Dow et al. 1994), so generating a primary urine that is
acted on by the lower tubule and hindgut. This rapid flux
facilitates the rapid removal of wastes and toxic solutes, at
the cost of ion, water, and solute loss that must be balanced
by selective hindgut reabsorption.

Structural insights from enhancer trapping: Despite their
small size, the tubules are remarkably sophisticated, and show
structural zonation that is borne out by functional specializa-
tion (Table 1). Classical morphology had suggested that the
posterior tubule was uniform, whereas the longer anterior
tubules had a concretion-filled initial segment, joined to the
rest of the tubule by a narrow transitional segment (Wessing
and Eichelberg 1978). However, enhancer trapping has the
potential to reveal the organism’s (rather than the experi-
menter’s) view of the tissue organization. In fact, both ante-
rior and posterior tubules have six domains and six cell types
(Sözen et al. 1997). There are miniature initial and transi-
tional regions in the posterior tubule, reflecting their more
obvious orthologs in the anterior pair. Additionally, the main
part of the tubule can be subdivided into a main segment and
a lower tubule, and the ureter can be further subdivided into
two regions (Figure 1, B and C). Although multiple cell types
can be delineated, the two predominant cells are the large,
metabolically active principal cells and the smaller stellate
cells (Figure 1C); together, these are responsible for most
of the secretory function of the tubule. Remarkably, the num-
ber of cells of each type in each region is almost invariant
(Sözen et al. 1997). These genetically defined domains are
not mere curiosities. The tubule is also an unusually straight-
forward system in which to study function, and in every case
where functions have been mapped to the tubule, they align
with one of the enhancer-determined domains.

There is thus unusual confidence in the authority of the
enhancer-trap derived map in this tissue. Of course, such
complexity in a small space could prove daunting for physi-
ological analysis; however, the enhancer traps were part of a
large-scale GAL4 screen (Yang et al. 1995; Sözen et al. 1997),
and so it is also possible to manipulate gene expression in any
of the domains reported. Useful tubule Gal4 drivers are listed
in Table 2.

It is worth noting that there is not a “clean” GAL4 line that
marks all cell types in the tubule with no expression in other
tissues.

An epithelium specialized for rapid transport: Water is not
directly transported into the tubule, but follows an osmotic
gradient; therefore, to secrete fluid, it is necessary to move
solutes first. In insects, the Malpighian tubules are “driven”
by very high levels of proton pumping vacuolar ATPase

(V-ATPase). In Drosophila, the V-ATPase is located in the
apical microvilli of the principal cells (Terhzaz et al. 2006).
On its own, this would acidify the tubule lumen; however, a
colocated K+/H+ exchanger allows the proton gradient to
drive net excretion of K+ from the principal cells (Figure
1F) (Day et al. 2008). To allow net excretion of K+ from
hemolymph to tubule lumen, K+ must also be allowed to
enter the basolateral membrane of the tubule (Figure 1F).
Several mechanisms have been shown to be important for
this flux; inward-rectifier K+ channels (Evans et al. 2005;
Y. Wu et al. 2015), the Na+/K+ ATPase (Figure 1F) (Torrie
et al. 2004), and the Na+/K+/2Cl2 cotransport (Y. Wu et al.
2014).

The net transepithelial flux of potassium across the prin-
cipal cell constitutes a major charge imbalance, and so chlo-
ride flows to balance the charge (Figure 1F). This is mediated
by chloride channels in the stellate cell: Chloride channel a
(Clc-a) on the basolateral side (Cabrero et al. 2014), and
SecCl apically (Feingold et al. 2019). The transepithelial flux
of K+ and Cl2 corresponds to a net movement of salt, and
osmotically obliged water follows (Figure 1F).

This method of fluid secretion by active cation transport is
in marked contrast to the mammalian kidney, where the
primary urine is effectively an ultrafiltrate through leaky
capillaries, the glomerular basement membrane, and tightly
controlled spaces between finger-like processes of specialized
podocytes in Bowman’s capsule. A corollary of this difference
is that the default in the kidney is for all smaller solutes to be
excreted, and so desired solutes must subsequently be res-
cued. By contrast, the Drosophila Malpighian tubule is a
“tight” epithelium in which paracellular spaces are guarded
by highly convoluted smooth septate junctions (Skaer and
Maddrell 1987; Tepass and Hartenstein 1994); therefore,
undesirable solutesmust be actively transported to the tubule
lumen. This is accomplished by highly expressed organic sol-
ute transporters; indeed, nearly every class of ABC and other
transporter shows enriched expression in the tubule (Wang
et al. 2004). As many of these transporters can carry a broad
spectrum of solutes, the system can be effective at excreting
both expected solutes and xenobiotics that Drosophila might
not have encountered in nature. For example, the Na+/K+

ATPase inhibitor ouabain is actively excreted by tubules,
masking its pharmacological effect (Torrie et al. 2004). Or-
ganic anion transport peptides have also been shown to trans-
port a range of fluorescent dyes (Chahine et al. 2012). The
classic Drosophila gene white encodes an ABC transporter
that in the tubules, in addition to transporting visual pigment
precursors, also transports cyclic GMP (cGMP) (Evans et al.
2008). The overall effect of the multiple transporters in the
tubule is thus to form a system that achieves the effect of the
mammalian kidney, but under much tighter control. This may
provide specific advantages, for example in limiting water
loss. Although these differences should be borne in mind,
as discussed later in theModeling renal disease in the Malpigh-
ian Tubules section, there is nonetheless potential in model-
ing human disease in the tubule.
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Most of the discussion above has been of themain segment
of the tubule (Sözen et al. 1997), as this is the region that
generates the primary urine. Less is known about the other
tubule regions (see Table 1); however, painstaking mapping
of fluid production by different regions of the tubule showed
that the lower tubule is reabsorptive (O’Donnell and
Maddrell 1995). This domain corresponds with the expres-
sion pattern of c507, a GAL4 driver under control of the
alkaline phosphatase gene Alp4, and histochemistry confirms
that alkaline phosphatase is expressed in lower tubule (Yang
et al. 2000), although the functional significance is not clear.

The initial segment contains large cells as well as narrow,
bar-shaped cells that aremarkedby stellate cell drivers, and so
are presumably related (Sözen et al. 1997). This region con-
tains abundant white calcium-rich concretions, or spherites,
that form intracellularly and move to the lumen (Wessing
and Zierold 1999). Indeed, the tubule is capable of excreting
calcium at a high rate, and this function is concentrated in the
initial segments (K. Dube et al. 2000). The vesicles are bound
by a membrane with contains Spock, a secretory pathway
Ca++ ATPase that is necessary for concretion formation
(Southall et al. 2006). This sequestration may be a form of
storage excretion, allowing the insect to store calcium until a
time of future need (for example reproduction).

Neuroendocrine control: Terrestrial insects are under signif-
icant risk of desiccation, and so it is not surprising that urine
production is under neurohormonal control. Several secreta-
gogues, mainly neuropeptides, have been identified and their
intracellular signaling and targets identified; recent progress
has provided suggestions for the conditions under which they
are released to optimize organismal homeostasis. Insect neu-
ropeptides are usefully summarized in the onlineDatabase for
Insect Neuropeptide Research (Yeoh et al. 2017).

Capa peptides are related to the CAP2b neuropeptide
originally discovered in the tobacco hornworm Manduca
sexta (Tublitz et al. 1992). In Drosophila, Capa1 and Capa2
(together with unrelated Capa3) are encoded by the prepro-
peptide gene capability (Kean et al. 2002). Their receptor,
encoded by CapaR (Iversen et al. 2002), is expressed in prin-
cipal cells, and only at a very low level in some other tissues
(data retrieved from flyatlas.org) (Chintapalli et al. 2007;
Robinson et al. 2013). Capa1 or Capa2 trigger a complex

cascade in principal cells that ultimately stimulates fluid pro-
duction (Figure 1F). CapaR elevates intracellular calcium in
only principal cells, from 80 to 300 nM, as measured with the
luminescent probe apoaequorin (Figure 1F) (Rosay et al.
1997). Tubule principal cells contain nitric oxide synthase,
and the calcium signal stimulates nitric oxide production,
which activates a soluble guanylate cyclase to produce cGMP
and thus activate the apical V-ATPase (Davies et al. 1995,
1997; MacPherson et al. 2004). In parallel, sustained eleva-
tion of intracellular calcium activates the apical mitochon-
dria, so providing ATP directly to the V-ATPase (Terhzaz
et al. 2006). A physiological role for Capa1 is becoming
clearer, as it is associated with survival under cold or desic-
cation stress (Terhzaz et al. 2012, 2015, 2018; Davies et al.
2013; MacMillan et al. 2015). Aedes Capa has also been ar-
gued to inhibit the response to the diuretic neuropeptide
kinin in Drosophila (see below) (MacMillan et al. 2018).

Two large peptide hormones act very similarly through
cyclicAMP(cAMP).DH44 is a44-aadiuretic peptide, distantly
related to vertebrate corticotropin. This acts to stimulate fluid
secretion by elevating cAMP in principal cells (Figure 1F)
(Cabrero et al. 2002; Johnson et al. 2005; Hector et al.
2009; Cardoso et al. 2014). DH31 is a 31-aa diuretic peptide,
distantly related to vertebrate calcitonin (Coast et al. 2001).
Again, this acts through cAMP in principal cells to stimulate
the apical V-ATPase (Figure 1F) (Coast et al. 2001). Most
DH44-expressing neurons carry receptors for DH31, suggest-
ing cross-talk between these signals (Johnson et al. 2005).

Two ligands are known for the stellate cells, kinin and
tyramine (Tyr). Kinin is a short diuretic peptide found inmost
insects, and even in snails (Elekes et al. 1994). In Drosophila,
its sequence is Asn-Ser-Val-Val-Leu-Gly-Lys-Lys-Gln-Arg-Phe-
His-Ser-Trp-Gly-amide, and is encoded by the gene pp
(Terhzaz et al. 1999). The leucokinin receptor Lkr (Radford
et al. 2002) is found in several tissues, but at particularly high
levels in just the tubule stellate cells (Figure 1F), a pattern
observed in other Diptera (Radford et al. 2004; Lu et al.
2011). It acts through intracellular calcium (Radford et al.
2002) to rapidly activate the chloride shunt conductance
(Figure 1F) (O’Donnell et al. 1996), and so restore electro-
neutrality in the tubule lumen. Although the mechanism of
calcium activation is not yet known, the targets are the baso-
lateral chloride channel Clc-a (Cabrero et al. 2014) and the

Table 1 Validation of genetic domains by mapping of functional properties in the Malpighian tubule

Function Tubule region Reference

Fluid secretion Main segment O’Donnell and Maddrell (1995)
Fluid reabsorption Lower tubule O’Donnell and Maddrell (1995)
Rapid calcium excretion Initial segment of anterior tubules K. A. Dube et al. (2000), Terhzaz et al. (2005)
Alkaline phosphatase Lower tubule Sözen et al. (1997)
Ion transport by V-ATPase Main segment principal cells Sözen et al. (1997)
Chloride shunt conductance through channels Stellate cells Cabrero et al. (2014), Feingold et al. (2019)
a-HRP binding (surrogate for neuronal

isoform of Na+, K+ ATPase)
Tiny cells Sözen et al. (1997)

Receptors for kinin neuropeptide Stellate cells Radford et al. (2002)
Calcium-mediated signaling by Capa neuropeptide Principal cells Rosay et al. (1997)
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apical SecCl channel (Feingold et al. 2019). Tyr is a biogenic
amine that has been shown to act to stimulate chloride flux
through stellate cells (Figure 1F) (Blumenthal 2003). This
signal, although carried through a different receptor, appears
functionally indistinguishable from that of kinin (Cabrero
et al. 2013). However, Tyr can be produced by tyrosine decar-
boxylase in neighboring principal cells, suggesting a possibil-
ity for cross-talk between the two cell types (Blumenthal
2009).

