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Abstract

Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is
unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and
chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from
specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression.
Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36
(H3K36) demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a
promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of
gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the
expression of a major gluconeogenic regulator, C/EBPa. This is achieved, at least in part, by its USF1-dependent association
with the C/EBPa promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPa locus. Our work
provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has
important implications for the treatment of diabetes.
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Introduction

Hepatic glucose production is critical for the maintenance of

normal blood levels to meet whole-body fuel requirements. In the

early phase of postabsorptive state, circulating glucose is supplied

from breakdown of liver glycogen stores. When fasting progresses,

gluconeogenesis, which utilizes non-carbohydrate precursors to de

novo synthesize glucose, becomes the major form of hepatic glucose

production [1,2]. In both type 1 and type 2 diabetes, gluconeo-

genesis is exaggerated and contributes to hyperglycemia [3–5].

The rate of gluconeogenesis is largely determined by three rate-

limiting enzymes, Phosphoenolpyruvate carboxykinase (PEPCK),

fructose-1,6-bisphosphatase (FBP-1) and glucose 6-phosphatase

(G6Pase). The levels of these gluconeogenic enzymes are con-

trolled by hormonal signals, notably glucagon and glucocorticoids,

and the opposing hormone insulin, at the transcription level. Key

DNA elements responsible for the hormonal regulation have been

well characterized on the promoters of PEPCK and G6Pase gene

[6–9]. These elements serve as platforms for setting up a complex

transcriptional machinery that includes transcription factors (e.g.,

CREB, FOXO1, FOXA2, C/EBPs, HNF4a, GR, Nur77) and co-

factors (e.g., PGC-1a, CRTC2, SIRT1, p300/CBP, SRC-1),

thereby driving gluconeogenic gene expression [10], [11]. Despite

these tremendous progresses, the regulatory mechanisms upstream

of this transcriptional network are incompletely understood. Fur-

thermore, it is unclear how the chromatin landscape affects

gluconeogenesis, what chromatin modifying enzymes (in addition

to p300/CBP) are involved, and how these enzymes coordinate

with the aforementioned transcriptional regulators.

One determinant for chromatin structure and functional state is

histone methylation that occurs on specific lysine residues in histones

[12], [13]. Five lysine residues within the N-terminal tail of histone

H3 (K4, K9, K27, and K36) and H4 (K20) have been shown to be

the sites for methylation. These lysine residues can be mono-, di-, or

trimethylated. Depending on the specific lysine residues and the

degree of methylation, histone methylation can have distinct effects

on gene expression. In general, histone H3K4 and K36 di-and

trimethylation, and H3K27 monomethylation are associated with

actively transcribed genes, whereas H3K9 and K27 di- and trime-

thylation are considered repressive markers for gene expression. The

distribution pattern of histone methylation on gene loci can also be

quite different. For example, H3K4 and K9 methylation are

enriched in the promoter regions, whereas K36 di- and trimethyla-

tion are mainly located in the coding regions and their levels peak

toward the 39end of the gene [14–16]. By altering chromatin

structure, histone methylation fine-tunes transcriptional outputs.
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Histone methylation is reversible and its dynamic nature is

controlled by a balance between histone methyltransferases and

histone demethylases. A number of histone demethylases have

been identified in recent years and they are classified into two

groups [17–20]. The first group contains two genes, LSD1 and

LSD2, in human genome. These enzymes catalyze demethylation

via an FAD-dependent oxidative reaction that requires protonated

nitrogen in the substrate [19]. The second group are genes that

contain a JmjC domain. Nineteen members of the JmjC domain-

containing proteins in the human genome have been shown to be

demethylases. The JmjC domain is the catalytic domain that

possesses demethylation activity. These enzymes use Fe(II) and the

intermediate metabolite a-ketoglutarate as co-factors to catalyze a

hydroxylation-based demethylation [20]. Because of their enzy-

matic requirement for either FAD or a-ketoglutarate, it has been

postulated that histone demethylases might be important for

energy homeostasis by linking metabolic signals to chromatin

status and transcriptional regulation [21]. Here, through both in

vitro and in vivo studies, we reveal an important regulatory

function of histone demethylase Jhdm1a in gluconeogenesis that is

mediated by its active demethylation on the C/EBPa locus.

Results

Identification of the histone demethylase Jhdm1a as a
negative regulator of gluconeogenic gene expression

To assess whether JmjC domain-containing histone demethy-

lase(s) is involved in the regulation of gluconeogenesis, we treated

human hepatoma HepG2 cells with N-oxalylglycine (NOG) or its

derivative, dimethyloxalylglycine (DMOG), and examined the

expression of the gluconeogenic enzymes. NOG and DMOG are

analogues of a-ketoglutarate and are general enzymatic inhibitors

of the JmjC domain-containing histone demethylases [22], [23].

Treatment with either compound led to an increase of PEPCK

and G6Pase expression (Figure 1A), indicating a potential re-

quirement of histone demethylation activity in the regulation of

gluconeogenesis.

