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Abstract

Background/Aim: A randomized clinical trial with a starch‐ and sucrose‐reduced

diet (SSRD) in irritable bowel syndrome (IBS) patients has shown clear improve-

ment of participants' symptoms. The present study aimed to explore the effects of

the SSRD on the gut microbiota and circulating micro‐RNA in relation to nutrient

intake and gastrointestinal symptoms.

Methods: IBS patients were randomized to a 4‐week SSRD intervention (n = 80) or

control group (n = 25); habitual diet). At baseline and 4 weeks, blood and fecal

samples, 4 day‐dietary records, and symptom questionnaires were collected, that is,

Rome IV questionnaires, IBS‐symptom severity score (IBS‐SSS) and visual analog

scale for IBS (VAS‐IBS). Micro‐RNA was analyzed in blood and microbiota in faeces

by 16S rRNA from regions V1–V2.

Results: The alpha diversity was unaffected, whereas beta diversity was decreased

(p < 0.001) along with increased abundance of Proteobacteria (p = 0.0036) and

decreased abundance of Bacteroidetes phyla (p < 0.001) in the intervention group

at 4 weeks. Few changes were noted in the controls. The shift in beta diversity and

phyla abundance correlated with decreased intakes of carbohydrates, disaccharides,

and starch and increased fat and protein intakes. Proteobacteria abundance also

correlated positively (R2 = 0.07, p = 0.0016), and Bacteroidetes negatively

(R2 = 0.07, p = 0.0017), with reduced total IBS‐SSS. Specific genera, for example,

Eubacterium eligens, Lachnospiraceae UCG‐001, Victivallis, and Lachnospira increased

significantly in the intervention group (p < 0.001 for all), whereas Marvinbryantia,

DTU089 (Ruminoccocaceae family), Enterorhabdus, and Olsenella decreased, together

with changes in amplicon sequence variant (ASV) levels. Modest changes of genus
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and ASV abundance were observed in the control group. No changes were observed

in micro‐RNA expression in either group.

Conclusion: The SSRD induced a shift in beta diversity along with several bacteria at

different levels, associated with changes in nutrient intakes and reduced gastroin-

testinal symptoms. No corresponding changes were observed in the control group.

Neither the nutrient intake nor the microbiota changes affected micro‐RNA

expression.

The study was registered at ClinicalTrials.gov data base (NCT03306381).
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INTRODUCTION

Irritable bowel syndrome (IBS) is characterized by abdominal pain

and altered bowel habits. The pooled world‐wide prevalence of IBS is

4.1% (range 1.3%–7.6% depending on country) according to the

Rome IV criteria.1,2 The etiology is supposed to be multifactorial.

Notably, 62%–90% of IBS patients report exacerbation of gastroin-

testinal (GI) symptoms upon intake of specific foods.3 However, 25%–

50% of IBS patients do not experience improvement in symptoms

when following evidence‐based dietary guidelines.4 Recently, func-

tional variants of the sucrase–isomaltase (SI) gene was found in high

prevalence in IBS patients,5 and reduction of starch and sucrose led

to improvement of GI symptoms.6

Meta‐analysis of gut microbiota in IBS show inconsistent re-

sults, but lower beta diversity, and reduced abundance of Bac-

teroidetes, Lactobacillus and Bifidobacterium, and higher abundance

of Proteobacteria, are described.7–9 Altered gut microbiota may

compromise intestinal permeability, causing low‐grade mucosal

inflammation and disturbances in the gut‐brain axis.10 Micro‐RNAs

(miRNA) are small noncoding RNAs that regulate gene expression

at the post‐transcriptional level.11 miRNAs have been suspected to

be of importance for the pathophysiology of several gastrointes-

tinal diseases, for example, IBS, although studies of various designs

show differing results.12,13 Both gut microbiota and epigenetic

mechanisms are affected by environmental and dietary fac-

tors.12,14–16 Reduction of Fermentable Oligo‐, Di‐ and Mono-

saccharide And Polyol (FODMAP) in IBS patients caused decreased

abundance of Actinobacteria,17 and IBS patients on exclusion diets

showed greater abundance of Lachnospira and lower abundance of

Eubacterium.18

This study aimed to explore the effects of a starch‐ and sucrose‐
reduced diet (SSRD) on gut microbiota and miRNA composition in

IBS, in relation to nutrient intake and GI symptoms.