As a functional analog of the renal system, and with the
role of maintaining ionic and osmotic homeostasis, it is not
surprising that the tubule expresses many genes identified
as receptors (Wang et al. 2004). However, in addition to
the familiar G protein–coupled receptors, the tubule also
expresses several receptor guanylate cyclases, which act
directly to raise cGMP. One of these, Gyc76C, was deor-
phaned by showing that it was a receptor for the novel
neuropeptide NPLP1-VQQ, encoded on the Nplp1 gene
(Overend et al. 2012). The neuropeptide signaling path-
way was shown to modulate innate immunity in the tubule
(discussed below) in response to salt stress (Overend et al.
2012).

As well as these extensively researched molecules, there is
evidence that the tubule receives amultiplicity of signals from
the rest of the insect. In a meta-analysis of the tubule tran-
scriptome, enriched expression was detected for several G
protein–coupled receptors with ligands not previously de-
scribed in tubule function (Chintapalli et al. 2012). For ex-
ample, both neuropeptide F and short neuropeptide F were
shown to have modest but significant effects on tubule sig-
naling. Although the role of these signals is not known, both
neuropeptides have been implicated inmultiple roles, such as
feeding and stress (Nässel and Wegener 2011), so it is quite
reasonable that the tubule should receive information about
such significant events. Surprisingly, high levels of sex-peptide
receptor were found in male tubules (Chintapalli et al. 2012);
although sex peptide is transferred to the female during cop-
ulation, it emerges that the sex-peptide receptor is actually a
better receptor for myoinhibitory peptide/allatostatin B (Kim
et al. 2010). It is thus reasonable that the tubule is receiving
signals from the latter peptide, associated for example with
satiety or ecdysis (Lange et al. 2012).

Although ligand-mediated signaling in stellate cells so far
has operated only through calcium, it appears that the tubule
uses each of the secondmessengers cAMP, cGMP, and calcium
in both cell types. By ectopically expressing receptors for
ligands that do not normally affect tubules (serotonin and
natriuretic peptide A), it was possible to elevate and monitor
cAMP, cGMP, and calcium in principal and stellate cells
separately, and further to show that in each case, fluid secre-
tion was significantly elevated (Kerr et al. 2004). These re-
sults are consistent with what is already known in principal
cells; cAMP is invoked by DH31 and DH44, whereas Capa
acts through calcium and cGMP (Figure 1F). However, in
stellate cells, only calcium has been implicated in Kinin and
Tyr signaling so far, suggesting that signaling pathways that
employ cyclic nucleotides in these cells have yet to be
discovered.

The epithelial cells of the ureter show the classic structural
adaptations required for transport, with apical microvilli and
basal membrane infoldings both in close association with
mitochondria (Wessing and Eichelberg 1978). However, it
is also surrounded by longitudinal and circular muscle, and
is visibly contractile; it can thus be considered to act as an
analog of the bladder. Pigment-dispersing factor (PDF), a
neuropeptide that modulates the circadian clock (Yoshii
et al. 2009), alters the rate of contraction of the ureter, al-
though PDF neurons do not directly innervate the ureter,
suggesting a gut/tubule communication (Talsma et al. 2012).
In showing both central and visceral roles, PDF shares many
commonalities with mammalian vasoactive intestinal peptide
(Talsma et al. 2012).

Other roles for the tubule: The tubules ramify throughout
the body cavity, and their excretory nature exposes them to
blood-borne molecules that might provide early warning of
problems. Given that there are not enough insect tissues to
map 1:1 with mammalian organs, it is not surprising that the
tubule might play roles additional to ion transport and solute
excretion. Two of these are innate immunity and xenobiotic
defense; that is, the tubule shows some properties associated
with the immune system (Buchon et al. 2014) and liver.

Innate immunity: Theobservation that the tubuleemployed
nitric oxide signaling (something also involved in immune

Table 2 Some useful GAL4 drivers for the Malpighian tubule

Line Region Associated with Reference

c42 Principal cells of main and lower
tubule (also bar-shaped cells)

? Rosay et al. (1997)

uro-GAL4 Main segment principal cells of
only third instar and adult

Synthetic construct with
Urate oxidase control region

Terhzaz et al. (2010)

capaR-GAL4 Main segment principal cells Synthetic construct with Capa receptor
control region

Terhzaz et al. (2012)

c710 Stellate cells Teashirt Sözen et al. (1997)
c724 Stellate cells Teashirt Sözen et al. (1997)
Clc-a-GAL4 Stellate cells Synthetic construct with Clc-a control region Cabrero et al. (2014)
C649 Bar-shaped cells ? Sözen et al. (1997)
c507 Lower tubule cells Alk4 Sözen et al. (1997)
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response; Nappi et al. 2000) suggested a possible role for
tubules in detecting and signaling, or even directly defending
against, bacterial pathogens. In fact, the tubule contains a
complete innate immune response pathway (McGettigan
et al. 2005). Bacterial invasion is detected by PGRP-LC
(Kaneko et al. 2006), which signals through the Imd pathway
to elevate levels of the antimicrobial peptide diptericin to
levels that are sufficient to kill bacteria. Overexpression of
nitric oxide synthase in tubules also elevates Diptericin levels
(McGettigan et al. 2005). Diptericin is not the only antimi-
crobial peptidewith gene expression in the tubule; significant
expression of attacin, Metchninikowin, and Drosomycin is also
found (Chintapalli et al. 2012).

Detoxification: The insect excretory systemmust be capable
of handling, not just predictably toxic molecules, but also
those that it might not have experienced previously, such as
insecticides. High expression rates of ABC transporters, such
as the multidrug resistance transporter, in tubule has been
documented (Wang et al. 2004), as has the tubule’s func-
tional role in excretion of unfamiliar molecules (Chahine
et al. 2012). FlyAtlas reports that the tubule also expresses
high levels of detoxifying enzymes of the cytochrome P450
and glutathione S-transferase families (Yang et al. 2007).
One such abundantly expressed gene, Cyp6g1, has been im-
plicated in resistance to the insecticide DDT (Daborn et al.
2002). When Cyp6g1 levels were downregulated in just tu-
bule principal cells, the whole fly showed increased sensitiv-
ity to DDT; when similarly overexpressed, the fly shows
increased resistance. In the adult fly, then, the tissue with
the highest expression of Cyp6g1—the tubules—plays a key
and limiting role in xenobiotic defense.

Circadian regulation: Like humans, insect activity varies
over the course of a day. The human kidney shows diurnal
variation in urine production (strictly “diuresis” refers to day-
time urination) and it is reasonable that insect renal function
might show similar variation. This could be slaved to the
central nervous system, in that the brain could exert neuro-
endocrine control over the tubule; however, the tubule
actually contains all elements of the circadian clock
(Giebultowicz and Hege 1997), which can operate autono-
mously in vitro in isolation from the fly (Giebultowicz et al.
2000). In fact, in adult flies, one clock-associated gene
(cryptochrome) shows the highest expression in tubule
(Chintapalli et al. 2007). It is thus likely that the tubule
maintains its own time, to optimize its function in antici-
pation of the insect’s needs over a day.

Hindgut physiology

The pylorus: an intestinal gatekeeper and immune signaling
hub: As first described by classic entomologists (e.g.,
Snodgrass 1935), the hindgut of many insects (including
Drosophila) consists of three major regions, termed the pylo-
rus, ileum, and rectum (Figure 1B). Each region contains a
single layer of distinctly different epithelial cell types that
contact the intestinal lumen, which are surrounded by circu-
lar muscle fibers (Figure 1E) (Hartenstein 2005). Much like

the human ileocecal valve connecting the small and large
intestines, the pylorus functions as a contractile sphincter
(Snodgrass 1935; Vanderveken and O’Donnell 2014) that
connects the midgut and hindgut. Contraction of the pylorus
is controlled by the hindgut-expressed neuropeptide procto-
lin (Johnson et al. 2003; Miguel-Aliaga and Thor 2004;
Vanderveken and O’Donnell 2014). Important neuronal/
gut interactions likely occur in this intestinal region, as com-
pared to other parts of the Drosophila intestinal tract, both
muscle and epithelial cells of the pylorus are heavily inner-
vated by sensory and efferent neurons from both the periph-
eral and central nervous system (Figure 1E, pyloric cells).
This innervation may enable the pylorus to function as an
intestinal checkpoint for further passage of gut contents
(Brogiolo et al. 2001; Miguel-Aliaga and Thor 2004;
Miguel-Aliaga et al. 2008; Cognigni et al. 2011). These con-
tents include the primary urine from the Malpighian tubules,
which empties into the intestinal lumen just anterior to the
midgut/pyloric junction (Figure 1B). Perhaps as a conse-
quence of changing intestinal contents, the gut increases in
acidity at this junction (Cognigni et al. 2011). The transition
from the posterior midgut epithelium to the hindgut pyloric
epithelium is noticed ultrastructurally by the absence of api-
cal microvilli projecting into the lumen. Instead, cells of the
hindgut pyloric epithelium contact the lumen through an
electron-dense chitinous layer (Murakami and Shiotsuki
2001; Sawyer et al. 2017). Pyloric epithelial cells are diploid
and much smaller than the polyploid epithelial cells of other
posterior segments of the hindgut and contain few striking
intracellular ultrastructural features (Figure 1E, pyloric cells)
(Murakami and Shiotsuki 2001; Fox and Spradling 2009; Fox
et al. 2010; Sawyer et al. 2017). However, as the pylorus
progresses from the anterior, midgut-facing side to the pos-
terior, ileum-facing side, distinct domains of gene expression
are observed (Murakami et al. 1994; Takashima et al. 2008,
2013; Fox and Spradling 2009; Sawyer et al. 2017; Tian et al.
2018, 2019) The function of each gene expression domain
remains to be fully determined; however, as discussed in the
Hindgut injury and repair: whole-scale organ regeneration
and repair by polyploidy section, the anterior-most pyloric
cells engage in interorgan communication with the midgut
and may be especially important in maintaining the midgut/
hindgut boundary following pyloric injury.

In addition to functioning as an intestinal valve, the pylo-
rus is also an important zone of interaction between the
Drosophila host environment and its microbiota, both symbi-
otic and pathogenic. A recent FlyBook chapter (Miguel-Aliaga
et al. 2018) reviewed recent progress on Drosophila intestinal
microbiota. In-depth examination of hindgut-specific mi-
crobe interactions remains to be performed. However, it is
worth noting that the cuticle of the pyloric region of several
insects and related diplopods contains cuticular microspines,
which are thought to serve as sites of enriched microbial
communities within the intestinal tract (Elzinga 1998;
Nardi et al. 2006; X. Wang et al. 2018). The pylorus is also
an immune signaling hub in the insect gut. Production of the
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pigment melanin is a major component of the insect innate
immune response (Wu et al. 2016). p38 MAPK signaling may
act as a first line of Drosophila hindgut defense to pathogenic
bacteria, whereas melanization, mediated in part by JNK sig-
naling, may act as a second line of defense in the absence of
p38 signaling (Chen et al. 2010; Seisenbacher et al. 2011).
Evidence for the importance of melanin in hindgut immunity
comes from both Drosophila and other insects. Following
feeding of silkworms with pathogenic bacteria, prophenolox-
idase, a component of the melanization process, is activated
specifically in the feces when passing through the hindgut
pylorus (Shao et al. 2012). Honeybees infected with a path-
ogenic bacterium exhibit melanin scar formation in the
pylorus (Engel et al. 2015). Further, feeding Drosophila, silk-
worms, or cotton bollworms with toxic plant phenolic com-
pounds activates a melanization response in the hindgut.
This pyloric melanization response is thought to be a last
chance for the infected host to clear bacteria or toxic sub-
stances before excretion (Shao et al. 2012; K. Wu et al.
2015). The Drosophila hindgut, and the pylorus in particular,
is also prone to melanization following genetic alterations in
immune responses, cell signaling, or cell cycling (Reed and
Orr-Weaver 1997; Takashima et al. 2008; Chen et al. 2010;
Seisenbacher et al. 2011; Pan and Jin 2014). The accumula-
tion of microbes and acute immune sensitivity of the pylorus
argue that this hindgut region may be an ideal location for
future exploration of gut immunity mechanisms.