We next decided to use shRNA knockdown to identify the

involved histone demethylase(s). As both the hormonal and

molecular pathways that regulate PEPCK and G6Pase transcrip-

tion are retained in HepG2 cells, we performed our screening

experiments in these cells. We obtained a collection of human

lentiviral shRNA constructs against the known JmjC domain-

containing demethylases and a few JmjC domain-containing pro-

teins where an enzymatic function has not been ascribed. We also

included shRNA constructs against the FAD-dependent histone

demethylases (LSD1 and LSD2). We stably expressed individual

knockdown constructs in HepG2 cells and screened by quantita-

tive RT-PCR for an increase of PEPCK expression compared

with scramble controls. We found that knockdown of the JmjC-

domain-containing protein Jhdm1a had the strongest effect

(Figure 1B). Jhdm1a is a histone demethylase that specifically

demethylates dimethylated H3K36 [20]. Knockdown of this

demethylase also robustly promoted G6Pase expression, but not

FBP-1 expression (Figure 1C). Not surprisingly, this led to an

increase of PEPCK and G6Pase protein levels (Figure 1C). It is

likely that NOG-induced PEPCK and G6Pase expression is

mediated through inhibition of Jhdm1a, as the induction was lost

in Jhdm1a knockdown cells (Figure 1D). As expected, treatment of

HepG2 cells with dibutyryl cyclic-AMP and dexamethasone sti-

mulated PEPCK and G6Pase expression; knockdown of Jhdm1a

further led to an additive/synergistic increase, indicating a pos-

sibility that the effect of Jhdm1a knockdown is independent of the

pathway activated by the hormones (Figure 1E). Similar results

were obtained in HepG2 cells with an independent Jhdm1a

silencing construct (Figure S1). In addition, we generated a len-

tiviral knockdown construct that targeted mouse Jhdm1a and

expressed it in mouse hepatoma HepA1-6 cells. These cells express

low level of PEPCK and undetectable level of G6Pase. Silencing of

Jhdm1a in these cells elevated PEPCK expression (Figure 1F),

while expression of key gluconeogenic transcriptional regulator

Foxo1 and PGC-1a was not increased (Figure S2). We next

studied gluconeogenic gene expression in a more physiological

setting. We knocked down Jhdm1a in primary mouse hepatocytes

using adenovirus and found that PEPCK and G6Pase expression

was increased as well (Figure 1G). These results collectively

demonstrated a negative role of Jhdm1a in gluconeogenic gene

expression. Finally, we determined whether Jhdm1a regulates

other metabolic pathways in HepG2 cells. We found that knock-

down of Jhdm1a did not affect expression of any examined genes

involved in lipogenesis, fatty acid oxidation, glycolysis, or glyco-

genolysis (Figure 1C), suggesting a quite specific metabolic func-

tion of Jhdm1a.

Ectopic expression of Jhdm1a suppresses gluconeogenic
gene expression in a demethylation activity-dependent
manner

Given that knockdown of Jhdm1a elevates gluconeogenic gene

expression, we examined whether an opposite effect could be

observed in cells expressing Jhdm1a. We stably expressed Jhdm1a

via lentivirus in liver cells and found that this expression decreased

both basal and hormonal-stimulated levels of PEPCK and G6Pase

mRNA (Figure 2A and Figure S3). Interestingly, and in agreement

with the knockdown data (Figure 1B), ectopic expression of

demethylase Jhdm1b, which is closely related to Jhdm1a, did not

inhibit gluconeogenic gene expression (Figure 2B and Figure S4).

To determine the domains in Jhdm1a that are required for its

suppressive function, we generated a series of Jhdm1a mutants. We

first confirmed that these mutants were capable of producing stable

proteins at a similar level, as judged by plasmid transfection in Hela

cells (Figure 2A). We then expressed the mutants in HepG2 cells

Author Summary

Histones are small proteins that are essential for packaging
and ordering genetic information (DNA) into high-order
chromatin structures. Methylation of specific lysine resi-
dues of histones alters chromatin structure, serving as an
important epigenetic mechanism for regulation of gene
expression. The dynamic nature of histone methylation is
controlled by a balance of methyltransferases and
demethylases. We have discovered here that the demethy-
lase Jhdm1a negatively regulates gluconeogenesis (de
novo glucose synthesis) through suppressing the expres-
sion of two rate-limiting gluconeogenic enzymes. Gluco-
neogenesis is required for maintaining blood glucose
homeostasis; yet, in diabetes mellitus, this process is
unrestrained and is a major contributor to hyperglycemia.
Indeed, we have found that manipulation of Jhdm1a level
in liver affects glucose production in normal mice and
hyperglycemia in diabetic mice. Mechanistically, Jhdm1a
actively removes dimethyl groups from histone H3K36
along the locus of a key gluconeogenic regulator, C/EBPa,
which in turn results in decreased C/EBPa expression. Our
findings thus identify histone demethylation as a novel
regulatory mechanism for gluconeogenesis and have
important implications for the treatment of diabetes.

A Histone Demethylase Regulates Gluconeogenesis
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Figure 1. Knockdown of Jhdm1a specifically upregulates PEPCK and G6Pase expression in cultured hepatic cells. (A) HepG2 cells were
treated with DMSO, NOG (1 mM), or DMOG (0.1 mM) for 12 hr. (B) shRNA-mediated screen. Each bar represents a single shRNA construct. Data were
presented as fold relative to the scramble control. (C) Jhdm1a was knocked down in HepG2 cells with shRNA lentiviruses. Left, gene expression data
were presented as fold relative to the scramble control from three experiments. Full names of individual genes are listed in Table S1. Right, levels of
PEPCK and G6Pase protein were determined. (D) Jhdm1a knockdown or scramble HepG2 cells were treated with NOG (1 mM) for 12 hr. (E) Jhdm1a
knockdown or scramble HepG2 cells were treated with a combination of dibutyryl cyclic-AMP (cAMP, 0.5 mM) and dexamethasone (Dex, 1 mM) in
DMEM medium for 6 hr. Data were from two experiments. (F) Lentiviral knockdown of Jhdm1a in mouse hepatoma HepA1-6 cells. Data were from
two experiments. (G) Adenoviral knockdown of Jhdm1a in mouse primary hepatocytes. Experiments were repeated three times with similar results.
doi:10.1371/journal.pgen.1002761.g001

