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Abstract: Platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC) are orthobiologic
therapies considered as an alternative to the current therapies for muscle, bone and cartilage. Different
formulations of biomaterials have been used as carriers for PRP and BMAC in order to increase
regenerative processes. The most common biomaterials utilized in conjunction with PRP and BMAC
clinical trials are organic scaffolds and natural or synthetic polymers. This review will cover the
combinatorial strategies of biomaterial carriers with PRP and BMAC for musculoskeletal conditions
(MsCs) repair and regeneration in clinical trials. The main objective is to review the therapeutic use
of PRP and BMAC as a treatment option for muscle, bone and cartilage injuries.

Keywords: Platelet Rich Plasma (PRP); bone marrow aspirate concentrate (BMAC); biomaterials;
muscle; bone; cartilage

1. Introduction

Musculoskeletal conditions (MsCs) include several diseases that affect muscles, bones and
cartilage [1]. MsCs are extremely prevalent and are responsible for more than USD 790 billion in health
care costs per year in the United States alone [2]. Treatment of MsCs remains a challenging problem
in traumatology, especially when there are volumetric losses and the damage exceeds the recovery
capacity of the tissue.

Muscle injuries can occur through direct causes (e.g., lacerations, contusions, and strains) or
indirect causes (e.g., ischemia, neurological dysfunction and hereditary myopathies) [3]. They are the
most frequent cause of physical incapacity in sports practice [4]. Currently, the management of muscle
injury is rest, ice, compression and elevation [4]. Anti-inflammatory medications [4,5], rehabilitation
exercise programs [6–9], electrotherapeutic modalities, and hyperbaric oxygen therapy are used as
well [10,11].

Bone injuries represent a challenging problem in traumatology. They entail a sustained increase in
hospitalization, increased risk of complication, and associated increase in expense. The gold standard
treatment for bone defect is the use of autologous bone graft [12]. However, it is associated with
significant donor site morbidity and limited by the amount available for grafting, which has resulted
in efforts to obtain biocompatible bone substitutes.

Osteochondral lesions represent an important type of bone injury as they result in significant
health problems and are a leading cause of disability worldwide. Specifically, osteochondral lesions are
defects on cartilage surfaces and are often related to traumatic origin (joint dislocation, ligament tear,
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meniscus tear, and fall/impact) [13–15]. The biomechanical properties of hyaline cartilage are easily
compromised by traumatic injuries and cartilage has poor healing ability [16]. Thereby, the lesion may
be irreparable and lead to chronic symptoms and early osteoarthritis (OA) [17]. Currently, treatments
involve surgical procedures (chondroplasty, microfracture and spongialisation) or transplantation with
an autograft or allograft. When the cartilage is severely damaged, a surgical procedure is necessary to
replace the damaged tissue with a prosthetic device [14,15]. Despite all these advances in orthopedic
field, the treatment for cartilage injuries remains challenging.

Musculoskeletal tissue engineering has been viewed as a viable alternative to the conventional
therapies for muscle, bone and cartilage injuries. One of the goals of musculoskeletal tissue engineering
is the delivery of cells or bioactive molecules to the tissue in order to increase tissue regeneration and
repair [13]. Many types of biomaterials have been developed with this purpose and many of them
have already been used in combination with platelet-rich plasma (PRP) and bone marrow aspirate
concentrate (BMAC).

PRP and BMAC can be seen as orthobiologic therapies composed by cells, growth factors and
bioactive molecules important to promote musculoskeletal tissue regeneration [18]. A growing number
of pre-clinical and clinical trials have demonstrated the efficacy of PRP to treat muscle, bone and
cartilage injuries. However, the use of PRP in orthopedics is still limited, especially due a lack of
standardization of platelet-separation techniques [19]. The use of BMAC in clinical trials is recent when
compared to PRP, however, good to excellent outcomes have been reported with BMAC, principally to
treat cartilage injuries [18].