The ileum and rectum: critical sites of reabsorption: Reab-
sorption is critical in animals with a high surface-to-volume
ratio, such as Drosophila. The hindgut is the last chance for
water and nutrient recycling to the hemolymph following
primary urine formation in the Malpighian tubules (Nation
2015). In the hindgut, reabsorption occurs in the ileum and
rectum. Following the pylorus, the majority of the anterior-
posterior length of the Drosophila hindgut is made up of the
ileum. The epithelium of the ileum is a single layer of large
polyploid enterocytes, which are 64C in the larva and 8C in
the adult (Fox and Spradling 2009). Underneath an apical
cuticle, these enterocytes contain long, microvillar-like, api-
cal plasma membrane infoldings that are closely associated
with mitochondria (Murakami and Shiotsuki 2001) (Figure
1E, ileum cells). These infoldings are important for increasing
surface area available for reabsorption, and are found in
other insects such as ants (Villaro et al. 1999). In the ileum
and rectum, selective reabsorption or secretion occurs to
maintain ion and water homeostasis. Major resorbed ions
include Na+, Cl2, and K+ (Figure 1G).

Reabsorption in the ileum isahighly regulatedprocess. The
larval Drosophila ileum exhibits phenotypic plasticity in re-
sponse to dietary salt stress, as dietary increases in NaCl con-
centration cause the epithelium of the ileum to switch from
absorbing Na+ to secreting it (Naikkhwah and O’Donnell
2012). Studies in the desert locust established that ion reab-
sorption in the ileum is under antidiuretic hormonal con-
trol, principally by the Cl2 transporting neuropeptide ion

transport peptide (ITP; Audsley et al. 1992; Meredith et al.
1996). Drosophila contains a single ITP gene, and ITP-
expressing neurons from the abdominal ganglia innervate
the hindgut (Dircksen et al. 2008). Drosophila adults lacking
ITP function exhibit a diarrhea-like phenotype, with a dysre-
gulated pace of transit of food through the digestive tract. ITP
also regulates thirst, appetite, and water storage, providing a
functional analog of the human vasopressin and renin-angio-
tensin systems (Gáliková et al. 2018). In addition to hormone
control, transporters are obviously key to hindgut reabsorp-
tion function. The solute carrier 6A family transporter
inebriated (ine) is expressed in the basolateral membrane of
cells in the adultDrosophila ileum, where it colocalizes with a
subunit of the Na+/K+ ATPase. Ine is critical for systemic
water homeostasis under conditions of high dietary Na+ or
K+ (Luan et al. 2015). In addition to ion transport, water
transport is also a critical component to reabsorption. Both
humans and flies contain aquaporin water channels
(Kaufmann et al. 2005). Several aquaporin family genes are
expressed highly in the hindgut, especially the classical water
channels Drip and Prip (Chintapalli et al. 2013).

The rectum is the final site of reabsorption, and the site of
some of the most elaborate cell membrane networks docu-
mented anywhere in nature. To aid in efficient recycling of
contents to the hemolymph, Drosophila and other dipterans
contain elaborate epithelial infoldings known as rectal papil-
lae, also referred to as rectal pads or rectal glands. These
prominent intestinal structures were first described in hon-
eybees in 1737 (Swammerdam 1737). While sexually dimor-
phic in species with highly specialized, sex-specific dietary
needs such as mosquitos (Hopkins 1967), both male and
female adult Drosophila contain four cone-shaped papillae,
which project into the intestinal lumen from defined points in
the bulbous rectum (Bodenstein 1950). A conserved rectal
papillar ultrastructure has been well defined in Drosophila
and other insects, including mosquitos, ants, and the blowfly
(Figure 1E, rectal papillar cells) (Gupta and Berridge 1966;
Berridge and Gupta 1967; Hopkins 1967; Wigglesworth
1972; Wessing and Eichelberg 1973; Garayoa et al. 1999;
Chapman 2012; Nation 2015). While the apical surface of
each papillar enterocyte contacts the intestinal lumen, the
basal side organizes around a central canal, which directly
contacts the hemolymph (Figure 1E, rectal papillar cells, Fig-
ure 1G). The central canal is rich in tracheal structures with
branches that directly insert into papillar enterocytes, imply-
ing a high demand for oxygen. Similar to enterocytes of the
adult ileum, Drosophila rectal papillar enterocytes are poly-
ploid, at 8C or 16C (Fox et al. 2010). Papillar enterocytes are
also similar to those of the ileum in that they contain an apical
cuticle, which covers elaborate internal microvillar-like pro-
jections. But unlike enterocytes of the ileum, insect papillar
enterocytes display heavily folded regions of lateral mem-
brane stacks with tightly associated mitochondria. These
stacks are thought to greatly increase basolateral membrane
surface area available for ion transporter localization and
function, with the neighboring mitochondria providing
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energy for active ion transport. Ions destined for reabsorption
into the hemolymph would then be absorbed from the intes-
tinal lumen, and then transported through the papillar mem-
brane stacks into an intermembrane space that ultimately
leads to the central canal and hemolymph (Gupta and
Berridge 1966; Berridge and Gupta 1967; Hopkins 1967;
Wessing and Eichelberg 1973; Garayoa et al. 1999; Nation
2015) (Figure 1, B and E, rectal papillar cells, Figure 1G).
From this torturous membrane architecture, which vastly in-
creases membrane surface area, it is clear that insect rectal
papillae are structures shaped by evolution to be highly effi-
cient resorptive structures.

The importance of Drosophila rectal papillae in regulation
of organismal ion balance can be underscored by the fact that
adult flies with malformed papillae (but no other anatomical
defects) die upon feeding a high NaCl diet, while control flies
are completely tolerant (Schoenfelder et al. 2014). The
Drosophila rectum also reabsorbs K+ to a greater extent than
the ileum (Yerushalmi et al. 2018). Based on work in other
insects such as mosquitos and midges, the Na+/K+ ATPase
(known as P-ATPase) and V-ATPase are required for K+ trans-
port in the rectum (Figure 1G). In these species, P-ATPase
localizes to papillar enterocyte basolateral membranes, while
the V-ATPase is found in both cytoplasmic and apical mem-
brane regions (Patrick et al. 2006; Jonusaite et al. 2013).
Along with the pylorus, the rectum is one of the most highly
innervated regions of the Drosophila intestinal tract. Both the
papillae and the rectal musculature are innervated (Cognigni
et al. 2011). A subset of these neurons are insulin-producing,
suggesting cross-talk between metabolic signaling and hind-
gut function (Miguel-Aliaga et al. 2008). Innervation also
plays a role in the final step of excretion following reabsorp-
tion, defecation, which in larvae occurs in a stereotypical
behavior and is regulated by the TRP channel NOMPC in
a single mechanosensitive sensory neuron in the anal slit
(Zhang et al. 2014). Going forward, the extensive interac-
tions between the nervous system and the muscles and epi-
thelia of the hindgut argue that the hindgut is an essential
model in Drosophila for enteric nervous system study. Given
the genetic strengths, relatively simple anatomy, and acces-
sible assays for function such as live observation of food
passage and hindgut contractions (Cognigni et al. 2011;
Vanderveken and O’Donnell 2014; Zhang et al. 2014), excre-
tion in the Drosophila hindgut may provide an accessible
model for human enteric nerve conditions such as Hirsch-
sprung’s disease.

Unlike in the adult, the tubular larval Drosophila rectum
does not contain obvious structures that are adapted for
absorption (Murakami and Shiotsuki 2001). However, just
posterior to this region are two papillae-like anal pad struc-
tures containing cells with structural features of absorptive
cells (Jarial 1987). Anal pad morphology is noticeably al-
tered under conditions of altered salinity (Jarial 1987;
Keyser et al. 2007). Mutant larvae of the Drosophila homo-
log of the human nuclear receptor nuclear factor of acti-
vated T cells are sensitive to a high-salt diet and have

enlarged anal pads in hypotonic solution (Keyser et al.
2007). As discussed below, the larval rectum plays a critical
role in adult hindgut development and is a source of chro-
mosomally unstable cell divisions similar to those seen in
human cancers.

Development

Malpighian tubule development

Overview of development: The formation of the tubules is
intertwined with that of the hindgut (Figure 2), which is
described in the following section. Formed as pouches at
the tip of the proctodeal invagination during gastrulation,
the tubules are mainly ectodermal in origin, but with extra
added mesenchyme late in embryonic development. Un-
usually for a Drosophila tissue, and in contrast to the rest
of the hindgut, the tubule of the newly hatched insect is
maintained for life, without extensive remodeling through
pupation. There are further reviews available on tubule de-
velopment (Jung et al. 2005; Beyenbach et al. 2010;
Denholm 2013).

Specification: Specification (Figure 2A)marks out groups of
cells that will in the future take on a particular role, in
advance of visible differentiation of a tissue. In gastrulation,
the ectodermal foregut and hindgut invaginate and join
with the endodermal future midgut to form a single tube.
The future tubule cells are ectodermally derived at the junc-
tion of midgut and hindgut (Hartenstein 1993). Although
the future tubule is ectodermal, the midgut is necessary for
the specification; in mutants for huckebein and serpent,
where the midgut fails to develop (Bronner and Jackle
1991; Abel et al. 1993), tubules fail to be specified
(Ainsworth et al. 2000). The nature of the signal from the
midgut is not yet known. The gap gene and transcription
factor Kruppel (Kr) is broadly expressed in the hindgut, and
is also necessary for tubule specification, as tubules fail to
form in Kr mutants (Gloor 1950). Hatton-Ellis et al. (2007)
took the formation of uric acid crystals as diagnostic of dif-
ferentiated tubule function, and showed that Kr and its
target, the homeodomain protein Cut, interact to specify
tubule identity. Kr initially shows broad expression, which
is refined within the hindgut by the action of Forkhead,
Tailless and Wingless (Wg), to a group of cells that subse-
quently express cut (Gaul and Weigel 1990). Although
tubules fail to form in Kr mutants, there is evidence of
differentiated clusters of cells in the anterior hindgut and
the formation of uric acid crystals (Hatton-Ellis et al. 2007);
the Kr defect is thus of eversion, not specification. By con-
trast, in Kr/cut double mutants, no crystals of uric acid form
in the hindgut, whereas ectopic expression of cut in the Kr-
expressing foregut is sufficient to generate uric acid crystals
there (Hatton-Ellis et al. 2007). Kr/Cut cooperation thus
suffices to specify a future tubule identity (Liu and Jack
1992).
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Eversion: As Kr-expressing cells resolve into four clusters,
they start to rearrange into buds. The ventral pair of buds,
marked by brinker, project posteriorly toward the caudal me-
soderm and become the posterior tubules, while the lateral
pair, marked by Dorsocross, ramify anteriorly and become the
anterior tubules. The characteristic lateral asymmetry of the
tubules is thus specified early as a dorsoventral pattern under
control of Decapentaplegic (Dpp); subsequent rotation of the
gut means that the anterior pair is always found on the right,
and the posterior pair on the left. This asymmetry persists
throughout the life of the animal, both morphologically
(the anterior tubules have an extended initial segment;
Wessing and Eichelberg 1978) and functionally (anterior
and posterior tubules show overlapping but distinct patterns
of gene expression; Chintapalli et al. 2012).