A Histone Demethylase Regulates Gluconeogenesis
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through lentivirus with a similar, low infection efficiency. Deletion

of the JmjC domain or the CXXC Zinc finger domain abolished the

suppression on PEPCK and G6Pase expression, whereas mutant

lacking either the PHD domain or the F-box and Leucine-rich

repeats remained fully functional (Figure 2A and Figure S3). Note

that these Jhdm1a mutants were expressed at similar mRNA levels

as their wild-type counterpart. The JmjC domain harbors the

histone demethylation activity. Consistent with the effect of the

JmjC deletion mutant, a demethylation-dead point mutant (H212A)

[20] of Jhdm1a was no longer able to suppress PEPCK and G6Pase

expression (Figure 2A and Figure S3). We next determined the

effect of Jhdm1a on glucose production in vitro. We found that

ectopic expression of wild type Jhdm1a, but not the demethylation

defective mutants, inhibited glucose production in rat hepatoma

FAO cells (Figure 2C). Taken together, these results demonstrate

that both the demethylation activity and the CXXC Zinc finger

domain of Jhdm1a are required for its negative modulation of

gluconeogenic gene expression.

Figure 2. Suppression of gluconeogenic gene expression by Jhdm1a requires its demethylation activity. (A) (Left panel) Jhdm1a
constructs were tagged with HA and transfected into Hela cells to ensure they express stable proteins. Co-transfected Flag-PPARd serves as
transfection and loading control. (Right, three panels) Jhdm1a constructs were lentivirally expressed in HepG2 cells. Data were shown from one
representative of five experiments with similar results. (B) Lentiviral expression of Jhdm1b does not suppress gluconeogenic gene expression. (C)
Jhdm1a constructs were lentivirally expressed in rat hepatic FAO cells and glucose production was measured. Data were from triplicates. **, P,0.01.
doi:10.1371/journal.pgen.1002761.g002

A Histone Demethylase Regulates Gluconeogenesis
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Jhdm1a regulates gluconeogenesis in vivo
Based on our discovery of the regulatory role of Jhdm1a in vitro,

we tested whether Jhdm1a regulates gluconeogenesis in live

animals. We obtained five lentiviral Jhdm1a knockdown constructs

from Open Biosystems and tested their knockdown efficiency by

RT-QPCR in mouse cell culture. We transferred two best ones

into an adenoviral vector, generated adenoviruses, and further

confirmed that they were able to reduce ectopically expressed

Jhdm1a protein level in vitro (Figure S5). The viruses were infused

into the liver of wild-type C57BL/6J mice via tail vein injection

and endogenous Jhdm1a expression was decreased, which led to a

significantly increase in hepatic expression of PEPCK and G6Pase

in both fed and fasting states, compared with the scramble control

(Figure 3A, Figure S6 and S7). A corresponding enhanced PEPCK

and G6Pase protein production was observed (Figure 3A). Blood

insulin levels examined at fed state were not significantly different

(Figure 3B). Although the Jhdm1a knockdown mice were still

able to maintain normal glycemia, they displayed higher glucose

Figure 3. Jhdm1a regulates gluconeogenesis in vivo. (A) Jhdm1a knockdown or scramble adenoviruses were transduced into the liver of wild-
type male C57BL/6J mice (n = 5 per group). Mice fed ad libitum were sacrificed at Day 5 after viral infusion. (Left) mRNA levels of PEPCK, G6Pase and
Jhdm1a in the liver were measured and normalized to U36b4. **, P,0.005. (Right) PEPCK and G6Pase protein. (B) Blood insulin levels at fed state were
measured at Day 5. (C) Jhdm1a knockdown or scramble adenoviruses were transduced into the liver of wild-type male C57BL/6J mice (n = 10 per
group). At Day 5, mice were i.p. injected with pyruvate (2 g/kg body weight) after a starvation for 16 hr and blood glucose levels were measured. *,
P,0.05. (D and E) Adenoviruses expressing wild-type Jhdm1a, H212A point mutant, or GFP were transduced into the liver of male ob/ob mice (n = 5
per group). Gene expression was measured on Day 5 and blood glucose levels were measured on Day 3 after a 5-hr fasting. Changes of blood glucose
level relative to Day 0 are presented. *, P,0.03; **, P,0.01. (F) Hepatic Jhdm1a mRNA levels in male C57BL/6J mice (n = 5 per group) fed ad libitum, or
fasted for 5 hr or 20 hr. (G) Male C57BL/6J mice (n = 4) were i.p. injected with glucagon (300 mg/kg), insulin (0.75 U/Kg), or PBS. Hepatic Jhdm1a
mRNA levels were examined 6 hr after injection. (H) Hepatic Jhdm1a mRNA levels in lean mice and diabetic ob/ob mice (n = 3 per group).
doi:10.1371/journal.pgen.1002761.g003

A Histone Demethylase Regulates Gluconeogenesis
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production upon injection of the gluconeogenic substrate pyruvate

(Figure 3C). We next ectopically expressed either wild-type Jhdm1a

or the H212A point mutant in the liver of diabetic ob/ob mice.

Expression of the wild-type Jhdm1a, but not the H212A point

mutant, decreased the expression of PEPCK and G6Pase

(Figure 3D). Accordingly, we observed a statistically significant

reduction of blood glucose level in ob/ob mice expressing wild-type

Jhdm1a (Figure 3E). Thus, Jhdm1a indeed has a physiological role

in hepatic gluconeogenesis in vivo, and this role is mediated by its

histone demethylation activity.