This review will cover the outcomes from clinical trials with PRP and BMAC and the combinatorial
strategies of biomaterial carriers for MsCs treatment. The results from clinical trials will be summarized
and discussed. Different preparations of PRP will be classified and explained. In a similar manner,
the BMAC properties will be explained and the results from clinical trials will be discussed. Finally,
the expansive literature on PRP, BMAC and biomaterials will be condensed to where these two fields
meet for MsCs.

2. Platelet-Rich Plasma (PRP)

The first definition of PRP was a volume of autologous plasma with a primary target on platelet
concentration above the baseline [20]; nonetheless, many other definitions have been proposed since
then. PRP is a source of growth factors and has been used in hundreds of pre-clinical and clinical trials;
however, the use of PRP is still controversial in orthopedics, especially due a lack of standardization of
platelet-separation techniques [19]. Delong et al., proposed the PAW classification system: P—absolute
number of platelets, A—activation methods and W—presence or absence of white cells [21]. PAW
classification was very useful, however, it did not include the method used to prepare the PRP. In
2018, Harrison et al. proposed a new classification incorporating all previous classification systems,
furthermore, including the preparation method. This new classification is based in the presence
(L-PRP) or absence of leukocytes (PRP). The type of activation: I—without activation, II—activated,
III—frozen-thawed preparations. The system used to prepare the PRP or PRF (platelet rich fibrin):
1-gravitational centrifugation, 2-Standard cell separators, 3-Platelet-pheresis. The concentration of
platelets: A—platelet count of <900 × 103/µL, B—platelet count of 900–1700 × 103/µL, C—platelet count
of >1700 × 103/µL [21]. This classification system is important to more accurately compare protocols
and results and we will use this system to classify all the PRPs used in this review.

PRP has been extensively tested in many pre-clinical and clinical trials for muscle, bone and
cartilage, a compilation of the data obtained in said clinical trials is resumed in Table 1. According to
the clinical trials website (www.clinicaltrials.gov) there exists a total of 48 trials for muscle, 40 for bone
and 18 for cartilage. For muscle injuries, the efficacy of PRP remains unclear. Hamilton et al. performed
a randomized, double-blind study with placebo group and evaluated the effect of PRP injections in
athletics. The PRP was classified as Red-L-PRP-IIB2, according to Harrison et al. classification [22]
(Table 1). However they did not observe effect in the rehabilitation of the athletes when compared with
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the controls group [23]. Similar results were also obtained by Reurink et al., they used a PRP classified
as PRP-IA2 to treat hamstring injuries and they did not observe benefit of intramuscular PRP injections
compared with the control group [24].

Table 1. Main findings of the use of platelet-rich plasma (PRP) in clinical trials according to the
tissue type.

Tissue Study System Anticoagulant Classification * Findings

Cartilage

Sanchez et al.,
2008 [25]

Manual
640× g/8 min Sodium citrate II1 (+) significant improvement of pain

Kon et al., 2010
[26]

Manual
1800 rpm/15 min
3500 rpm/10 min

Sodium citrate IIB1

(+) reduction of pain and
improvement of knee function in

younger patients with low degree of
articular degeneration

Kon et al., 2011
[27]

Manual
1480 rpm/6 min
3400 rpm/15 min

DNS IIB1 (+) PRP greater and longer efficacy
than HA injection

Lee et al., 2013
[28]

Magellan Autologous
Platelet Separator

(Medtronic Biologic
Therapeutics and

Diagnostics)

Sodium citrate IB2 (+) significant improvement in
clinical results in early OA.

Patel et al., 2013
[29]

Manual
1500 rpm/15 min

Leukocyte filtered

Citrate
phosphate
dextrose

PRP-IIA1 (+) effective to alleviate symptoms in
early knee OA

Duif et al., 2015
[30]

ACP-system (Arthrex)
1500 rpm/5 min DNS 2 (+) pain reduction, gain knee function

Filardo et al.,
2015 [31]

Manual
1480 rpm/6 min
3400 rpm/15 min

DNS Red-L-PRP-IIB1
(=) PRP do not provide a superior

clinical improvement when compared
to HA

Sanchez al,
2016 [32]

Manual
580× g/8 min Sodium citrate PRP-IIA1

(+) multiple injections of PRP are
useful in achieving better clinical

results in early OA

Gormeli et al.,
2017 [33]