Division: After cellularization, the tubule/hindgut anlage
undergoes a synchronous division. A second division is con-
fined to the tubules, and a third to just a subset of tubule cells,

requiring Wg (Skaer and Martinez-Arias 1992). These divi-
sions produce only about half the cell count required for a
tubule. Further division requires the emergence of the tip cell
(Figure 2B, stages 11 and 12), which then directs mitosis
through the action of EGF-like Spitz (Sudarsan et al. 2002).

The allocation of the tip cell is a classic story of multiple
signals and lateral inhibition. Initially, a cluster of �6 cells in
each tubule start to express proneural genes such as achaete
(Hoch et al. 1994).The pattern is refined to a single cell (the
tip mother cell) in each cluster by lateral inhibition through
the action of Delta on its receptor Notch. This cell then di-
vides to form the tip cell and its sibling, which start to express
the EGF family regulators rhomboid and Star, allowing them
to secrete Spitz (Kerber et al. 1998). Meanwhile, the remain-
ing cells express the EGF receptor, and are so able to respond
by dividing. One might predict that the tip cell is essential for
the later divisions, and this is the case; if the tip cell fails to
form through interference with the neurogenic gene cascade
(Hoch et al. 1994), or by ablation (Skaer 1989) of the tip cell

Figure 2 Overview of Malpighian tubule and hindgut development. Major cell types (indicated in the key) and developmental events are diagrammed in
the embryo (A–C), wandering third instar larva (C), pupa (D), and adult (D). Individual substages are indicated in each panel. For the embryo panels, an
entire embryo is shown for reference, while only tissues of interest are shown for the remaining stages. Anterior is to the left in all panels. Tubule
diagrams are adapted from Beyenbach et al. (2010).
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progenitor, then the tubule develops with about half the nor-
mal number of cells.

The tip cell and its sibling are not equivalent: although they
divide from a common progenitor cell, one receives more
Numb protein than the other (Wan et al. 2000). As in neuro-
nal development, Numb inhibits the action of Notch (Spana
and Doe 1996), and so this cell becomes the tip cell. As pre-
dicted, in numb mutants, two nontip daughter cells differen-
tiate, and in numb-overexpressing animals, two tip cells are
generated (Wan et al. 2000). Interestingly, the final tubule
cell number in both cases is wild type, suggesting that both
the tip cell and its sibling are capable of secreting Spitz to
trigger mitosis in the neighboring cells (Wan et al. 2000).
However, despite equivalence in function in controlling mi-
tosis, the tip cell and its sibling must both be present for the
tubules to find their correct final positions in the body, and
tend to remain clumped together (Ainsworth et al. 2000;
Weavers and Skaer 2013, 2014). A similar loss-of-direction
phenotype has been seen in mutants for myoblast city, which
is homologous to Caenorhabditis elegans CED-5, which en-
codes a regulator of the small GTPase Rac, which directs
the migration of the gonad within the body. There is thus a
hierarchy of permissions to undergo mitosis, which helps to
provide robustness in cell number and organization
(Sudarsan et al. 2002). After division is complete, there are
1446 10 cells in the anterior pair of tubules, and 1036 8 in
the posterior pair (Skaer and Martinez-Arias 1992).

Arrival of the stellate cells: By stage 13, division is complete.
Meanwhile, a group of migratory caudal visceral mesoderm
cells have set out on a journey, and arrive at the tubules,
intercalate between the ectodermal cells, and undergo a
mesenchymal-to-epithelial transition and characteristically
express the nephrin ortholog hibris and the transcription fac-
tor teashirt, so establishing the stellate cell population (Fig-
ure 2B, stage 13) (Denholm et al. 2003; Campbell et al.
2010). The mature stellate cell is apicobasally polarized,
and it takes its apicobasal cues from its neighboring principal
cells (Campbell et al. 2010).

Elongation: By the end of division, the tubules are short and
stubby. Between stages 13–16, they then undergo a phase of
elongation by cell rearrangement through a convergent-
extension process requiring multiple genes (Figure 2B, stages
13 and 16) (Jack and Myette 1999). This process of tubular
elongation is seen in other systems, such as the salivary gland
and trachea. In mutants for the Rho-GAP crossveinless, elon-
gation fails completely (Denholm et al. 2005). Ribbon and
Raw regulate cytoskeletal changes; myosin II (the heavy
chain encoded by zipper) accumulates at the basolateral side
of the tubule cells and causes that surface to produce pulsatile
shortening, so causing cells to slide over one another, and
producing a long, thin tubule (Saxena et al. 2014). Mutations
in any of ribbon, raw, or zipper produce an elongation phe-
notype similar to crossveinless. The distal-to-proximal gradi-
ent of EGF signaling from the tip cell conveys the necessary

planar polarity information without the involvement of tra-
ditional planar cell polarity genes (Saxena et al. 2014).

Themechanismof rearrangement isnot completely clear; it
must involve dissolution and reformation of cell junctions.
Additionally an extracellular matrix has been deposited baso-
laterally by hemocytes in response to vascular endothelial
growth factor/platelet-derived growth factor–related ligands
from the tubule cells by the time of elongation, and there is
evidence for lamellipodial ruffles in the cells as they move,
suggesting a crawling mechanism (Bunt et al. 2010).

Organ positioning: Theelongationprocess produces a tubule
of the familiar shape, but itmust alsobepositioned correctly in
the body. The left tubules always ramify posteriorly and the
right ones anteriorly, but this apparent left-right asymmetry is
caused by a rotation of the gut: the tubules originate dorso-
ventrally, andwhen thegut rotates, thedorsal pair become the
right-hand pair. As the anterior pair move forward, they de-
velop a bend, or kink, approximately at the site of the future
transitional segment, and this kink region draws the tubules
toward the head (Bunt et al. 2010). This stereotyped move-
ment depends on being able to read guidepost signals of TGF-
b/Dpp, in turn from the dorsal epidermis, the midgut visceral
mesoderm, and the gastric caeca; mutations in dpp or its re-
ceptor cause abnormal positioning (Bunt et al. 2010). Simi-
larly, ectopic expression of dpp causes the tubules to misroute
(Bunt et al. 2010). Meanwhile, the posterior tubule moves
backward, and tubule positioning is complete when the tip
cells of the anterior tubules have made contact with the alary
muscles of the heart, and those of the posterior tubule with a
hindgut visceral nerve (Denholm 2013; Weavers and Skaer
2013).

Development of functional competence and subsequent
function: By the time the insect hatches, the tubules contain
their first crystals of uric acid (Figure 3B). This is a metabolic
byproduct of purine catabolism (Dow 2012), and so implies
apicobasal polarity, with basal transporters for purines, cor-
rect assembly of the 13-subunit V-ATPase (Allan et al. 2005)
on newly formed microvilli, and an apical transporter for
urate. In mutants for any subunit of the plasma membrane
isoform of the V-ATPase, the larvae fail to thrive, and lack of
functional ATPase fails to acidify the lumen and so precipitate
uric acid (Davies et al. 1996; Allan et al. 2005). This compe-
tence continues throughout larval life; however, in the pupae,
the apical microvilli disappear and transport function is lost,
only reappearing as the adult prepares to emerge (Halberg
et al. 2016). The maintenance of the microvilli depends on
the famous neuronal developmental gene and cell adhesion
molecule, fasciclin 2 (fas2): in fas2 knockdowns, the micro-
villi are shorter, and in fas2 overexpressors, they are longer.
Transport function is proportional to microvillar length
(Halberg et al. 2016). Critically and unusually, however, the
cell numbers laid down in the embryo appear not to change
throughout life (Sözen et al. 1997); although the tubules
change shape somewhat, and physically grow throughout

The Drosophila Excretory System 245

https://identifiers.org/bioentitylink/FB:FBgn0002973?doi=10.1534/genetics.119.302289
https://identifiers.org/bioentitylink/FB:FBgn0002973?doi=10.1534/genetics.119.302289
https://identifiers.org/bioentitylink/FB:FBgn0029082?doi=10.1534/genetics.119.302289
https://identifiers.org/bioentitylink/FB:FBgn0003866?doi=10.1534/genetics.119.302289
https://identifiers.org/bioentitylink/FB:FBgn0000394?doi=10.1534/genetics.119.302289
https://identifiers.org/bioentitylink/FB:FBgn0265434?doi=10.1534/genetics.119.302289
https://identifiers.org/bioentitylink/FB:FBgn0003254?doi=10.1534/genetics.119.302289
https://identifiers.org/bioentitylink/FB:FBgn0003209?doi=10.1534/genetics.119.302289
https://identifiers.org/bioentitylink/FB:FBgn0265434?doi=10.1534/genetics.119.302289
https://identifiers.org/bioentitylink/FB:FBgn0000394?doi=10.1534/genetics.119.302289
https://identifiers.org/bioentitylink/FB:FBgn0000490?doi=10.1534/genetics.119.302289
https://identifiers.org/bioentitylink/FB:FBgn0000490?doi=10.1534/genetics.119.302289


the life of the animal, this is by an increase in cell size,
reflected by a steady increase in ploidy, and not by cell di-
vision. This is despite the presence of cells in the lower tubule
identified as stem cells (Singh et al. 2007).

Stem cells occupy the lower tubule/ureter domains dur-
ing metamorphosis. Although they are not thought to move
further into the tubule, respecting the main segment/lower
tubule boundary (Sözen et al. 1997), it is likely that they
participate in the formation of the adult ureter. The ne-
phritic stem cells derive from a population of adult midgut
progenitor cells (AMPs) in the posterior midgut that move
into the ureter during metamorphosis (Takashima et al.
2013), Overexpression of a dominant negative form of
Rac1 in the AMPs causes the absence of nephritic stem cells
in the ureter (Takashima et al. 2013). The future nephritic
stem cells appear to be selected by a combination of a steep
Wnt/Wg morphogen gradient, and a pulse of ecdysone hor-
mone (Xu et al. 2018). The transcription factor GATAe is
necessary for maintenance, differentiation and migration
of intestinal stem cells (ISCs; Takashima et al. 2013); how-
ever, it shows enriched expression in tubules (Wang et al.
2004), and plays further roles. Knockdown of expression of
the transcription factor GATAe in tubule principal cells
caused a tumorous overproliferation phenotype, while
knockdown in stellate cells affected physiological function
(Martínez-Corrales et al. 2019). GATAe in stem cells is also
necessary for correct migration to the ureter (Martínez-
Corrales et al. 2019). Stem cell maintenance further re-
quires the action of the transcription factor Shavenbaby,
post-translationally modified by Polished rice, to activate
Yorkie, an effector of the Hippo pathway, to prevent apopto-
sis (Bohère et al. 2018).

The anterior and posterior tubules are substantially similar
in their physiology, but nonetheless show significant differ-
ences in their transcriptomes, perhaps reflecting the roles
imposed by their differing location in the body (Chintapalli
et al. 2012). For example, calcium handling is very much a
function of the anterior tubules, perhaps reflecting the need
to mop up excess calcium as it is taken up by the midgut
(Chintapalli et al. 2012). The anterior tubules are also closely
apposed to midgut neuroendocrine cells that contain neu-
ropeptides to which the tubules are known to respond
(Veenstra 2009).