METHODS

Study design and subjects

IBS patients were identified from primary care centers (PCC) and the

Department of Gastroenterology, Skåne University Hospital, Malmö.

Patients were contacted by mail and telephone (Figure S1).6,19 A total

of 105 IBS patients were enrolled in the 4‐week SSRD study and

randomized to either the intervention (n = 80) or control group

(n = 25). Dietary advice was provided according to guidelines for

Key summary

Current knowledge about this subject

� Irritable bowel syndrome (IBS) is characterized by

abdominal pain and altered bowel habits.

� Food often exaggerates the symptoms.

� Functional variants of sucrase–isomaltase genes have

been found in IBS patients.

� Reduction of gastrointestinal and extra‐intestinal symp-

toms in IBS have been found after reduction of starch

and sucrose content.

What is new in this study

� The shift in beta diversity and phyla abundance correlated

with decreased intakes of carbohydrates, disaccharides,

and starch and increased fat and protein intakes.

� Proteobacteria abundance correlated positively, and

bacteroidetes negatively, with reduced total gastroin-

testinal symptoms.

� No changes were observed in micro‐RNA expression

after the dietary intervention.
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patients with congenital sucrase–isomaltase deficiency (CSID).20

Controls were instructed to maintain their ordinary eating habits.

Blood and fecal samples for analyses of miRNA and microbiota were

collected at baseline and end of the study, along with questionnaires

and 4‐day food registrations (Figure S1).

The starch‐ and sucrose‐reduced diet

The dietary advice given focused on starch and sucrose reduction,

with decreased intake of foods such as confectionary, soda, and

processed foods and increased intake of other carbohydrates, fiber,

fat, and protein in the form of all meats and fish, natural dairy

products, eggs, nuts, seeds and selected berries, fruits, legumes and

vegetables low in starch and sucrose (Tables S1 and S2). Participants

were allowed one serving per day of whole‐grain bread or oatmeal

porridge.

Diet recording and questionnaires

Participants reported amount and/or volume of all consumed foods

for 4 consecutive days at baseline day 7–10 and at day 25–28 of the

intervention, including the percentage of fat in dairy products, fiber

in bread products, cacao in chocolate, information on the type of soda

(sugar‐free or regular) consumed, and product manufacturer when

applicable. Nutrient intake in amount and energy percentages (E%)

was calculated from a single day (day 2) of the 4‐day registrations by

a nutritionist, using the AIVO Diet computer program.21

A study questionnaire covering sociodemography, lifestyle

habits, medical history, and drug consumption were completed. To

register GI symptoms, the Rome IV questionnaire,22 the irritable

bowel syndrome‐symptom severity score (IBS‐SSS),23 and the visual

analog scale for irritable bowel syndrome (VAS‐IBS)24 were

completed before and after the study.

Fecal microbiota analyses

Feces was collected at home in sterile tubes (Sarstedt), stored in the

deep‐freezer until delivery to the hospital, then stored at −80°C until

analyzed at the Institute of Clinical Molecular Biology, Christian‐
Albrechts‐University, Kiel, Germany. DNA was extracted using the

QIAamp DNA stool mini kit automated on the QIAcube. Approxi-

mately 200 mg stool was transferred to 0.70 mm Garnet Bead tubes

filled with 1.1 ml ASL lysis buffer (containing Proteinase K). Subse-

quently, bead beating was performed using the SpeedMill PLUS for

45 s at 50 Hz. Samples were then heated to 95°C for 5 min. Con-

taminants were removed as DNA bound specifically to the QIAamp

silica‐gel membrane. The combined action of InhibitEX, a unique

adsorption resin, and an optimized buffer was used for removal of

PCR inhibitors. Approximate DNA amount ranged between 10 and

40 μg/sample.