Manual
1500 rpm/6 min
3500 rpm/12 min

DNS Red-L-PRP-IIB1
(+) multiple injections of PRP are
useful in achieving better clinical

results in early OA
Kaminski et al.,

2018 [34] DNS DNS II (+) increased meniscus repair

Kaminski et al.,
2019 [35]

Manual
900 rpm/9 min

3200 rpm/15 min
DNS IIB1 (+) significant improvement in the

rate of chronic meniscal tear healing

Bone

Marx et al.,
1998 [36]

Manual
5600 rpm and 2400

rpm

Citrate
Dextrose Red-L-PRP-IIB1 (+) enhanced bone graft in

mandibular fracture

Rodriguez et
al., 2003 [37]

Smart Prep (Harvest
Technologies) DNS II2 (+) effective in maxillary sinus

augmentation

Daif et al., 2012
[38]

Manual
1200 rpm/20 min
2000 rpm/15 min

Sodium citrate Red-L-PRP-IIB1 (+) enhanced bone regeneration in
mandibular fracture

Anitua et al.,
2015 [39]

Manual
580× g/8 min Sodium citrate I1 (+) enhanced healing of extraction

socket
Malhotra et al.,

2015 [40] DNS DNS PRPIB (+) fracture healing acceleration in
nonunion fractures

Tabrizi et al.,
2015 [41]

Manual
800× g/5 min

1500× g/5 min

Citrate
phosphate
dextrose

II1 (+) enhanced bone formation in bone
cavity

Ghaffarpasand
et al., 2016 [42]

Gravitational
Platelet Separation

System (GPS III;
BIOMET)

3200 rpm/15 min

Acid-citrate
dextrose B2 (+) higher cure rate and less pain in

non-union fractures

Castillo-Cardiel
et al., 2017 [43]

PRGF System III (BTI)
450× g/8 min Sodium citrate II2 (+) increase of bone intensity and

density in mandibular fractures

Acosta-Olívio
et al., 2017 [44]

Manual
1800 rpm/5 min
3200 rpm/3 min

Sodium citrate II1 (+) earlier bone consolidation in shaft
fractures
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Table 1. Cont.

Muscle

Hamid et al.,
2014 [45] GPS III DNS Red-L-PRP-IIB2

(+) PRP combined with rehabilitation
program was more effective in

treating hamstring injuries than
rehabilitation program alone

Hamilton et al.,
2015 [23]

GPS III
3200 rpm/15 min Citrate dextrose Red-L-PRPIB2 (−) no benefit of PRP injection

compared to rehabilitation in athletes

Reurink et al.,
2015 [24] ACP-system EDTA PRP-IA2

(−) no
benefit of PRP injections compared
with placebo in patients with acute

hamstring

Bubnov et al.,
2016 [46]

Manual
DNS DNS 1

(+) injections of PRP under
ultrasound guidance had higher level
of pain relief, physical recovery, and
faster regeneration compared with

conventional conservative treatment
in acute muscle trauma in

professional athletes

Martinez-zapata
et al., 2016 [47] Platelet apheresis DNS PRP-IIB3

(−) PRP did not improve the time to
healing compared to that in the

control group

Rossi et al.,
2017 [48]

Manual
1400 rpm/3 min
3000 rpm/4 min

EDTA I1

(+) PRP injection combined with a
rehabilitation program me shortened
time to return to sports compared to a

rehabilitation programme only

(+) superior results, (−) inferior results, DNS = data not shown, HA = hyaluronic acid, OA = osteoarthritis. * PRP
was classified according to DeLong et al. [21].