The tubules also differ significantly between males and
females, reflecting thedifferent physiological demandsplaced
upon them. For example, male and female tubules show
distinct patterns of expression of antimicrobial peptide genes
(Chintapalli et al. 2012).

Finally, although the tubule development has been told in
terms of the two main cell types, it is important to note that
enhancer trap mapping of domains in the tubule identifies six
domains and at least six cell types (Sözen et al. 1997), sug-
gesting that the development of this system is richer than we
have identified to date. For example, the main length of the
tubule can be divided into a secretory main segment and a
reabsorptive lower tubule; stellate cells are only found in the

former and tiny cells [the stem cells of Singh et al. (2007)]
are only in the latter (Sözen et al. 1997), so this domain
boundary must already be in place when the stellate cells
arrive and intercalate.

Hindgut development

Nobel physicist Arthur Leonard Schawlow once remarked,
“anything worth doing is worth doing twice.” Hindgut devel-
opment is exactly this way, as it is built during embryogenesis,
then mostly destroyed during metamorphosis and remade
from specialized imaginal progenitors. Both the larval and
adult hindgut contain similar overall cellular organization
and are organized into a pylorus, ileum, and rectum.We note
here that much of the literature on the embryonic Drosophila
hindgut instead refers to the pylorus as the small intestine
and the ileum as the large intestine. Given that this terminol-
ogy is not used in any other insect outside ofDrosophila, is not
commonly used in the adult hindgut literature, and the sim-
ilarity of stem cell–based renewal in the Drosophila midgut
and the human small intestine, we suggest that going for-
ward only the terms pylorus, ileum, and rectum are used in
theDrosophila hindgut field.Wewill use thesemore standard
terms here for uniformity of discussion.

Embryogenesis: building the larval hindgut: Rudimentary
gut structures appeared at the advent of multicellularity
(Stainier 2005). A highly conserved feature of gut structures
is the division into three major regions (foregut, midgut, and
hindgut). In insects, the foregut and hindgut are ectoder-
mally derived, while the midgut is endodermally derived.
The Drosophila embryonic hindgut forms from a group of
several hundred ectodermal cells in the posterior embryo,
called the proctodeal primordium. These cells are specified
by a well-defined cascade of gene expression changes down-
stream of the maternally supplied receptor tyrosine kinase
Torso, which include transcriptional and cell signaling regu-
lators (e.g., the homeodomain transcription factor Caudal/
Cdx, the transcription factor Forkhead/HNF-3, the T-box
transcription factor Brachyenteron/Brachyury, and the sig-
naling ligand Wg/Wnt) that play evolutionarily conserved
roles in gut development from C. elegans to sea urchin to
mouse (Weigel et al. 1989; St Johnston and Nüsslein-
Volhard 1992; Kispert et al. 1994; Hoch and Pankratz
1996; Wu and Lengyel 1998; Iwaki and Lengyel 2002). The
proctodeal primordium is internalized by involution after
posterior midgut invagination during gastrulation (Figure
2A) (Harbecke and Janning 1989; Skaer 1993; Campos-
Ortega and Hartenstein 1997). Involuted hindgut primordia
do not undergo an epithelial to mesenchymal transition, but
rather establish an apical/basal polarity while organizing into
an epithelial hindgut tube (Skaer 1993). Initial lumen and
hindgut tube expansion is regulated by the secreted glyco-
protein Tenectin, which functions to stretch the tube wall
(Syed et al. 2012). After embryonic germband extension,
the hindgut epithelium begins to gradually associate with
cells of the visceral mesoderm, which will later differentiate
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into the circular muscle fibers that surround the hindgut (Fig-
ure 2B, stages 12 and 13) (Bate 1993). Signaling from the
visceral mesoderm to the epithelial cells of the ileum, carried
out by the Slit/Roundabout (Robo) pathway, is critical for
proper length of microvillar-like structures in the differenti-
ating ileum epithelium (Soplop et al. 2012). Underscoring
the opinion of noted developmental biologist Lewis Wolpert
that gastrulation “is truly the most important time in your
life” (Wolpert and Vicente 2015), following this event cells
of the hindgut primordia have already found their position
within the embryo and have initiated regional differentiation.

Once the primordia is internalized, the hindgut begins to
resemble itsmature larval form.LocalizedJAK/STATsignaling
at the anterior hindgut is required for propermediolateral cell
elongation, which extends the newly formed tubular hindgut
(Johansen et al. 2003a). Patterned gene expression differ-
ences in the anterior/posterior axis begin to form the pylorus,
ileum, and rectum. Expression of cell signaling regulators is
distinct between these hindgut regions in the embryo and
have been reviewed previously (Skaer 1993; Lengyel and
Iwaki 2002). Briefly, at the boundary of the midgut and hind-
gut, a ring of the anterior-most cells of the pylorus expresses
the Wnt homolog wg (hereafter the Wg+ ring). This expres-
sion is maintained into the larva and adult (Takashima and
Murakami 2001; Takashima et al. 2008; Fox and Spradling
2009; Sawyer et al. 2017; Tian et al. 2019). The rest of the
pylorus expresses components of the JAK-Stat and Hedgehog
(Hh) pathways, an expression pattern that again is seen in the
adult hindgut (Takashima and Murakami 2001; Takashima
et al. 2008). The ileum is enriched in expression of the home-
odomain transcription factor engrailed and components of the
Dpp and Notch pathways, while the rectum expresses com-
ponents of the Hh and Notch pathways. Three transcriptional
regulators: the zinc finger proteins Drumstick and Bowl and
the nuclear protein Lines, control localization of such signal-
ing regulators, and mutants in these three regulators disrupt
regional hindgut patterning, especially in the pylorus and
ileum (Iwaki et al. 2001; Green et al. 2002; Johansen et al.
2003b; Hatini et al. 2005; Uddin et al. 2011). The human
bowl homolog ZKSCAN3 is a driver of colorectal cancer, sug-
gesting possible conserved links in molecular regulation of
the human/fly colon/hindgut that affect disease progression
(Yang et al. 2008a,b). The larval hindgut ileum is the only
portion of the Drosophila gut appreciated to exhibit dorsal/
ventral patterning. The dorsal (Engrailed+) and ventral
(Notch ligand Delta+) domains are separated by two rows
of boundary cells, which exhibit distinct cell polarity regula-
tion relative to neighboring enterocytes of the ileum
(Kumichel and Knust 2014). Specification of the dorsal and
ventral ileum and boundary cells is controlled by Notch sig-
naling (Fuss and Hoch 2002; Iwaki and Lengyel 2002;
Takashima et al. 2002), as well as two independent dorsal
and ventral gene regulatory systems (Hamaguchi et al.
2012). The ileum also further differentiates from the pylorus
and rectum by becoming the only embryonic hindgut region
to initiate ploidy- and cell size–increasing endocycles. These

cycles, which are programmed by Dpp signaling and tran-
scriptional regulation from the zinc finger proteins Knirps
and Knirps-like, expand the size of this gut region (Smith
and Orr-Weaver 1991; Fuss et al. 2001).

Recent progress on the embryonic hindgut highlights its
utility as amodel of the newly appreciated role of cell chirality
in development. As the hindgut elongates, it also undergoes a
stereotypic dextral looping relative to the established embry-
onic anterior/posterior axis (Figure 2B, stage 16, Figure 2C,
stages 16 and 17) (Hayashi et al. 2005). This looping reflects
the acquisition of left/right (L/R) asymmetry. The Drosophila
hindgut was the first system in which it was shown that chi-
rality at the level of cells drives L/R asymmetry (Taniguchi
et al. 2011). Just before rotation of the hindgut tube, hindgut
epithelial cells exhibit L/R asymmetry in their apical surface,
with leftward-tilting boundaries more frequent than right-
ward-tilting boundaries. Because the mirror three-dimen-
sional image of these cells cannot be superimposed, this
satisfies the definition of cell chirality (Inaki et al. 2018b).
This rightward-tilting morphology is reflected in polarized
localization of centrosomes, the adherens junction compo-
nent DE-Cadherin, and the Rho GTPase guanine exchange
factor Pebble (Taniguchi et al. 2011; Nakamura et al.
2013). Computer simulations, corroborated by live imaging,
suggest this tilted morphology facilitates chiral sliding during
hindgut looping (Inaki et al. 2018a). Critical to proper cur-
vature of the hindgut is JAK/Stat signaling, which asymmet-
rically activates the cell adhesion molecule FasIII, which
provides the appropriate level of tubular stiffness needed to
achieve the proper hindgut tube curvature (Wells et al.
2013). Directionality of cell tilting, and therefore gut looping,
is regulated by the class I myosin MyoID. MyoID mutants
exhibit hindgut looping, but in the opposite direction. Given
the colocalization of MyoID with the actin cytoskeleton in the
hindgut, and the similarity ofMyoIDmutant phenotypes with
dominant negative mutants in the actin-regulating Rho fam-
ily GTPases Rho, Rac, and Cdc42, it is likely that the actin
cytoskeleton plays a critical role in L/R hindgut asymmetry
(Hozumi et al. 2006; Spéder et al. 2006). Additional cell
chirality factors continue to be identified, including the tran-
scriptional regulator Extra MacroChaetae and its binding
partner Daughterless (Ishibashi et al. 2019). It will be inter-
esting to determine whether unique segments of the hindgut
drive looping. Another key question in this field regards what
molecules establish the earliest cellular symmetry break-
ing events. One early cue appears to be the Hox gene
Abdominal-B (Abd-B). Abd-B binds to regulatory sequences
of MyoID and controls its hindgut expression, and Abd-B
mutants exhibit no symmetry breaking (Coutelis et al.
2013). Going forward, further study of hindgut looping
hold promise to unravel the fascinating mechanisms of cell
chirality.

Cellular chirality is also appreciated to play a key role in
vertebrate development, and studies in both flies and ver-
tebrates are likely to inform future work. Chick embryonic
cardiac cells exhibit intrinsic cell chirality prior to looping,
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which ensures a dominant clockwise rotation. Like the
Drosophila hindgut, these cells exhibit polarized Cadherin
and Myosin molecules prior to cardiac looping (Ray et al.
2018). Further, it is known that L/R asymmetry in verte-
brates is dictated by the floor plate, an analogous embry-
onic landmark to the Drosophilamidline cells. Fly embryos
mutant for the midline regulator single minded exhibit
hindgut looping defects (Maeda et al. 2007). Future stud-
ies on this relatively newly appreciated yet clearly funda-
mental property will unveil new principles governing
organ morphogenesis.

Metamorphosis: developmental hindgut regeneration:
Holometabolic insect development frequently involves the
programmed histolysis of larval intestinal organs and their
reconstruction. These events take place during metamorpho-
sis (Robertson 1936). The Drosophila hindgut epithelium un-
dergoes such whole-scale organ remodeling, but in a manner
completely different from the neighboring midgut epithe-
lium. The midgut is remodeled by dispersed islands of AMPs
(Jiang and Edgar 2009; Mathur et al. 2010), whereas adult
hindgut progenitors reside at the far ends of the organ, both
anterior and posterior. Cells of the larval pylorus and larval
rectum are the only epithelial cells to survive metamorphosis
(Figure 2D). These two regions are the source of progenitors
of the adult hindgut epithelium, while the larval ileum and
anal pads do not persist into adulthood. The overlying hind-
gut musculature persists during this epithelial remodeling.