Variable regions V1 and V2 of the 16S rRNA gene were amplified

using the primer pair 27F‐338 R in a dual‐barcoding approach ac-

cording to Caporaso et al.25 Three μl of 1:10 diluted DNA was used

for amplification. PCR‐products were verified through electropho-

resis in agarose gel. PCR products were normalized using the

SequalPrep Normalization Plate Kit (Thermo Fischer Scientific),

pooled equimolarily, and sequenced on the Illumina MiSeq v3

2� 300 bp (Illumina Inc.). Demultiplexing after sequencing was based

on 0 mismatches in the barcode sequences. Forward and reverse

reads were merged using the FLASH software, allowing an overlap of

the reads between 250 and 300 bp.26 Data was filtered by removing

low‐quality sequences (Q‐score < 30) in less than 95% of the nu-

cleotides. Chimeras were removed with UCHIME and 10,000 reads

for each sample were randomly selected.27

Blood miRNA analyses

Blood was sampled (PAXgene® Blood RNA Tube, BD Biosciences)

and analyzed at the Institute of Clinical Molecular Biology, Christian‐
Albrechts‐University. Total RNA input quality was evaluated on a

TapeStation 4200 (Agilent). Most samples had a RIN score >8.

Samples were quantified with a fluorometric dye (Quant‐IT, ther-

mofisher) and 200 ng per sample were used as input for the NEXT-

FLEX Small RNA‐Seq Kit v3 (PerkinElmer) according to

manufacturer's instructions in a gel‐free workflow. Resulting libraries

were sequenced on an Illumina HiSeq 3000 (Illumina) with 50 bp

single‐read sequencing (24 samples per lane).

Statistical analyses

Basal characteristics were calculated by SPSS, version 25, using

Mann–Whitney U test or Fisher's exact test. The demultiplexed 16S

samples from MiSeq were processed mainly with QIIME2 (v.2018.11)

1. Within QIIME2, DADA2 2 was used to predict the amplicon

sequence variants (ASVs). Then, the taxonomy of those ASVs were

predicted using VSEARCH 3 together with the SILVA (v. 132) database

4. The alpha‐ and beta diversity metrics for all samples were calculated

within QIIME2. Further statistical analyses were performed using

‘phyloseq’ 5 and ‘vegan’ 6 packages in R. The differentially abundant

ASVs in the different sample groups were calculated using DESeq2 7.

Two different alpha diversity measurements were used; the

observed numbers of ASVs (Observed) and the Shannon‐Weiner in-

dex. The beta diversity was measured at ASV level using Bray‐Curtis

method. Diversities were measured and visualized using the ‘phylo-

seq’ package. Wilcoxon t‐test of comparing means was applied to test

the alpha diversity from different groups and PERMANOVA was

applied to beta diversity.

The correlation between the continuous physiological factors of

the samples to the beta diversity and phylum abundance were

calculated using the ‘envfit’ function in the ‘vegan’ package. The

PERMANOVA analysis of the categorical variables on the beta
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diversity were performed using the ‘adonis’ function in the ‘vegan’

package.

The miRNA sequences obtained from the sequencing facility

were mainly processed through the ‘smrnaseq (v1.0.0)’ pipeline from

the ‘nf‐core’ framework28 at NGI, SciLifeLab, Sweden. In brief, the

raw sequences were processed for quality trimming using Cutadapt

(v3.4)29 and the reads were then mapped to the miRNA database

miRBase (v 22.1)30 using bowtie2 (v1.3.0).31 The counts of these

miRNAs were used for the downstream analysis. From raw counts,

lower count miRNAs were filtered with the following thresholds: ≥5

reads mapped for each specific miRNA in ≥5 samples. This filtered

dataset was transformed with VST using DESeq2 (v1.32.0).32 The

pair‐wise sample distances were calculated from the transformed

data and visualized in PCA. The statistical significance of the different

factors of the samples on the distribution of miRNA abundances was

calculated by PERMANOVA using the ‘adonis()’ function from the

‘vegan’ R package. Similar calculations were performed within control

and intervention groups from the filtered miRNA dataset.