Gluconeogenesis is activated during fasting and suppressed by

a meal. Interestingly, the hepatic expression Jhdm1a was not

changed during either a short-fasting (5 hr) or a long-fasting (20 hr)

(Figure 3F). Furthermore, administration of either glucagon or

insulin in vivo revealed no difference in Jhdm1a expression

(Figure 3G). Likewise, treatment of HepG2 cells with dibutyryl

cyclic-AMP and dexamethasone or insulin had no effect on Jhdm1a

expression (Figure S8). Although we cannot rule out the possibility

of post-transcriptional regulation of Jhdm1a by hormonal signaling,

these data, together with the observed effects of Jhdm1a on PEPCK

and G6Pase expression in both non-stimulatory and stimulatory

conditions (Figure 1C and 1E, Figure 3A, and Figures S6 and S7),

indicate that Jhdm1a acts as a negative regulatory mechanism to

fine-tune baseline gluconeogenesis. In diabetic ob/ob mice, Jhdm1a

expression was elevated (Figure 3H), possibly reflecting a feedback

response.

Regulation of gluconeogenesis by Jhdm1a is mediated
through C/EBPa expression

We explored how Jhdm1a regulates gluconeogenesis. We initially

speculated that Jhdm1a might associate with the transcriptional

regulator complex on the promoters of PEPCK and G6Pase and

directly regulate their expression. To test this idea, we performed

chromatin immunoprecipitation experiments in HepG2 cells

ectopically expressing HA-tagged Jhdm1a. Unexpectedly, Jhdm1a

did not associate with either PEPCK promoter or G6Pase promoter

(Figure S9). The promoter regions we examined have been well

characterized previously and are subjected to extensive regulation

by an array of transcription regulators [6–9]. The lack of association

of Jhdm1a with PEPCK and G6Pase promoters indicates to us that

Jhdm1a might not directly regulate the expression of these two

genes. We thus considered a possibility that Jhdm1a instead re-

gulates the expression of any of the involved transcription factors or

co-factors [10], [11]. We knocked down Jhdm1a in HepG2 cells and

examined their expression. We found that the transcription factor

C/EBPa was the only one whose expression level was significantly

increased (Figure 4A). Similarly, knockdown of Jhdm1a promoted

C/EBPa expression in primary mouse hepatocytes (Figure 4B). As a

result of increased C/EBPa level, the association of C/EBPa with

its binding sites within the PEPCK and G6Pase promoters was

strongly enhanced in Jhdm1a knockdown HepG2 cells (Figure 4C).

Members of C/EBPs were shown to activate the expression of

PEPCK and G6Pase in vitro [24], [25]. We confirmed these

previous results and also observed a remarkably similar target gene

expression pattern between Jhdm1a silencing and C/EBPa ectopic

expression (comparing Figure 1C and Figure 4D), supporting a

functional connection between Jhdm1a and C/EBPa.

Previous work by others has also demonstrated an essential in

vivo role of C/EBPa in hepatic PEPCK and G6Pase expression

[26–29]. Importantly, we found that in vivo knockdown of Jhdm1a

in the mouse liver increased the level of C/EBPa (Figure 4E and

Figure S10). Conversely, exogenous expression of Jhdm1a in the

liver suppressed C/EBPa expression, whereas the H212A point

mutant had no effect (Figure 4F). To further examine whether the

action of Jhdm1a is C/EBPa-dependent, we knocked down both

Jhdm1a and C/EBPa in hepatic cells. The increase of PEPCK

and G6Pase expression caused by Jhdm1a knockdown was greatly

diminished in the double knockdown cells (Figure 4G). The results

together suggest that Jhdm1a regulates gluconeogenesis, at least in

part, through its control of C/EBPa expression. As previously

noted [11], C/EBPa expression remained unchanged during

both short and long fasting (data not shown), in agreement with

our observation that Jhdm1a expression was not affected by these

conditions.

USF1 mediates the recruitment of Jhdm1a to the C/EBPa
promoter

To identify the molecular mechanism by which Jhdm1a regulates

C/EBPa expression, we first examined whether Jhdm1a associates

with the C/EBPa locus. The C/EBPa locus contains a single exon.

We expressed HA-tagged Jhdm1a in hepatic cells and performed

chromatin immunoprecipitation experiments using antibody against

the HA tag. We found that Jhdm1a was associated with the C/EBPa
promoter region but not with the intragenic region (Figure 5A).

Interestingly, this promoter region contains four separate transcrip-

tion factor USF1 binding sites that have been implicated in C/EBPa
expression [30], [31] and Jhdm1a was present on three of them. An

interaction between Jhdm1a and USF1 was readily detected in cells

expressing both of them (Figure 5B). Moreover, reduction of USF1

level by shRNA-mediated silencing diminished the association of

exogenous Jhdm1a with these sites (Figure 5C). Despite the high

background of the Jhdm1a antibody, we were also able to show that

endogenous Jhdm1a associated with the USF1 binding sites, since

knockdown of Jhdm1a decreased its association with these sites

(Figure S11). Functionally, knockdown of USF1 led to an increase of

C/EBPa expression and accordingly, an increase of PEPCK

expression (Figure 5D). These data suggest a model in which USF1

recruits Jhdm1a to the C/EBPa promoter to negatively regulate its

expression.