The larval pylorus expands significantly in cell number
between hatching and metamorphosis (Takashima et al.
2008; Fox and Spradling 2009; Yang and Deng 2018). The
initial phase of these divisions are under the control of Notch
signaling (Yang and Deng 2018). The larval pylorus is the
source of both the adult pylorus (which expands further in
cell number during metamorphosis), as well as the adult
ileum. While the pylorus remains diploid, the adult ileum
cells eventually endocycle to reach a ploidy of 8C (Fox and
Spradling 2009). Wg and Hh signaling are required during
metamorphosis for proper adult hindgut cell number and
morphology (Takashima et al. 2008), as is mitochondrial fu-
sion, mediated by conserved fusion regulators Opa1 and
MARF (Deng et al. 2018). MyoID again controls establish-
ment of L/R asymmetry and looping of the adult hindgut,
with the atypical cadherin Dachsous playing an important
role in oriented hindgut cell polarity in this process during
metamorphosis (González-Morales et al. 2015). Also during
metamorphosis, the pylorus remains in contact with the
remodeling midgut. Long-range Wg signaling at the mid-
gut/hindgut border, which acts in part through Dpp signal
activation, is important for epithelial cell fate establishment,
proliferation control, and proper muscle architecture
(Sawyer et al. 2017; Tian et al. 2019). Disruption of long-
range Wg signaling during adult hindgut development dis-
rupts a signature fold in the intestine at the midgut/hindgut
border (Tian et al. 2019). Gene expression at the midgut/
hindgut border is also highly dynamic during metamorpho-

sis, with some cells at the border exhibiting gene expression
markers that are normally specific to only one of the two
organs. Currently, it is unclear whether this dual marker ex-
pression reflects the trans-differentiation of some hindgut
cells into midgut cells, or whether cells originally expressing
only hindgut markers transiently adopt a hybrid midgut/
hindgut gene expression pattern (Takashima et al. 2013;
Sawyer et al. 2017). As the new adult pylorus and ileum
emerge from anterior proliferation in the pylorus, macro-
phages appear to engulf the dying larval ileum (Aghajanian
et al. 2016). During this whole-scale remodeling of the hind-
gut epithelium, the overlying visceral musculature remains
intact, leaving a sleeve-like scaffold within which the newly
forming adult hindgut epithelium develops. Ablation of the
visceral muscle disrupts the removal of the larval hindgut and
construction of the adult hindgut, underscoring important
muscle-epithelium cross-talk during this whole-scale organ
remodeling event (Aghajanian et al. 2016).

In parallel to pylorus and ileum development, during
metamorphosis the rectum is also undergoing significant
remodeling. Previously, it was suggested that the adult rectal
papillae are derived from the genital disc, which lies just
posterior to the larval rectum (Robertson 1936; Skaer 1993).
However, it was subsequently shown larval rectal cells un-
dergo Notch-dependent remodeling into adult papillae
during metamorphosis (Fox et al. 2010). Further, lineage
tracing with a genital disc promoter showed that these cells
do not contribute to the adult papillae, but instead form the
outer rectal sac, which envelopes the forming papillae (Fox
et al. 2010). Rectal papillar precursors (larval rectal cells)
undergo a highly distinctive cell-cycle program. During sec-
ond larval instar, these cells undergo a variant of endocycle
known as a premitotic endocycle (Schoenfelder et al. 2014).
This endocycle variant differs from that of many endocy-
cling tissues as it involves retention of centrosomes and
initiation of late-S phase sequences (Mahowald et al.
1979; Fox et al. 2010; Nordman and Orr-Weaver 2012;
Schoenfelder et al. 2014). During metamorphosis, the now
octoploid rectal cells undergo two rounds of polyploid mi-
tosis. This is currently the only known case where such di-
visions occur completely in flies, although subperineurial
glia of the larval brain initiate polyploid divisions but fail
cytokinesis (Unhavaithaya and Orr-Weaver 2012). Rectal
papillar cell division requires elimination of polytene chro-
mosome structure, which is a barrier to proper cell division.
Polytene separation occurs in a process known as Separa-
tion Into Recent Sisters, or SIRS (Stormo and Fox 2016). To
prepare for SIRS, papillar cells transiently eliminate cohe-
sins between sister chromatids during each round of the
premitotic endocycle (Stormo and Fox 2019). SIRS-like
processes are also described in the placenta of some mam-
mals, as well as in specific tumors or cells treated with an-
timitotic chemotherapeutic agents (Levan and Hauschka
1953; Zybina and Zybina 1996; Sumner 1998). While it
may seem laborious for papillar cells to build up polytene
chromosomes only to then separate them later, endocycles
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and polyploid mitosis are absolutely essential for rectal pap-
illar development and tolerance of a high-salt diet in adult
flies, underscoring the importance of papillar cell cycles to
adult hindgut physiology (Schoenfelder et al. 2014).

The adult hindgut: no constitutive or injury-induced
intestinal stem cells:When themidgut was shown to contain
adult stem cells (Micchelli and Perrimon 2006; Ohlstein and
Spradling 2006), it seemed possible that the neighboring
hindgut also contained such proliferating cells. Proof of adult
stem cell activity requires lineage marking techniques which
demonstrate the output of a single cell during adulthood.
Leakiness of clonal marking, which is a common technical
pitfall of lineage marking approaches (Fox et al. 2008), led
to the initial claim that the adult pylorus of the hindgut con-
tains constitutive adult stem cells that repopulate the entire
pylorus and ileum during adulthood (Takashima et al. 2008).
However, using nonleaky labeling systems, multiple groups
showed that there is no evidence of constitutive stem cell
activity in the adult hindgut (Fox and Spradling 2009;
Fernández-Hernández et al. 2013). Apoptotic injury to the
hindgut did induce mitotic activity in a region near the mid-
gut/hindgut border (Fox and Spradling 2009), but a defini-
tive lineage experiment remained to be performed to
determine if the adult hindgut contained reserve injury-
induced stem cell activity. When this experiment was
performed, along with a high-resolution analysis of the cell
population at the midgut/hindgut border, it was shown that
hindgut injury does induce cell division, but not in the hind-
gut. Instead, neighboring midgut organ boundary intestinal
stem cells (OB-ISCs) are induced to divide following hindgut
injury (Sawyer et al. 2017). It is now clear that the adult
Drosophila hindgut contains no stem cells and no proliferative
cells in either the uninjured or injured state. Therefore, the
term “hindgut proliferation zone/HPZ” can and should only
be used in reference to hindgut development, and the term
“hindgut intestinal stem cells/ISCs” should not be used. How-
ever, as discussed next, the hindgut is a valuable model for a
stem cell alternative repair process that is now appreciated to
occur frequently throughout nature, including in mammals.

Modeling Disease Processes

Modeling renal disease in the Malpighian tubules

Although there are significant differences in the origin and
function of Malpighian tubules and the mammalian neph-
ron, it is still possible to model a range of renal diseases in
Drosophila. This is because the two systems are functionally
analogous; they both generate and process a primary urine,
facilitating the maintenance of ionic and osmotic homeosta-
sis, while allowing the excretion of waste compounds. Addi-
tionally, there tends to be close sequence homology between
many Drosophila renal-enriched genes and their human
orthologs, because there are simply not many ways to build
a transport ATPase, exchanger, or channel.

Diseases of metabolism: One simple way to investigate
plausiblemodelsof renaldisease is to sorthumanrenaldisease
genes for enriched expression in Malpighian tubules (Wang
et al. 2004; Chintapalli et al. 2007). Conspicuous in such lists
is the gene for xanthine oxidase/dehydrogenase (XO), a single-
copy gene in both humans and flies, which when mutated in
humans causes the inborn error of metabolism, xanthinuria
type I (Dent and Philpot 1954; Ichida et al. 1997). Xanthine
oxidation is a necessary step in the catabolic pathway for
purines toward urate, allantoin and urea, and nulls for XO
cause the build-up of such high levels of hypoxanthine and
xanthine that it crystallizes in the kidney, forming stones. The
fly homolog is rosy, the second Drosophila mutant to be de-
scribed (after white). Remarkably, the same phenotype is ob-
served in Malpighian tubules; they become bloated as the
lower tubules are blocked with orange concretions, and the
null is considered semilethal (Glassman and Mitchell 1959;
Mitchell and Glassman 1959). Recent metabolomic analysis
of rosy mutants shows significant changes up to five metab-
olites away from the metabolic lesion, with large increases
in levels of hypoxanthine and xanthine, and undetectable
levels of the downstream metabolite, uric acid (Figure 3A)
(Hobani et al. 2009). This finding offers the possibility of
more detailed study, for example by pharmacology. Al-
though XO causes a loss of uric acid, metabolic excess of
urate causes ectopic crystals to form in the joints, a painful
condition known as gout. Although most cases are idio-
pathic, there can also be genetic causes (Kelley et al.
1967; Curto et al. 1998). Gout is treated with a simpler diet
(to lower purines) and with allopurinol, which phenocopies
the XO mutation by blocking the XO enzyme. Allopurinol
indeed has the corresponding action in Drosophila; addition
to the diet increases xanthine and hypoxanthine, and de-
creases urate and allantoin (Al Bratty et al. 2011). A number
of quantitative trait loci associated with gout have been
identified in humans(Cheng et al. 2004; Li et al. 2007;
Cummings et al. 2010; Matsuo et al. 2011; Lee et al.
2019), and it will also be interesting to see whether Drosophila
orthologs of these genes also play a role in maintaining fly
urate levels.

XO is one of a family of molybdoenzymes (including
aldehyde oxidase and sulfite oxidase) that depend on a
molybdenum-containing prosthetic group (Kamdar et al.
1994). It could be predicted that upstream genes in this syn-
thetic pathway would also produce xanthinuria-like symp-
toms, but would have a more severe phenotype because
othermolybdoenzymeswould also be affected. This is exactly
what is found: in humans, mutation of the upstream gene
molybdenum cofactor sulfurase produces xanthine stones,
but as a part of a more widespread disease, xanthinuria type
II (Ichida et al. 2001; Zannolli et al. 2003). This disease is also
a problem in cattle herds (Watanabe et al. 2000). The corre-
sponding Drosophila gene maroon-like also causes renal de-
fects and rosy-like eyes (Mitchell and Glassman 1959), and
metabolomics confirms a similar metabolic disruption (Kamleh
et al. 2009).
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Xanthinuria is one example of a set of human diseases
called inborn errors of metabolism (IEMs). These diseases
typically showMendelian recessive inheritance, and are over-
whelmingly seen in populations where consanguineous
marriage is practiced (Milne 1970; Saadallah and Rashed
2007; Tadmouri et al. 2009; Al-Gazali and Ali 2010). It is
not unusual for such diseases to have renal sequelae, as a
defective enzyme will lead to hyperaccumulation of its sub-
strate, and the kidney may struggle to excrete it. Nephroli-
thiasis is thus a common finding in IEMs (Milne 1970; Cochat
et al. 2010). Given that 70% of genes are conserved between
fly and human, there is the possibility that several of these
diseases could be modeled using the fly tubule (Dow and
Romero 2010).

Nephrolithiasis: Nephrolithiasis (stones in the kidney) and
urolithiasis (stones in theurinary tract) are seriousandpainful
conditions, responsible for 250,000 emergency room admis-
sions annually in the United States alone. Although some of
these cases canbe attributed to rare IEMs,most are idiopathic,
and the most common form of stone is of calcium oxalate
(Figure 3B) (Ramello et al. 2000; Worcester and Coe 2008;
Gisselman et al. 2009; Shoag et al. 2015). Treatment of oxa-
late stones is relatively crude and of limited effectiveness,
because of the lack of good animal models. However, oxalate
stones can bemodeled easily and reproducibly in flies, simply
by supplementing the diet with oxalate; birefringent crystals
of oxalate can be seen to formwithin a day (Dow and Romero
2010; Miller et al. 2013). Although this model initially met
with some resistance (Knauf and Preisig 2011), its appropri-

ateness has been borne out by further studies. Contamination
of food with either ethylene glycol (Lyon et al. 1966; Hebert
et al. 1983; Hanif et al. 1995; Besenhofer et al. 2011) or
melamine (Brown et al. 2007; Guan et al. 2009; Hocking
2009) can produce catastrophic renal sequelae in humans,
pets, or livestock. Both of these compounds also trigger the
formation of stones in Drosophila tubule (Chen et al. 2011,
2012). One of the limited treatments available for humans is
consumption of citrate, as metal citrate salts tend to be highly
soluble. Administration of citrate (Chen et al. 2011; Ho et al.
2013), thiosulfate, or sulfate (Landry et al. 2016) in
Drosophila similarly reduces stone burden and extends
lifespan.