RESULTS

Participant characteristics

From the 105 IBS patients, two patients from the intervention group

were excluded due to missing fecal samples at baseline. For the

remaining 103 patients, the median age was 46 (33–57) years and the

median body mass index (BMI) was 24.2 (22.3–27.6) kg/m2 (range

16.0–39.8 kg/m2). The control group had a lower median age and

weight, a lower frequencyof full‐timeemployment, andhigher smoking

frequency than the intervention group. The groups did not differ

significantly in terms of sex, BMI, IBS disease duration, IBS subgroup

distribution, level of physical activity, or antibiotic use prior to and

during the study (Table 1).Oneparticipant in each group ateprobiotics.

The most common comorbidities were allergy, hypothyroid dis-

ease, asthma, depression, hypertension, and migraine. Frequent drug

treatments included antidepressants, levothyroxine, laxatives, proton

pump inhibitors, and vitamin D (Table S3).

Gastrointestinal symptoms and dietary intake

Gastrointestinal symptoms and dietary intake were equal in both

groups at baseline and symptoms were higher than in healthy

volunteers (Table S4 and S5).33 In the intervention group, 73.1%

were classified as responders (decrease in total IBS‐SSS≥50 points)

and 28.2% did not fulfill the Rome criteria for FGID/IBS at

4 weeks, as compared to 24% and 0%, respectively, in the control

group (p < 0.001). Complete absence of GI symptoms (<75 in total

IBS‐SSS) was seen in 19.2% of the intervention group. Compared

to controls, the intervention group showed decreased intake of

carbohydrates, starch, sucrose, and disaccharides and increased

energy percentages of protein and fat at 4 weeks (Table S5).

Overall microbiota assessment

In total, ∼5.8 million paired‐end sequence reads were trimmed for

quality to end up with ∼5.2 million paired‐end reads. The blank and

mock‐community samples were also used as controls to this experi-

ment. There were in total 4220 ASVs comprising 172 different

genera in 13 different phyla from 198 samples.

Alpha‐ and beta diversity

Alpha diversity indices at the genus level were not significantly

different between groups at baseline or at 4 weeks (baseline:

p = 0.43 for both measurements; 4 weeks: p = 0.65 and p = 0.19 for

Observed ASVs and Shannon Weiner's index, respectively; Figure 1a,

b), with no significant changes in alpha diversity in either group

(p ≥ 0.44).

Beta diversity differed between groups already at baseline

(p < 0.01) but shifted significantly only in the intervention group

(p < 0.001), and not in controls (p = 0.99; Figure 2a,b). Weak cor-

relations were identified between beta diversity and decreased

intake of g carbohydrates (r2 = 0.049, p = 0.028), g disaccharides

(r2 = 0.058, p = 0.014), g starch (r2 = 0.068, p = 0.013), E% starch

(r2 = 0.045, p = 0.025), and g sucrose (r2 = 0.033, p = 0.089), and

increased E% protein intake (r2 = 0.066, p = 0.009), in the inter-

vention group (Figure 2b). No correlations could be identified be-

tween changes in beta diversity and total IBS‐SSS or individual GI

symptom scores (data not shown).

PERMANOVA analysis showed no influence of sex (p = 0.65),

marital/cohabitation status (p = 0.28), educational level (p = 0.25),

employment (p = 0.71), or the usage of antibiotics (up to 6 months

before the study; p = 0.54) on beta diversity at baseline (all patients).

Smoking alone marginally affected (p = 0.059) the beta diversity at

baseline. Antibiotic use during the study did not influence beta di-

versity at 4 weeks (p = 0.41).