Jhdm1a actively demethylates dimethylated H3K36 on
the C/EBPa locus

Given the association of Jhdm1a with the C/EBPa promoter,

we examined whether Jhdm1a modulates the H3K36 methylation

pattern on the C/EBPa locus. Knockdown of Jhdm1a increased

H3K36 dimethylation in the 39 exon region and 39 UTR that is

close to the exon, but had little effect on H3K36 dimethylation on

the promoter, 59 exon region, and 39UTR that is located far away

from the exon (Figure 6A). This pattern of modulation is in

concord with the previously shown genome-wide distribution of

H3K36 dimethylation where it is mostly found in the intragenic

region and usually peaks toward 39 exon [15]. The demethylation

by Jhdm1a is gene-specific, as knockdown of Jhdm1a did not in-

crease H3K36 dimethylation at the C/EBPb locus (Figure 6B).

Moreover, knockdown of Jhdm1a did not affect the H3K36

trimethylation pattern at the C/EBPa locus (Figure 6C), consistent

with the enzymatic property of Jhdm1a to specifically demethylate

dimethylated H3K36 [20]. Next, we examined the effect of

ectopically expressed Jhdm1a on H3K36 dimethylation at the C/

EBPa locus. We found that expression of wild type Jhdm1a, but

not of the H212A mutant, led to a significant decrease of K36

dimethylation (Figure 6D). These results suggest that Jhdm1a

demethylates dimethylated H3K36 at the C/EBPa locus, hence

directly regulating its expression.

We determined whether the H3K36 dimethylation status at the

C/EBPa locus is modulated by hormonal signaling or metabolic

states. In agreement with Jhdm1a expression (Figure 3F and 3G,

A Histone Demethylase Regulates Gluconeogenesis
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Figure 4. Jhdm1a regulates the expression of C/EBPa, thereby indirectly modulating gluconeogenic gene expression. (A) Jhdm1a was
knocked down in HepG2 cells with shRNA lentiviruses. Expression levels of known transcriptional regulators for gluconeogenesis were examined.
Data are presented as fold relative to the scramble control from three experiments. ***, P,0.00005. (B) C/EBPa expression in Jhdm1a knockdown
mouse primary hepatocytes. (C) Jhdm1a was knocked down in HepG2 cells with shRNA lentiviruses. Endogenous C/EBPa association with known
binding sites on the PEPCK and G6Pase promoters was examined by ChIP assay. (D) Gene expression in HepG2 cells infected with lentiviruses
expressing C/EBPa or vector. (E) Increased C/EBPa expression in the liver of wild-type C57BL/6J mice (n = 5 per group) with Jhdm1a knockdown. C/
EBPa mRNA level and protein level were shown from independent groups of mice. **, P,0.02. (F) Decreased C/EBPa expression in the liver of ob/ob
mice (n = 5 per group) ectopically expressing wild-type Jhdm1a, but not in the liver expressing H212A point mutant. ***, P,0.001. (G) HepG2 cells

A Histone Demethylase Regulates Gluconeogenesis
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and Figure S8), we found that levels of H3K36 dimethylation

remained unchanged in HepG2 cells treated with hormones

(Figure S12) or in livers of fasted mice (Figure 6E), supporting the

idea that Jhdm1a and H3K36 dimethylation at the C/EBPa locus

are primarily involved in basal control of gluconeogenesis.

Interestingly, H3K36 dimethylation was significantly decreased

at the exon region of C/EBPa locus in diabetic ob/ob mice

(Figure 6F), likely due to increased Jhdm1a expression (Figure 3H).

These data suggest a possible physiological, compensatory attempt

to suppress hyperglycemia in ob/ob mice.

Discussion

In recent years, a number of histone demethylases have been

identified [17–20]. While these exciting discoveries dramatically

reversed our previous view that histone methylation was a stable,

non-erasable marker, our knowledge regarding the functions of

these demethylases in biological processes and diseases is very

limited. Here, through an shRNA screen against the known

histone demethylases, we identify Jhdm1a negatively regulates

gluconeogenic gene PEPCK and G6Pase expression both in vitro

and in vivo. Phenotypically, silencing of Jhdm1a elevates glucose

production, whereas its ectopic expression lowers blood glucose

levels in diabetes. Interestingly, our studies suggest that Jhdm1a

does not appear to control PEPCK and G6Pase expression

directly. Rather, Jhdm1a exerts its function through C/EBPa. The

role of C/EBPa in gluconeogenesis has been well established [25–

29]. We found that Jhdm1a negatively modulates the expression of

C/EBPa through active demethylation on the C/EBPa locus.

Therefore, our work potentially uncovers a novel molecular

mechanism in gluconeogenesis, where histone demethylation

regulates a key gluconeogenic transcription factor. However, it is

important to note that our in vivo studies were performed using

adenoviral infusion to acutely manipulate hepatic Jhdm1a level,

therefore, chronic and more physiological and pathophysiological

roles of Jhdm1a in gluconeogenesis remain to be addressed in

detail with liver-specific Jhdm1a knockout and transgenic models.

In addition, as genetic variations at the Jhdm1a locus are present

in human population, it will be interesting to analyze whether

these variations are associated with type 2 diabetes.