These similarities in stone causation and treatment offer
the possibility that Drosophila tubules could be used for
chemical screens to identify inhibitors of stone formation—
something that would be almost impossible in humans or
mammalian models. Such screens are underway and have
already identified natural compounds that appear effective
in treating lithiasis (S. Y. Wu et al. 2014; Ali et al. 2018; Yang
et al. 2018). Similarly, genetic screens have the potential to
identify new genes that could cause nephrolithiasis in hu-
mans. In one such case, the product of the Drosophila gene
prestinwas shown to transport oxalate in tubules, and knock-
down of prestin expression in the tubules reduced stone
formation (Hirata et al. 2010, 2012). In another study,
Drosophila mutants of the gene NHERF/Sip1 were found to
carry a massive stone burden of uric acid crystals (Ghimire
et al. 2019). The loss of naturally occurring uric acid crystals
was also used as a screen to identify those V-ATPase subunits

Figure 3 Examples of human disease process modeling in the Malpighian tubules and hindgut. (A) rosy mutants enable modeling of the disease
Xanthinuria type I in the Malpighian tubules. (B) Feeding oxalate rich media or examining mutants in vacuolar ATPase genes (vha mutant) enable
modeling of excessive or absent renal crystal structures in the Malpighian tubules. (C) RNA interference (RNAi) of the Clc-a gene cripples chloride
transport in the Malpighian tubule stellate cells, enabling modeling of Bartter syndrome type III. (D) Adult hindgut epithelial injury enables modeling of
tissue injury repair by compensatory hypertrophy. Additionally, the midgut/hindgut boundary facilitates modeling of the role of interorgan signaling
responses. (E) The division of pupal hindgut rectal cells enables study of tripolar divisions and resulting aneuploidy. (F) Division of pupal hindgut rectal
cells also enables study of mitosis with persistent DNA damage. (G) Expression of personalized oncogenic mutation signatures can mimic cancer cell
dissemination in the hindgut. WT, wild type.
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that formed the plasma membrane proton pump in Drosophila
tubule principal cells (Allan et al. 2005).

Zinc is found in many kidney stones in humans, implying a
role in nucleation or early growth (Negri 2018). Zinc has also
long been known to be present in the concretions found in
Drosophila tubules (Zierold and Wessing 1990; Schofield
et al. 1997). Now that the similarity with human stones is
apparent (Chi et al. 2015; Dow 2017), the genetic tools avail-
able in Drosophila can be applied to identify further genes
that might be associated with risk for stone formation (Yin
et al. 2017; Tejeda-Guzmán et al. 2018). As a result of these
advances across multiple classes of stones, the utility of the
Drosophila approach in the study of lithiasis is becoming
widely accepted (Miller et al. 2013; Sayer 2017).

Diseases of ion transport: The tubule is energized by an
apical plasma membrane V-ATPase, a massive 300 kDa as-
sembly of at least 13 subunits (Allan et al. 2005). In humans,
plasma membrane V-ATPase isoforms are found in the inter-
calated cells of the collecting duct (Breton and Brown 2013).
Mutations in different V-ATPase subunits can thus cause dis-
tal renal tubular acidosis or sensorineural deafness, or both,
depending on the subunit (Karet et al. 1999; Stover et al.
2002). In Drosophila tubules, failure to clear acid from the
hemolymph in vha55 mutants corresponds to failure to acid-
ify the tubule lumen sufficiently to precipitate uric acid crys-
tals from transported urate (Figure 3B) (Davies et al. 1996).
This telltale sign is found with mutants for genes for all other
subunits in the tubule, but not for those expressed elsewhere
(Allan et al. 2005).

Bartter syndrome is the umbrella term for a group of
diseases that have impaired salt resorption in the thick as-
cending loop of Henle. The Na+/K+/2Cl2 cotransporter
(SCL12A1) is mutated in antenatal Bartter syndrome type I
(Simon et al. 1996). The Drosophila ortholog is found in
Malpighian tubules, and knockdown compromises tubule se-
cretion (Rodan et al. 2012). Rescue with wild-type Na+/K+/
2Cl2 restores function (Rodan et al. 2012).

Antenatal Bartter syndrome type II is caused by homozy-
gous or compound heterozygous mutations in the ROMK/
KCNJ1 inwardly rectifying potassium channel (Finer et al.
2003). There are three highly similar inward rectifier genes
in Drosophila, ir, irk2, and irk3, of which ir is the most closely
similar to ROMK; all three are highly expressed in Drosophila
tubules (Wang et al. 2004; Evans et al. 2005). Tubules are
highly sensitive to sulfonylureas and barium (Evans et al.
2005), and RNA interference knockdowns showed that Ir
and Irk2 carried a significant fraction of transported K+; to-
gether with the basolateral Na+/K+ ATPase, they accounted
for 75% of flux (Y. Wu et al. 2015).

Similarly, classical Bartter syndrome (type III) is associated
with mutations in the CLCNKB gene, encoding the CLCK-b
kidney epithelial chloride channel (Simon et al. 1997). Of the
three CLC chloride channel genes in Drosophila, the most
similar to CLCNKB is Clc-a, which is also the most highly
expressed in tubules (Cabrero et al. 2014). RNA interference

knockdown of this gene in just the stellate cells of the tubule
(using the GAL4/UAS system), completely abolished hor-
mone-stimulated fluid secretion, confirming its essential role
in Drosophila renal function (Figure 3C) (Cabrero et al.
2014). Overall, it can be seen that key players in ion transport
in the mammalian kidney are frequently highly conserved in
Drosophila, show enriched expression in Malpighian tubules,
and can be seen to play key roles in tubule function.

Continuing challenges in modeling human disease: The
major challenge for clinical nephrology is chronic kidney
disease, which progresses until, in end-stage kidney disease,
only dialysis or transplant can help (Tonelli et al. 2006;
Murtagh et al. 2007). There are multiple causes for progres-
sive kidney failure; glomerular defects may be usefully mod-
eled with the Drosophila nephrocyte, as discussed elsewhere
(Weavers et al. 2009; Helmstädter and Simons 2017).

One of the most common genetic causes of renal failure is
polycystic kidney disease (PKD), in which a progressive ac-
cumulation of fluid filled cysts compromises kidney function
(Harris and Torres 2009). Symptoms are highly variable,
from neonatal death to minimal kidney dysfunction in adult.
In autosomal dominant PKD, the most common form of PKD,
mutations are commonly found in two genes: polycystin 1, a
large transmembrane protein associated with primary cilia;
and polycystin 2, a TRP-family channel. The orthodoxy is
thus that defects in the primary cilium of renal cells confers
problems with apicobasal polarity (Yoder 2007; Dell 2015),
although the subtlety and complexity of the connection be-
tween cilia and PKD is only now becoming clear (Dell 2015).
Unfortunately, while Drosophila has a gene similar to Pkd2, it
lacks primary cilia in most cells, so a direct renal model is not
available. However, in humans PC1 and PC2 are thought to
form a mechanosensory channel, which acts through intra-
cellular calcium to modulate Wnt, JAK/STAT, and TOR path-
ways, which do exist in Drosophila. It may thus be possible to
model some aspects of the disease in flies. Indeed, mutants in
Bicaudal C, the homolog of a human gene BICC1 implicated
in cystogenesis, develop cyst-like swellings in Malpighian
tubules, accompanied by activation of the TOR pathway
(Gamberi et al. 2017). Inhibition of the TOR pathway by
rapamycin ameliorated the cyst-like symptoms (Gamberi
et al. 2017).

As an alternative approach, outside the tubule, it is possible
to study ciliary dysfunction in cell types where they are pre-
sent, such as sperm. The spermflagella is effectively a primary
cilium, and contains Pkd2 protein at its distal tip; mutants of
this gene have reduced fertility (Watnick et al. 2003). Thus,
Drosophilamay be able to offer insight into the most common
kidney disease.

Modeling injury repair and cancer initiation in the hindgut

Hindgut injury and repair: whole-scale organ regeneration
and repair by polyploidy: Tissues of the digestive and ex-
cretory systems are bombarded with external stresses such
as ingested pathogens, alterations in microbiota, and
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accumulation of free oxygen radicals. These insults render
such tissues prone to injury and cell loss. As a result, digestive
and excretory tissues frequently activate tissue injury repair
responses to maintain and restore organ function. However,
there is a diversity in tissue injury responses. For example, in
the intestineof severalmammals, stemcell divisions are active
during repair. In contrast, in the liver, some modes of injury
trigger few cell divisions, but instead activate ploidy and cell
size increasing hypertrophy events (Poccia 1986; Miyaoka
et al. 2012; Gentric et al. 2015). It remains to be determined
how distinct cell types and organs activate different injury
responses. In this regard, the hindgut has emerged as amodel
of how an organ is programmed to undergo distinct and evo-
lutionarily conserved injury repair responses.

As discussed in the physiology section, in the hindgut of
several insects, scarring is caused by persistent pathogen
infection or compromised immune responses, as well as by
alterations in cell cycling or signaling. This scarring (as in-
dicated by accumulation of the pigment melanin) occurs
specifically in the epithelium of the adult pylorus (Heimpel
and Angus 1960; Reed and Orr-Weaver 1997; Takashima
et al. 2008; Berliner 2009; Pan and Jin 2014). Over the past
decade, the acute sensitivity of the hindgut pyloric epithe-
lium to injury has been studied further, providing an acces-
sible model for studying evolutionarily conserved injury
responses. These include tissue injury responses involving
cellular ploidy and size increases, as well as responses occur-
ring at organ boundaries.

As discussed in the adult hindgut section, the Drosophila
hindgut does not contain injury responsive stem cells. In
response to injury by apoptotic gene expression (head
involution defective, reaper) or toxin induction (ricin,
dithiothreitol), cells of the adult pylorus leave a quiescent
state and enter S phase (Fox and Spradling 2009; Sawyer
et al. 2017; Cohen et al. 2018). Rather than activating a stem
cell response following injury, the pyloric region of the hind-
gut instead provides an excellent model of a tissue injury
repair response that, in recent years, has been reported in
numerous tissues in both flies and mammals. This response
does not involve repair by cell division and creation of new
cells, but instead involves cell and genome enlargement of
cells that remain following injury (Figure 3D) (Fox and
Spradling 2009; Losick et al. 2013; Sawyer et al. 2017;
Cohen et al. 2018). These processes are known as wound
induced polyploidization and compensatory cell proliferation
(Losick et al. 2013; Tamori and Deng 2014). Similar to the
pyloric injury response, both hypertrophy and polyploidiza-
tion have been observed in other Drosophila tissues (Tamori
and Deng 2013; Losick et al. 2016), as well as in the mam-
malian kidney, liver, bladder, and cornea (Ikebe et al. 1988;
Duncan 2013; Losick et al. 2016; Lazzeri et al. 2018; J. Wang
et al. 2018). The hypertrophic hindgut injury response is not
an aberrant response to tissue injury. Rather, it is highly tun-
able to the level of injury induced in the adult hindgut (Cohen
et al. 2018). With increasing severity of injury, cells undergo
proportional rounds of endocycles and polyploidization. The

ability to regulate entry into the endocycle and return to
quiescence following recovery implicates a tightly regulated
compensatory response, similar to that observed in regener-
ating tissues (Guo et al. 2013; Ayyaz et al. 2015).