Martinez-Zapata et al. studied the benefit of autologous PRP, classified as PRP-IIB3 for the
treatment of muscle rupture with haematoma and found that PRP did not improve the time to healing
compared to that in the control group [47]. Hamid et al., combined PRP, classified as Red-L-PRP-IIB2,
and rehabilitation program. The authors showed the injection of PRP, combined with rehabilitation
after hamstring injury was more effective than a rehabilitation program alone [47]. Bubnov et al.
evaluated the effect of PRP guided by ultrasound after muscle injuries in athletics and they found a
reduction of pain, an improvement in the physical recovery, and faster regeneration when compared
with conventional conservative treatment [46]. However, in this study, the authors did not detail the
protocol to prepare the PRP and they did not show the concentration of cells after centrifugation,
therefore we could not properly classify the PRP used. Rossi et al. showed a shortened time to
return to sports in the group injected with PRP, when compared to the group that performed just the
rehabilitation program [48]. In this publication, we did not find information about the PRP preparation
and we could not classify the type of PRP. Thus, for muscle injuries the efficacy of PRP remains unclear.
Nevertheless, there is a need for further studies that suggest therapeutic efficacy and report detailed
quantification of the cells after PRP production.

There are several studies using PRP to treat a variety of bone injuries, for example in the treatment
of extraction socket [39,49], humeral shaft fractures [44], mandibular fractures [38,43], non-union
fractures [40,42] and others. The majority of these studies did not quantify the number of platelets and
leukocytes and it was difficult to classify the type of PRP (Table 1). However, several studies showed
positive effects of PRP for bone healing. Marx et al. prepared a PRP, classified as Red-L-PRP-IIB1, to
treat mandibular fracture and the authors have found that PRP increased the graft maturity index
and the trabecular bone area [36]. Daif et al. also used a PRP classified as Red-L-PRP-IIB1 and
obtained a similar result [38]. The results for non-union fractures treatment showed a higher cure
rate, fracture-healing acceleration and less pain in the group treated with PRP compared to the control
group [40,42]. Both PRP in these papers were classified as B (Table 1).

For cartilage injuries, the majority of the studies were designed to treat OA [28,30,31,33,50] and
the publications showed very promising outcomes. The majority of the clinical assays for cartilage
treatment quantified the number of platelets and leukocytes, thus it was possible to classify the PRP.
Kon et al. showed in two different publications the greater and longer efficacy of PRP compared to
hyaluronic acid (HA) to treat OA [26,27]. The PRP produced was classified as IIB1. Two different
publications, the first one using a PRP classified as PRP-IIA1 and the second, Red-L-PRP-IIB1, showed



Int. J. Mol. Sci. 2019, 20, 5328 5 of 22

that PRP alleviated symptoms in early knee OA [29,33]. However, Filardo et al. showed that PRP, also
classified as Red-L-PRP-IIB1, did not provide a superior clinical improvement, when compared to
HA [31]. For meniscus repair, Kaminski et al. published the outcomes from two clinical trials, showing
the use of PRP, classified as IIB1, improved the rate of chronic meniscal tear healing and increased the
meniscus repair. [34,35]. Thus, the use of PRP for cartilage seems very promising.

3. Bone Marrow Aspirate Concentrate (BMAC)

In 1966, Friedenstein et al. reported the existence of bone marrow cells capable of generating
hematopoietic cells, fibroblastic reticular cells, and bone in vivo [51]. These cells were designated as
mesenchymal stem cells (MSC) and were simply defined by the capacity to adhere to plastic substrates
and to produce colonies with self-renewal and multipotency [52,53]. MSCs are multipotent stem cells
and have been used in the orthopedic field due to their strong self-renewal capacity, combined with the
potential to differentiate in chondrocytes, adipocytes, and osteocytes [54]. In addition, MSCs secrete
chemokines, cytokines, growth factors, and anti-inflammatory molecules that promote the recovery of
the injured tissue [55].

Bone marrow aspirate concentrate (BMAC) is a method based in the autologous bone marrow
aspiration, followed by centrifugation in order to concentrate MSCs, hematopoietic stem cells (HSCs),
growth factors, white blood cells and platelets [56]. The percentage of MSCs in BMAC vary from
0.001% to 0.01% of mononuclear cells after centrifugation [57]. However, BMAC serves as a powerful
source of growth factors, including transforming growth factor–beta (TGF-b), platelet-derived growth
factor (PDGF), bone morphogenetic protein (BMP)–2 and BMP-7, which are important due to their
anabolic and anti-inflammatory effects [57].