Taxonomy measures

Phylum level

Thirteen different phyla were identified, that is, Actinobacteria,

Bacteroidetes, Cyanobacteria, Elusimicrobia, Epsilonbacteraeota,

Firmicutes, Fusobacteria, Lentisphaerae, Patescibacteria Proteo-

bacteria, Tenericutes, Verrumicrobia, and an unknown phylum

(Table S6). There was a clear dominance of seven of these phyla in

both groups (Figure 3). The most dominant phyla in the inter-

vention and control group both before and after the SSRD trial

were Bacteroidetes and Firmicutes (Figure 3, Table S6). There was

an increase in Proteobacteria (p = 0.0036), Lentisphaere

(p = 0.0038), Cyanobacteria (p = 0.038), and a decrease in Bac-

teroidetes (p < 0.001), in the intervention group during the trial,

with a tendency of decrease in Actinobacteria (p = 0.075;
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Table S6). In the control group, Verrumicrobia tended to increase

(p = 0.077). No other significant phyla changes occurred in either

group (p ≥ 0.14 for all).

Correlations were performed for Bacteroidetes and Proteobac-

teria since they were the most abundant of the altered phyla. Bacter-

oidetes and E% of carbohydrates correlated in the controls (R2 = 0.09;

T A B L E 1 Participant characteristics

All patients n = 103 Intervention n = 78 Control n = 25 p

Age, years 46 (33–57) 48 (37–57) 35 (29–50) 0.028

BMI, kg/m2 24.2 (22.3–27.6) 24.6 (22.3–28.4) 23.6 (21.4–26.5) 0.180

Missing value: 6

Weight, kg 71 (63–82) 72 (64–84) 68 (57–75) 0.037

Missing value: 6

Female sex, n (%) 81 (78.6) 59 (75.6) 22 (88.0) 0.265

Smoker, n (%) 11 (11.0) 5 (6.6) 6 (24.0) 0.033

Missing value: 3

Disease duration, years 17 (8.8–28) 18 (8.0–28) 11 (9.0–29) 0.561

Missing value: 17

Employment, n (%) 0.049

Missing value: 2

100% 51 (50.5) 43 (56.6) 8 (32.0)

≥50% 64 (63.4) 52 (68.4) 12 (48.0)

Subgroup, n (%) 0.227

Missing value: 2

IBS‐D 26 (25.2) 23 (29.5) 3 (12.0)

IBS‐M 37 (35.9) 29 (37.2) 8 (32.0)

IBS‐C 19 (18.4) 12 (15.4) 7 (28.0)

Unspecified IBS 3 (2.9) 2 (2.6) 1 (4.0)

Non‐IBS FGID 16 (15.6) 10 (12.8) 6 (24.0)

Physical activity, n (%) 0.863

Missing value: 2

None 11 (10.9) 9 (11.8) 2 (8.0)

<30 min/week 24 (23.8) 19 (25.0) 5 (20.0)

30–60 min/week 15 (14.6) 11 (14.5) 4 (16.0)

60–120 min/week 25 (24.8) 19 (25.0) 6 (24.0)

>120 min/week 26 (25.7) 18 (23.7) 8 (32.0)

Antibiotic use, n (%)

0–6 months before

study

15 (14.9) 11 (14.5) 4 (16.0) 1.0

Missing value: 2

During study 4 (4.3) 3 (4.2) 1 (4.8) 0.925

Missing value: 10

Abbreviations: BMI, body mass index; FGID, functional gastrointestinal disorders; IBS, irritable bowel syndrome; IBS‐D, diarrhea‐predominant irritable

bowel syndrome; IBS‐M, mixed IBS; IBS‐C, constipation‐predominant IBS.

Note: Values are presented as median and interquartile ranges (IQR) or number and percentage. Mann–Whitney U test or Fisher's exact test. p < 0.05

was considered statistically significant.
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F I G U R E 1 Alpha diversity indices (Observed amplicon sequence variants and Shannon‐Weiner) in the intervention versus control group.
(a) Before the study (T0) and (b) After the study (T1)
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F I G U R E 2 PCA plot of beta diversity at baseline (T0) and 4 weeks (T1) in (a) the control group and (b) the intervention group. E% = energy
percent. PCA biplot showing delta nutrient variables (arrows) significantly correlated to the community composition of each participant in the
intervention group (b) (through ‘envfit()’). Ellipses show the distribution of the samples according to time‐point (V1 = baseline; V2 = 4 weeks).