In contrast to the adult pylorus, larval pyloric cells do not
undergo endocycles but instead undergo compensatory pro-
liferation/mitosis in response to injury. Ablation of up to 75%
of larval pyloric cells drives additional rounds of mitotic cell
cycles during larval/pupal development. The pylorus, which
acts as the imaginal ring of the adult hindgut, thus possesses
similar regenerative activity as imaginal discs (Hadorn et al.
1949; Ursprung 1959; Hadorn and Buck 1962; Schubiger
1971; Haynie and Bryant 1977; Smith-Bolton et al. 2009;
Bergantiños et al. 2010). As pyloric cells are maintained
throughout metamorphosis (Fox and Spradling 2009;
Aghajanian et al. 2016; Sawyer et al. 2017; Cohen et al.
2018), the ability of this tissue to first regenerate and then
later switch to repair through endocycles establishes the py-
lorus as a model for studying how a single-cell population
alters its injury responses across development. During pupa-
tion, the pylorus begins to express a negative regulator of
mitotic cyclins, fizzy-related. Fizzy-related is an activator of
the anaphase promoting complex/cyclosome (APC/C), a
ubiquitin ligase. APC/Cfzr has been previously implicated in
developmentally programmed mitotic to endocycle switches
(Nakayama et al. 1997; Deng et al. 2001). Following its ex-
pression, fizzy-related is required in the pylorus for the de-
velopmentally programmed switch from injury-mediated cell
division to injury-mediated endocycles. The identification of
fizzy-related as a regulator of the switch between injury repair
programs in the pylorus enabled study of the purpose of such
a switch. In injured fizzy-related adult animals, the pylorus is
capable of complete regeneration of the tissue through cell
division instead of endocycles. However, this more regener-
ative mode of tissue injury repair in fizzy-related animals
causes problems under conditions of chronic injury (driven
by constitutive growth signaling through activation of the Ras
pathway). Under these conditions, fizzy-related, but not wild-
type animals, become susceptible to epithelial malformations
and barrier leakage (Cohen et al. 2018). This finding suggests
that regeneration may not always be the ideal outcome in
injured tissues. Future studies focusing on the effects of re-
storing regenerative capacity to the hindgut pylorus
responses in both chronic and acute injury conditions can
provide insights into the potential benefits of nonregenera-
tive responses.

While injury to the pylorus does not drive cell division
anywhere in theadulthindgut, its closeproximity to thehighly
regenerative midgut presented a model to study how tissue
injury responses are regulated in the complex environment of
organ boundaries. Injury to the adult hindgut pyloric epithe-
lium triggers a mitotic response in the adjacent midgut
OB-ISCs (Sawyer et al. 2017) These ISCs reside 0–30 mm
from the adult hindgut Wg+ ring, and are distinguished by
both expression of the Wg effector frizzled3 and a lower rate
of proliferation than immediately anterior ISCs (Tian et al.
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2016, 2019; Sawyer et al. 2017). Injury to the adult pylorus
(including theWg+ ring) induces hindgut expression of Upd3
cytokines of the JAK-Stat pathway. These cytokines nonau-
tonomously promote increased proliferation of OB-ISCs (Fig-
ure 3D) (Sawyer et al. 2017). These findings underscore how
study of injury to one organ can affect a physically adjacent
organ.

The distinct function of OB-ISCs awaits further investiga-
tion. Lineage analysis suggests these cells may possess the
ability to repopulate the hindgut Wg+ ring (Sawyer et al.
2017), which contains cells of both midgut ISC daughter cell
and hindgut pyloric cell gene expression, and were thus
termed a “hybrid zone” (HZ; Figure 3D). Interestingly, similar
HZ populations were recently described as sites at risk for
cancer progression in the mammalian gut (at the stomach-
esophagus border; Jiang et al. 2017) and Drosophila salivary
gland imaginal ring (similar anatomy and function as the
hindgutWg+ ring (Yang et al. 2019), andwere also identified
as playing important roles in rib injury repair in the mouse
skeletal system (Kuwahara et al. 2019). Under uninjured
conditions, the HZ may repress OB-ISC division, as severe
HZ injury causes extreme OB-ISC hyperplasia and causes
OB-ISCs to cross the midgut/hindgut boundary. Similar
cross-tissue injury responses appear to occur in other animals
following both injury (Joseph et al. 2018) and disease
(Badreddine and Wang 2010; Hvid-Jensen et al. 2011). Go-
ing forward, the midgut/hindgut boundary provides an ac-
cessible model to study how tissues respond to injury across
organ boundaries, and how disruption of such responses may
influence disease progression.

Different hindgut segments responddifferentially to injury.
The larval ileum is resistant to cell death induced by myriad
stressors, including salt, SDS, oxidative stress, UV exposure,
heavy metals, and cold exposure (Seisenbacher et al. 2011;
MacMillan et al. 2017). While inhibition of JNK-mediated
apoptosis has been implicated in the resistance to chronic salt
stress and SDS feeding, themechanisms conferring resistance
to additional stressors of the larval ileum remains unknown.
It is also unclear if these resistance mechanisms are main-
tained in the adult ileum following histolysis and remaking
of the ileum by the injury-prone pyloric cells. Overall, with
new genetic tools to induce injury in the hindgut and its
different compartments, the Drosophila hindgut has become
a useful model to study nonstem-cell injury responses, injury
across tissue boundaries, as well as stress and apoptotic
resistance.

Cancer: the hindgut as a model for its initiation and a
tool for drug discovery: Crucial events in tumor initiation are
elevated rates of genetic change (genomic instability) and
cell dissemination. The Drosophila hindgut provides an ac-
cessible model to follow these processes as they arise in vivo.
Further, the genetic accessibility of flies and their amenability
to large-scale in vivo drug screening enable discovery of
critical molecular mechanisms that drive these tumor pro-
gression properties, as well as potential drug interventions.

Genomic instability has many sources. One source that is
highly relevant to cancer is whole-genome duplication, or
polyploidy. Polyploidy is a driver of elevated genomic in-
stability in numerous contexts, where it promotes unfaithful
cell divisions through several mechanisms (Davoli and de
Lange 2011; Fox and Duronio 2013; Storchova 2014;
Tanaka et al. 2018). Further, polyploidy is thought to be
the underlying cause of roughly one-third of altered karyo-
types in human cancers (Carter et al. 2012; Zack et al. 2013;
Bielski et al. 2018). As discussed in the hindgut development
section, hindgut rectal papillar cells naturally acquire poly-
ploidy and then undergo mitotic division. As in other cases
of polyploid divisions, papillar divisions are highly error-
prone, even during wild-type fly development (Fox et al.
2010). Similar chromosome segregation errors are seen in
dividing polyploid subperineurial glia nuclei (Unhavaithaya
and Orr-Weaver 2012). In papillar cells, one source of mi-
totic errors is centrosome amplification. Such amplification
causes multipolar spindle formation, which frequently
causes tripolar divisions, a known source of chromosomal
imbalances (aneuploidy). Although aneuploidy is detrimen-
tal in many cases (Santaguida and Amon 2015), experimen-
tally increasing papillar tripolar division has no detectable
effect on papillar development or ion balance physiology,
and papillar cells from these animals do not form noticeable
tumors (Figure 3E) (Schoenfelder et al. 2014). Future work
can determine whether papillar cells have evolved a mech-
anism to counteract the numerous disease-promoting prop-
erties of aneuploid cells. A second source of papillar mitotic
errors is chromosome breakage (Fox et al. 2010; Bretscher
and Fox 2016). Papillar cells lack canonical apoptotic and
cell-cycle arrest responses to DNA breaks, and as a result
these breaks persist into mitosis. However, during mitosis,
broken chromosome fragments lacking microtubule attach-
ment sites still manage to segregate, in a process that de-
pends on the conserved Fanconi anemia family DNA repair
proteins. Fanconi anemia protein–deficient animals fail to
segregate chromosome fragments, which end up in micro-
nuclei—highly detrimental cytosolic DNA structures attrib-
uted to cancer progression and cell death (Figure 3F)
(Bretscher and Fox 2016). These studies demonstrate that
papillae are a model to understand the genesis of polyploid
genomic instability, as well as a model for how nature
evolved to sidestep the negative aspects of this cancer pro-
moting cellular property.

Cell dissemination from a primary tumor site is a critical
step in cancer progression. In the intestine of flies expressing
oncogenic active mutations in the Ras GTPase, cells from an
anterior location of the hindgut, but not themidgut, are prone
to dissemination into distant sites in the body (Figure 3G).
This dissemination is enhanced by the presence of pathogenic
bacteria and requires innate immune signaling from the Imd
pathway (Bangi et al. 2012). As genetic factors driving cancer
properties such as dissemination are often multigenic, this
model was extended to include additional cancer driver mu-
tations. Using the dissemination phenotype as a readout, it
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was shown that specific multigenic mutation combinations
found in human cancers cause common cellular cancer phe-
notypes, including hyperproliferation, epithelial multilayer-
ing, and apoptotic evasion. Tumors in the hindguts of these
animals also exhibit drug resistance, which enabled screen-
ing in the Drosophila hindgut to identify mechanisms of re-
sistance to currently used therapeutics and to devise new
combination therapies (Bangi et al. 2016). Most recently, this
model was used to derive personal colon cancer therapies.
After sequencing a patient’s tumor, nine cancer driver muta-
tions were targeted in the hindgut using either overexpres-
sion or small interfering RNA transgenes. Following this, a
robotics-based, high-throughput screening of 121 drugs was
performed for compounds that suppressed tumor-like phe-
notypes originating from the hindgut. Excitingly, the top-
performing drug combination from this Drosophila screen
led to a significant antitumor response in the original patient
(Bangi et al. 2019). These studies underscore the utility of the
Drosophila hindgut in directly contributing to advances in
human disease therapy.

Summary and Future Outlook

Here, we have summarized advances in our understanding
of the Drosophila excretory system, which has especially
highlighted an accelerated pace of discovery in the last de-
cade. Insights and experimental tools from study of the now
well-understood development of the tubules and hindgut
can continue to be applied to the less well-understood area
of physiology. Numerous aspects of excretion, which are
widely conserved in metazoans, can be accessibly modeled
in Drosophila. Further, improved understanding of both
developmental and physiological processes can promote
further use of these tissues as models of human disease
conditions.

Both the tubule and hindgut contact the posteriormidgut,
which has seen an explosion of recent interest in the
Drosophila field. As all three of these organs work (and
likely signal) together to regulate intestinal physiology, we
argue that the function of each distinct organ should always
be considered when studying the other. Further, interesting
variants of midgut biology are found in the excretory system
as well. For example, just as the adult midgut epithelium is
attractive for its ability to model the role of stem cells in
tissue homeostasis and repair, numerous tissues from in-
sects to humans engage in the hindgut version of nonstem
cell tissue repair through ploidy increases. Additionally, just
as the midgut provides a model for stem cell–associated
disease, modeling of renal conditions such as kidney stones
and the complex cancer landscape of colorectal genomes is
possible in the Drosophila excretory system. In addition to
highlighting the work of those already using the tubules and
hindgut as model organs, we hope that this review can serve
as an introductory guide for those interested in joining this
field of study. There is no shortage of interesting work to be
done.
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