It was hypothesized that histone demethylases might be important

for metabolic homeostasis [21]. This is supported by the obese

phenotype of mice deficient for H3K9 histone demethylase, Jhdm2a

[32], [33]. Our demonstration of Jhdm1a functioning in gluconeo-

were infected with lentiviruses expressing C/EBPa shRNA and selected with puromycine. Cells were then infected with lentiviruses expressing
Jhdm1a shRNA without selection. Data were shown from one representative of four experiments. Note, the low induction of PEPCK and G6Pase
expression by Jhdm1a knockdown is due to the lack of selection pressure.
doi:10.1371/journal.pgen.1002761.g004

Figure 5. Suppression of C/EBPa expression by Jhdm1a is mediated by USF1. (A) Jhdm1a associates with putative USF1-binding sites on
the C/EBPa promoter region. Adenoviral HA-Jhdm1a were expressed in HepG2 cells and ChIP assays were performed with HA antibody. Data were
shown from one representative of three experiments with similar results. (B) Jhdm1a interacts with USF1. Hela cells were co-transfected with
indicated plasmids. Cell extracts were incubated with HA beads and immunoprecipitates were probed with Flag antibody. (C) HA-Jhdm1a
(adenoviral) along with shRNA (lentiviral) against USF1 was co-expressed in HepG2 cells. ChIP assays were performed with HA antibody. (D) Gene
expression in HepG2 cells expressing lentiviral USF1 shRNA. Data were shown from one representative of three experiments.
doi:10.1371/journal.pgen.1002761.g005
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genesis provides another example. It is anticipated that future studies

will reveal additional histone demethylases as important regulators of

energy metabolism. Histone demethylases are considered as global

modifiers of chromatin structure, however, it is clear that a particular

demethylase only regulates a small subset of genes and therefore, a

specific metabolic pathway. This specificity is likely to be determined

by the target tissue, the repertoire of transcriptional regulators in that

tissue, and whether this particular demethylation on individual gene

locus is sufficient to translate into a gene expression readout.

Histone H3K36 di- and trimethylation have been shown to be

associated with actively transcribed genes and their levels peak

near the 39 end of the gene [14–16], [34]. In yeast, K36 di- and

trimethylation have been implicated in transcriptional elongation

by preventing cryptic, intragenic transcription [35–37]. In higher

eukaryotes, the exact function of K36 methylation is poorly

understood. We show here that Jhdm1a demethylates dimethy-

lated H3K36 on the C/EBPa locus and negatively regulates its

expression. Although we cannot rule out the possibility that

changes of dimethylated H3K36 level are secondary due to C/

EBPa expression, the requirement for the demethylase activity of

Jhdm1a and the unaffected H3K36 trimethylation on the C/

EBPa locus strongly argue that this is unlikely. Jhdm1b is another

Figure 6. Jhdm1a specifically demethylates dimethylated H3K36 on the C/EBPa locus. (A) Knockdown of Jhdm1a increases H3K36
dimethylation (H3K36me2) on the C/EBPa locus. Data were shown from one representative of three independent experiments with similar results. (B)
Knockdown of Jhdm1a does not affect H3K36me2 on the C/EBPb locus. (C) Knockdown of Jhdm1a does not increase H3K36 trimethylation
(H3K36me3) on the C/EBPa locus. (D) Wild-type Jhdm1a, but not the H212A point mutant, decreases H3K36me2 on the C/EBPa locus. (E) H3K36me2
on the C/EBPa locus is not modulated by feeding/fasting conditions. n = 4 per group. (F) Decreased H3K36me2 on the C/EBPa locus in ob/ob mice.
n = 4 per group. **, P,0.01.
doi:10.1371/journal.pgen.1002761.g006
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demethylase that targets dimethylated H3K36. Jhdm1b-mediated

demethylation was recently shown to negatively regulate the ex-

pression of the p15Ink4b tumor suppressor [38]. These studies sug-

gest a positive role of H3K36 dimethylation for gene expression.

Our data suggest that Jhdm1a is recruited by USF1 to the

USF1-binding sites within the C/EBPa promoter. A recent study

shows that Jhdm1a, through its CXXC Zinc finger domain, as-

sociates with unmethylated CpG islands on gene promoters [39].

Indeed, the C/EBPa promoter is considerably CpG-rich, and we

find that the CXXC Zinc finger domain is required for the

suppressive function of Jhdm1a. Therefore, it is possible that the

CpG-rich sequences and USF1 cooperatively mediate the

recruitment of Jhdm1a. One interesting observation in our study

is that Jhdm1a demethylates C/EBPa intragenic region that lacks

detectable association. It is possible that the initial recruitment by

USF1 to the promoter is a relatively stable state, but following

recruitment, Jhdm1a moves along the gene body to demethylate

dimethylated H3K36. Thus the association of Jhdm1a with the

gene body might be transient and difficult to capture. There are

precedents of similar observations. For example, ChIP-seq studies

reveal that, for actively transcribed genes, Pol II is predominantly

detected at transcription start sites, not transcribed regions [16].

PHF8, a H4K20/H3K9 demethylase, was found to demethylate

regions that it does not associate with [40]. Clearly, how epigenetic

enzymes are recruited and are able to modify chromatin structure

in a widespread fashion is a fascinating question to be fully

understood.

While Jhdm1a-catalyzed histone demethylation regulates glu-

coneogenesis through an indirect mechanism by targeting C/

EBPa, a previous report has postulated that dimethylation of his-

tone H3 arginine 17 has a direct impact on gluconeogenic gene

expression, as the level of this modification on the PEPCK pro-

moter increases with dexamethasone treatment and decreases

upon subsequent addition of insulin [41]. However, the molecular

events responsible for and the functional outcome of this change

were unknown. Nevertheless, their studies, along with ours, in-

dicate that histone methylation/demethylation could be more

commonly employed than we appreciated to regulate gluconeo-

genesis at multiple layers. To our surprise, Jhdm1a expression,

hence the H3K36 dimethylation status at the C/EBPa locus, are

not influenced by fed and fasted states and hormonal signaling.