Recently, BMAC has emerged as a new option of treatment for MsCs, especially for cartilage
and bone injuries. For cartilage, the majority of the studies were designed to treat OA of the knees,
however the results remain unclear. A summary of the studies using BMAC, according to the
tissue type is summarized in Table 2. Kim et al. injected 41 patients with BMAC prepared with
the SmartPReP2 (Harvest) [58]. The results showed an improvement in both pain and functionality,
however the best results were obtained in early to moderate stages [58]. Similar results were
observed by Themistocleous et al. in which the authors concentrated the bone marrow manually by
centrifugation [59]. The patients were injected with BMAC and the postoperative results showed
a significant reduction in the numerical pain scale (NPS) and an increase in the Oxford knee score
(OKS) [59]. Unfortunately, both publications did not quantify the number of progenitor cells, thus it is
hard to compare the outcomes with other publications. Shapiro et al., treated 25 patients, using the
contralateral knee as a control [60,61]. The authors used the Magellan system (Arteriocyte) to prepare
the BMAC and injected 3.4 × 104 MSCs and 4.62 × 106 HSC in the knee. However, no differences
were observed between placebo and treated knee 6 months after treatment [60] and 12 months after
treatment [61]. Two studies were designed to treat osteochondral lesions of the talus, both used juvenile
allogenic chondrocyte implantation (JACI) and BMAC [62,63]. The first study compared the pre- to
postoperatively outcomes [62]. The authors treated 46 patients and observed an improvement in the
mean of the scores obtained with the Short-form 12-item, version 2 (SF-12v2) and Foot and Ankle
Outcome Score (FAOS) questionnaires. Of the 46 patients in the study, 22 had postoperative magnetic
resonance imaging (MRI) scans that could be scored. Magnetic Resonance Observation of Cartilage
Tissue (MOCART) score was 46.8 [62]. Unfortunately, this study did not quantify the cells and did not
mention the system used to prepare the BMAC. In the second study, the authors used the Magellan
system to produce the BMAC, however they did not quantify the number of progenitor cells [63]. The
authors compared the microfracture (MF) with JACI–BMAC. Both treatments showed significant pre-
to postoperative improvements in all FAOS subscale. However, MF showed a significant improvement
in visual analog scale (VAS) and the average osteochondral lesion diameter was significantly larger in
JACI-BMAC group compared to MF group. Thus, the authors concluded that BMAC did not result in
significant gain as compared to MF [63].
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Table 2. Main findings of the use of bone marrow aspirate concentrate (BMAC) in clinical trials
according to the tissue type.

Tissue Study BMAC preparation # Progenitor Cells
Injected Follow-up Findings

Cartilage

Kim et al., 2014
[58]

SmartPReP2
Bone Marrow Procedure

Pack BMAC2 kits (Harvest
Technology)

DNS 12 months

(+) 41 patients injected with BMAC. VAS showed
significant pre- to postoperative improvement.
All functional scores were increased after the
procedure. Better outcomes were obtained in

early to moderate stages of OA than more
advanced stages.
(OA of the knees)

Shapiro et al.,
2016 [60]

Filtered 170 µm
Magellan Autologous

Platelet Separator System
(Arteriocyte)

MSC = 3.44 × 104

HSC = 4.62 × 106 6 months

(=) 25 patients, 13 were injected with BMAC in
their right knee and placebo in the left knee and

12 received the opposite. No differences were
observed between placebo and treated knee.

(OA of the knees)

Desandis et al.,
2017 [64] DNS DNS 16.7 months

(+) 46 patients treated with JACI–BMAC were
retrospectively evaluated. The mean

questionnaire SF-12v2 and FAOS improved
significantly from pre- to postoperatively. Of the

46 patients in the study, 22 had postoperative
MRI scans that could be scored. MOCART score

was 46.8.
(Osteochondral Lesions of the Talus)

Shapiro et al.,
2018 [61]

Filtered 170 µm
Magellan Autologous

Platelet Separator System
(Arteriocyte)

MSC = 3.44 × 104

HSC = 4.62 × 106 12 months

(=) 25 patients, 13 were injected with BMAC in
their right knee and placebo in the left knee and
12 received the opposite. BMAC did not show

superior results compared to saline group.
(OA of the Knees)

Themistocleous
et al., 2018 [59] 2800 rpm/15 min DNS 11 months

(+) 121 patients treated with BMAC were
retrospectively evaluated. NPS decreased 8.33

preoperatively to 4.49 postoperatively (p < 0.001).
The mean Oxford knee score (OKS) increased

from 20.20 pre-operatively to 32.92
postoperatively (p < 0.001).