The variance of the variables is approximated by arrow length, and their correlations by the angles between them. Observations with similar
PCA component score correspond to proximity between individual points. The biplot shows that community composition correlated with self‐
reported changes in nutrient intakes of disaccharides (g), carbohydrates (g), starch (g and E%) and protein (E%) (p < 0.05 for all, and p < 0.01

for protein). Further, changes in disaccharides, carbohydrates and starch are shown to be positively correlated to each other, while negatively
correlated to change in protein E%
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p = 0.048; Figure 4a). In the intervention group, the abundance of

Proteobacteria correlated inversely with intake of carbohydrates, di-

saccharides, and starch, and positively with fat and protein, whereas

Bacteroidetes correlated positively with carbohydrates and starch,

and inversely with protein. The total IBS‐SSS correlated inversely with

the abundance of Proteobacteria and positively with Bacteroidetes

(Figure 4b,c).

Genus level

In the intervention group, the abundance of Eubacterium eligens,

Lachnospiraceae UCG‐001, Victivallis, Lachnospir, Negativibacillus,

Eggerthella, Enterobacter and Eubacterium ruminantium increased

(p < 0.001 for all), whereas Marvinbryantia, DTU089 (Ruminoccoca-

ceae family), Enterorhabdus, Olsenella, Acidaminococcus, Slackia, Cat-

enibacterium, and an uncultured bacterium decreased (Figure 5b). In

the control group, the genera of Vellionella and Faecalitalea decreased

significantly (Figure 5a).

ASV level

Out of all ASVs analyzed, 183 changed significantly in the inter-

vention group during the dietary trial (Figure S2 and Supporting

Information S2). These differentially abundant ASVs constituted

around 18% and 22% of the whole community at baseline and

4 weeks, respectively, and belonged mainly to the Bacteroidetes or

Firmicutes phyla. Although almost all ASVs could be annotated to a

genus, species annotation of ASVs was not possible due to the

analysis method used.

miRNA measures

The miRNA expression did not differ between the intervention or

control group (p = 0.462), or between baseline and 4 weeks in the

intervention (p = 0.863) or control group (p = 0.418; Figure 6a,b).

When examining specific miRNA, no changes could be found in either

group (data not shown).

DISCUSSION

The SSRD intervention altered gut microbiota with a shift in beta

diversity and changes in the abundance of bacteria at the phylum,

genus and ASV levels, whereas it did not affect circulating miRNA

expression. The alterations correlated with reduced GI symptoms,

decreased carbohydrate, disaccharide, and starch intakes and

increased protein and fat intakes.
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Although great inconsistencies between studies, IBS has been

associated with decreased beta diversity, increased Firmicutes‐to‐
Bacteroidetes‐ratio, decreased Bacteroidetes, and increased Prote-

bacteria.7,8 Still, improved GI symptoms correlated with decreased

Bacteroidetes and increased Proteobacteria in the current study.

Cross‐sectional studies do not reflect causality and may hypothetically

reflect secondary, compensatory mechanisms to reduce symptoms.

The gut microbiota, and the response to dietary modification, is

unique in each individual with a great intra‐individual variation at

different time points.7,34 No healthy gut microbiota composition has

so far been defined.35 During the study, participants increased their

intake frequency of dairy products, vegetables, fruits, whole‐grains,

fish, and nuts with a decreased intake of sweets and cereals and

shifted from regular soda to soda with artificial sweeteners.19 Thus,

they changed from a Western diet to a more Mediterranean‐like diet.