Our data indicate that, under normal conditions, Jhdm1a-

mediated demethylation primarily function in maintaining basal-

state gluconeogenesis irrespective of nutritional and hormonal

cues. In support of this model, we found that knockdown of

Jhdm1a in mice elevates the expression of C/EBPa, PEPCK and

G6Pase in both fed and fasted states. Mechanisms controlling

hormonal-regulated gluconeogenesis have been extensively studies

[11], less was understood for basal-state gluconeogenesis. Our

work provides insights into this key process. Interestingly, in

diabetic state, Jhdm1a expression is increased and H3K36

dimethylation at the C/EBPa locus is decreased, indicating a

possible involvement of Jhdm1a in counteracting hyperglycemia.

Thus, under pathophysiological conditions such as obesity and

insulin resistance, the expression and/or activity of Jhdm1a can be

modulated by currently unknown mechanisms. In addition, we

find that in fetal liver, Jhdm1a is highly expressed and C/EBPa
level is very low; in neonatal stage, hepatic Jhdm1a level decreases

and C/EBPa level increases (our unpublished data). As gluconeo-

genesis occurs in neonatal stage but not in embryonic stage,

whether Jhdm1a is involved in this metabolic transition during

development remains to be determined. In summary, our results

illustrate how the dynamics of H3K36 dimethylation regulates

basal gluconeogenesis and indicate that increasing the demethyl-

ation activity of Jhdm1a could potentially offer therapeutic benefits

to curb hyperglycemia.

Materials and Methods

Lentiviral knockdown
Lentiviral shRNA constructs (pGIPZ-based; Open Biosystems)

against the known human demethylases were obtained through the

RNAi Core Facility at University of Massachusetts Medical School.

All other lentiviral shRNA constructs were obtained directly from

Open Biosystems. All relevant constructs were verified and their

targeting sequences are provided in Table S1. Lentiviruses were

packaged as described [42]. After virus infection, cells were re-

plated next day and selected with puromysin for three days. Cells

were then trypsinized and plated at a similar confluency. Cells were

cultured in the presence of puromycin for two more days and total

RNA was isolated.

Lentiviral overexpression
Mouse wild-type and mutant Jhdm1a expression plasmids were

generated by standard procedure and were fully sequenced. They

were then transferred to pENTR-1A vector and recombined with

pLenti-CMV/neo to generate lentiviral constructs essentially as des-

cribed [43]. The titers of packaged lentiviruses were determined in

liver cells. Cells were infected with similar number of viral particles,

selected with G418, and cultured as above.

Gene expression
Total RNA was extracted with Trizol reagent. Gene expression

was measured by quantitative RT-PCR and normalized to in-

ternal control genes (b-actin for cells, U36b4 or cyclophilin for

liver tissue). Primer sequences are provided in Table S1.

Glucose production
Rat hepatic FAO cells expressing lentiviral Jhdm1a constructs

were washed 3 times with PBS and then incubated in glucose free

DMEM medium containing 2 mM sodium pyruvate and 20 mM

sodium lactate for 6 hr. Glucose levels in the medium were

measured with a Amplex red glucose assay kit (Invitrogen,

#A22189).

Primary mouse hepatocytes
Cells were prepared and cultured as described [24]. Cells were

infected with adenoviruses at a multiplicity of infection of 50. Two

days after infection, cells were starved for 6 hr in DMEM sup-

plemented with 0.2% BSA and 2 mM sodium pyruvate before

RNA isolation.

Adenoviral infusion and animal studies
Adenoviral Jhdm1a expression and knockdown constructs and

their respective control constructs were generated, and adenovi-

ruses were produced and purified as described [42], [44]. Viral

titers were determined in HEK293 cells by scoring GFP positive

cells. Male wild-type C57BL/6J and ob/ob (on C57BL/6J back-

ground) mice were obtained from The Jackson Laboratory.

Adenoviruses (46109 and 96109 viral particles for expression

and knockdown, respectively) suspended in 0.2 ml PBS were

injected through tail vein when animals were 10-week-old. Blood

glucose levels were measured at indicated time and animals were

sacrificed at Day 5. For pyruvate tolerance test, mice were fasted

for 16 hr and sodium pyruvate dissolved in PBS was i.p. injected

(2 g/kg body weight).
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To determine the levels of liver PEPCK, G6Pase and C/EBPa
protein, 50 mg liver sample were homogenized in 1 ml lysis buffer

[100 mM NaCl, 50 mM Tris (pH 7.5), 0.5% Triton X-100, 5%

(w/v) glycerol]. 26 mg protein extracts were separated by SDS-

PAGE and probed with antibody against C/EBPa (Santa Cruz,

sc-61), PEPCK (ABcam, ab28455) or G6Pase (Santa Cruz, sc-

25840).

Co-immunoprecipitation
HA-Jhdm1a and Flag-USF1 plasmids were co-transfected into

Hela cells. Cells were lysed in buffer [100 mM NaCl, 50 mM Tris

(pH 7.5), 0.5% Triton X-100, 5% (w/v) glycerol]. Cell extracts

were incubated with anti-HA beads (Santa Cruz, sc-7392AC)

for overnight and the beads were washed 4 times with buffer

[100 mM NaCl, 50 mM Tris (pH 7.5), 0.1% Triton X-100, 5%

glycerol]. Immunoprecipitates were probed with an anti-Flag an-

tibody (Sigma, F7425).

ChIP assays
Assays were performed as described [42] using antibodies

against HA (Sigma, #H6908), C/EBPa (Santa Cruz, sc-61),

dimethyl-H3K36 (Millipore, #07274), trimethyl-H3K36 (Abcam,

#9050). Immunoprecipitate signal was normalized with input

signal; both were measured by real-time QPCR. Primer sequences

are provided in the Table S1.