(OA of the Knees)

Karnovsky et
al., 2018 [63]

Magellan Autologous
Platelet Separator

(Anteriocyte Medical
Systems)

DNS 28.1 months

(−) 30 patients treated MF and 20 who received
JACI-BMAC were retrospectively evaluated.
Both treatments showed significant pre- to
postoperative improvements in all FAOS

subscale. MF showed a significant improvement
in VAS. Average osteochondral lesion diameter
was significantly larger in JACI-BMAC group

compared to MF group.
(Osteochondral Lesions of the Talus)

Bone

Hernigou et al.,
2002 [65]

Cell separator
(Cobe 2991)

400× g/5 min

CFU-F = 25 × 103

cells
7 years

(+) 116 patients (189 hips) injected with BMAC
after core decompression with a small trocar.

Total hip replacement was needed in 34 hips (22
patients) among 189 hips treated.

Patients with a higher number of progenitor cells
transplanted had better outcomes

(ONFH)

Hernigou et al.,
2005 [66]

Cell separator
(Cobe 2991)

1200× g/5 min

CFU-F = 5.1 × 104

cells
Progenitors = 5.49 ×

104 (53 patients)
1.93 × 104 (7 patients)

4 months

(+) Bone union was obtained in 53 of the 60
patients that received the higher number of

progenitor cells. The BMAC efficacy is related to
the number of progenitors in the graft.

(Nonunions)

Tabatabaee et
al., 2015 [67]

Bone marrow was filtered
and washed. Then was

centrifuged for 400g/5–10
min

NC = 4.76 × 103

cells
24 months

(+) 28 hips were randomized in 2 groups of core
decompression with and without BMAC. The
mean WOMAC and VAS scores in all patients

improved significantly (p < 0.001). MRI showed
a significant

improvement in group treated with BMAC (p =
0.046) and significant worsening in the

non-treated group (p < 0.001).
(ONFH)

Hauzeur et al.,
2018 [68]

Spectra cell separator
(777,006,300; Cobe)

NC = 3.46 × 109 cells
CFU-F = 3.46 × 106

NC
24 months

(=) Double blind RCT study comparing two
groups: core decompression plus saline injection
or core decompression plus BMAC implantation.
Both groups included 19 patients (23 hips). No
differences were observed between groups for

THR requirements, clinical evaluation and
radiological evolution. In both groups, 15/23 hips

needed THR.
(ONFH)

(+) superior results, (−) inferior results, (=) similar results, CFU-F: colony-forming units, DNS = data note shown,
HSC = hematopoietic stem cells, FAOS = Foot and Ankle Outcome Score, JACI = juvenile allogenic chondrocyte
implantation, MF = microfracture, MOCART = Magnetic Resonance Observation of Cartilage Tissue, MSC =
mesenchymal stem cells, NC = nucleated cells, NPS = numerical pain scale, OA = osteoarthritis, OKS = Oxford knee
score, ONFH = osteonecrosis of the femoral head, RCT = randomized controlled trial, SF-12v2 = Short-form 12-item,
version 2, THR = total hip replacement, VAS = visual analog scale, WOMAC = Western Ontario and McMastern
Universities Osteoarthritis Index.
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For bone injuries, BMAC was used to treat nonunions and osteonecrosis of the femoral head
(ONFH). The nonunion is defined as a nonprogressive healing proved by radiography during a period
of 3 to 9 months since injury, without callus formation [69]. The non-union occurs in 5% to 10% of the
injuries and the risk of nonunion is associated with necessitating surgical intervention [70]. ONFH
is a prevalent disease originated by multiple causes and the main symptoms are severe pain, loss of
movement and arthritis of the hip due to the femoral head collapse [67]. In 80% of cases a total hip
replacement (THR) is necessary [68].