Specific foods not estimated, that is, fructose, polysaccharides,

resistant starch, and artificial sweeteners, may also have contributed

to the changes.17,36,37 Low FODMAP induced lower abundance of

Actinobacteria.17 Lower intake of polysaccharides has been related

to a higher relative abundance of Proteobacteria and a tendency to

lower Actinobacteria among healthy individuals on Mediterranean

diet,38 whereas higher intake of artificial sweeteners have been

correlated with Actinobacteria.39 In animal trials, Western diet

increased the abundance of Bacteroidetes and Mediterranean diet

increased Proteobacteria abundance, with similar changes at genus

levels as SSRD.40 A phylum includes both potentially pathogenic and

potentially health‐promoting genera and species,41 and Proteobac-

teria is the most variable phylum.42 Our observed decrease in the

Bacteroidetes phylum, along with specific genus level within this

phylum, could be related to increased consumption of fish, plant‐
based foods, and nuts.8,19,43,44 In contrast, increased glucose, fruc-

tose and saturated fat induced the same increase of Protebacteria

and decrease of Bacteroidetes in mice as SSRD.6,45,46 Inconsistency

between studies may depend on confounders, for example, luminal

pH is of crucial importance for the Bacteroidetes abundance; a factor

seldom taken into account.47

Lactobacillus and Bifidobacterium were not affected by the inter-

vention. Several of the genera found increased after the present
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study have been related to the degradation of plant fibers.48 Two

genera from the Lachnospiraceae family, that is, Lachnospiraceae

UCG‐001 and Lachnospira, increased in the intervention group.

Accordingly, Lachnospira is strongly associated with vegetable di-

ets,18,49 and wholegrain‐rich diet and psyllium husk

supplementation.50,51 Lachnospiraceae UCG‐001 and Lachnospira

were among 15 genera included in the model, which had an esti-

mated 85% accuracy for determining intake of four foods, that is,

avocado, almonds, walnuts and whole‐grain.52 Blautia, belonging to

the Lachnospiraceae family, has previously been found to be
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F I G U R E 5 Differential abundance of genera (baseline to 4 weeks) in (a) The control group and (b) The intervention group
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F I G U R E 6 PCA plot of miRNA expression at baseline (T0) and 4 weeks (T1) in (a) the control group and (b) the intervention group. PCA

biplot showing the miRNA expression of each participant in the intervention group (b). V1 = baseline; V2 = 4 weeks p > 0.05 for all
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increased in those with self‐reported IBS compared with non‐IBS

patients from the same geographic area.53 In contrast, decrease of

two Eubacterium genera was found in participants with exclusion/

vegetarian diets.18 However, E eligens share phylogenetic and

phenotypic similarity with Lachnospira, and has been found to be

increased after a Mediterranean intervention.47 Both Lachnospiraceae

and Eubacterium are considered as the next‐generation health‐
promoting bacteria.40,47

Although a few studies have shown that dietary patterns may

affect DNA methylation, histone modification,12,15 and miRNA

expression,16 no dietary intervention has to our knowledge examined

the effect of a dietary change on miRNA expression in IBS. The un-

changed plasma miRNA profile within the intervention group sug-

gests that neither the SSRD nor the microbiota did affect the

expression of miRNA. Though a close relation between plasma and

stool expression of miRNA,16 an effect on local miRNA cannot be

excluded.

The main strength of this longitudinal study, with a documented

high degree of compliance,6,54 is its novelty as the effect of starch‐
and sucrose reduction on gut microbiota and miRNA expression in

IBS has not been previously explored. The controlling for several

confounders is another strength.

Limitations are that the nutrient calculations did not include

fructose, lactose, and artificial sweeteners and that many of the

differentially abundant ASVs could not be determined on the strain

level, due to being unknown or uncultured bacteria. The study may

have benefited from metagenomic analysis and functional profiling of

ASVs. Further, transit time, luminal pH levels, mucosa sampling, or

drug treatment were not considered. Since the original purpose of

the study was to identify rare SI gene variants in IBS patients,

recruiting a larger number of patients to the intervention group was

prioritized, rendering a smaller control group. Further, a 4‐week

follow‐up is rather short for a chronic disease, but often used in di-

etary studies to improve compliance to the advice.4,17

CONCLUSION

The dietary modification of SSRD correlated with reduced beta di-

versity and increased abundance of Proteobacteria and reduced

Bacteroidetes. The phylum levels also correlated with the reduced GI

symptoms. Neither the changes in nutrient intake nor changes of gut

microbiota did affect the miRNA expression.
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