For ChIP assays performed with liver samples, samples were

generated as described with minor modifications [45]. Briefly, parts of

liver from same locations were excised, cut into small pieces with a

razor blade, cross-linked with 1% formaldehyde for 15 minutes at

room temperature. The samples were then ground and filtered

through a 40 mm cell strainer to produce a single liver cell suspension.

Nuclear extracts were prepared, chromatin was sonicated using a

ultrasonic processor, and immunoprecipitation was performed as

described [42]. An equivalent of 40 mg of liver tissue was used

for each immunoprecipitaiton. After normalized with inputs, ChIP

signals were calculated as folds relative to background signal (IgG)

generated from the same animal.

Statistical analysis
Student’s t test (two-tailed) was used for statistical analysis.

P,0.05 was considered significant. Data are presented as mean 6

s.e.m.

Supporting Information

Figure S1 Induction of gluconeogenic gene expression by

Jhdm1a knockdown. Lentiviruses expressing a second human

Jhdm1a shRNA construct were infected into HepG2 cells. Cells

were re-plated and selected with puromycin. Gene expression was

analyzed with qRT-PCR. Data were shown as mean 6 s.e.m.

Targeting sequence of the second human shRNA-Jhdm1a is

available on Table S1.

(PPT)

Figure S2 Gene expression by Jhdm1a knockdown in HepA1-6

cells. Lentiviruses expressing mouse Jhdm1a shRNA construct

were infected into HepA1-6 cells. Cells were re-plated and selected

with puromycin. Gene expression was analyzed with qRT-PCR.

Data were shown as mean 6 s.e.m.

(PPT)

Figure S3 Jhdm1a suppresses hormone-stimulated gluconeo-

genic gene expression. HepG2 cells in 12-well plates were infected

with same number of lentivirus particles expressing wild type or

mutant Jhdm1a. Cells were selected with G418 and treated with

dibutyryl cyclic-AMP (cAMP, 0.5 mM) and dexamethasone (Dex,

1 mM) for 6 hr. Gene expression were analyzed with qRT-PCR.

(PPT)

Figure S4 Jhdm1b does not suppress gluconeogenic gene

expression. HepG2 cells were infected with same number of

lentivirus particles expressing Jhdm1b or vector control. Cells were

selected with G418 and treated with dibutyryl cyclic-AMP (cAMP,

0.5 mM) and dexamethasone (Dex, 1 mM) for 6 hr. Gene

expression were analyzed with qRT-PCR. Data are shown as

mean 6 s.e.m.

(PPT)

Figure S5 Adenoviral Jhdm1a shRNA constructs knock down

ectopically expressed Jhdm1a. HEK293 cells in 6-well plates were

infected with mouse Jhdm1a shRNA adenoviruses at an MOI of

20. HA-tagged mouse Jhdm1a expression plasmid was transfected

into the cells next day. Western blot was performed to detect HA-

Jhdm1a protein level with an HA antibody.

(PPT)

Figure S6 Gluconeogenic gene expression in fasted mice. Ten-

week-old wild-type male C57BL/6J mice (n = 5 per group) were

transduced with Jhdmla shRNA adenoviruses. Mice were fasted

for 20 hr and then immediately sacrificed at Day 5. Genes

expression were analyzed in liver samples with qRT-PCR. Data

are shown as mean 6 s.e.m.**P,0.001.

(PPT)

Figure S7 Gluconeogenic gene expression in fasted mice with a

second Jhdm1a knockdown construct. Ten-week-old wild-type

male C57BL/6J mice were transduced with adenoviruses

expressing a second Jhdm1a knockdown construct. Mice were

fasted for 20 hr and then immediately sacrificed at Day 5. Genes

expression were analyzed in liver samples with qRT-PCR. (n = 5).

Data are shown as mean 6 s.e.m. *P,0.05, **P,0.01.

(PPT)

Figure S8 Jhdm1a expression was not affected by hormones in

HepG2 cells. HepG2 cells were treated with dibutyryl cyclic-AMP

(cAMP, 0.5 mM) and dexamethasone (Dex, 1 mM) or insulin

(10 nM) for 5 hr. Genes expression was analyzed with qRT-PCR.

Data are shown as mean 6 s.e.m.

(PPT)

Figure S9 Jhdm1a does not associate with PEPCK promoter or

G6Pase promoter. HepG2 cells were infected with HA-Jhdm1a or

GFP adenoviruses. CHIP assays were performed with an HA

antibody.

(PPT)

Figure S10 C/EBPa gene expression in fasted mice with a

second Jhdm1a knockdown construct. Ten-week-old wild-type

male C57BL/6J mice (n = 5) were transduced with purified

adenoviruses expressing a second Jhdm1a shRNA construct. Mice

were fasted for 20 hr and then immediately sacrificed at Day 5.

Genes expression and protein were analyzed in liver samples. Data

are shown as mean 6 s.e.m. **P,0.01.

(PPT)

Figure S11 Endogenous Jhdm1a associates with the USF1-

binding sites. ChIP assays were performed with an antibody

against Jhdm1a (Abcam, #ab27867) in HepG2 cells expressing

lentiviral Jhdm1a shRNA or scramble control. Data are shown as

fold of association relative to the scramble control.

(PPT)

Figure S12 Hormonal treatment does not affect H3K36

dimethylation on C/EBPa locus in HepG2 cells. HepG2 cells
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were treated with dibutyryl cyclic-AMP (cAMP, 0.5 mM) and

dexamethasone (Dex, 1 mM), or insulin (10 nM) for 5 hr. ChIP

assays were performed with an antibody against dimethyl-H3K36.

(PPT)

Table S1 Gene full names and sequences of primers used in this

study.

(DOC)
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