Herningou et al. evaluated 116 patients with ONFH that were treated with BMAC after core
decompression with a small trocar [65]. The BMAC was prepared using the cell separator (Cobe 2991),
400× g/5 min. The mean of colony-forming units (CFU-F) obtained was 25 × 103 cells in the BMAC
after concentration [65]. The authors had to replace 34 hips (22 patients) among 189 hips treated.
They observed better outcomes in patients with a higher number of progenitor cells transplanted [65].
Tabatabaee et al. randomized 28 hips in 2 groups: A- core decompression with BMAC, and B- core
decompression without BMAC [67]. The bone marrow was filtered and washed. Then was centrifuged
for 400× g/5–10 min. The mean of nucleated cells (NC) injected was 4.75 × 103. The mean Western
Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and VAS scores in all patients
improved significantly (p < 0.001). MRI showed a significant improvement in group treated with
BMAC (p = 0.046) and significant worsening in the non-treated group (p < 0.001) [67]. Hauzeur et al.
used the Spectra cell separator (777,006,300; Cobe) to produce the BMAC [68]. The authors performed
a double-blind randomized control trial (RCT) to compare two groups: core decompression plus saline
injection or core decompression plus BMAC implantation. Both groups included 19 patients (23 hips).
The BMAC injected was composed by 3.46 × 109 NC with CFU-F of 3.46 × 106 NC. No differences
were observed between groups for total hip replacement (THR) requirements, clinical evaluation, and
radiological evolution. In both groups, 15/23 hips needed THR [68].

BMAC showed very promising results for cartilage and bone injuries, however more studies are
necessary to better understand the real effect of BMAC. The number of progenitor cells is correlated
with positive outcomes, however, obtaining a high number of cells depends on several factors like age
of the patient, the method used to prepare the BMAC and the association with a biomaterial. The use
of PRP and BMAC with biomaterials will be covered in the next topic.

4. Biomaterials

Broadly defined, a biomaterial is a synthetic or biologically derived material adapted for biomedical
applications [71]. These materials are commonly used in many medical applications, including
cardiovascular, orthopedic, and musculoskeletal tissue engineering [71]. Due to the innate differences
between tissue types, a variety of materials have been utilized as biomaterials. The most common
biomaterials utilized in conjunction with PRP and BMAC clinical trials are organic scaffolds and natural
or synthetic polymers.

Organic scaffolds, such as bone chips, are used frequently in tissue-regeneration applications as
these structures are thought to better recapitulate the local tissue environment in terms of structure
and signaling capabilities, allowing for better integration of the implanted material into existing tissue
architecture. These scaffolds can be cultured in or allowed to absorb bioactive molecules and be seeded
with cells prior to application to the target site to expedite wound healing. For example, autologously
isolated bone tissue can be directly implanted in the target region with little to no manipulation or can
be decellularized and lyophilized to create an empty scaffold that, though devoid of cells, maintains
the native bone extracellular matrix (ECM) structure.

Polymers account for more than half of the biomaterials currently on the market and can be
synthetically generated or naturally sourced [71]. Due to the variety of sources and formulations
polymer biomaterials have, they can take many forms for broad regenerative applications. Polymer
materials have physical states ranging from soft hydrogels for applications in targeted controlled release
of therapeutic molecules to rigid scaffolds for applications in tissue engineering [72–75]. Polymeric
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biomaterials vary widely in their physical properties, many of which can be tuned allowing them to
be compatible with many tissue types including bone, cartilage, and muscle [73,76–80]. Scaffold like
biomaterials are promising for applications in macro tissue regeneration, but lack of cell infiltration,
proliferation, and differentiation inside these biomaterials have limited the benefits of their usage in
regenerative medicine [77].

In order to address these problems, the addition of PRP or BMAC to biomaterial scaffolds and
gels has been looked at as possible solution. Biomaterials are soaked with PRP with the goal to
supply localized growth factors that will facilitate cell infiltration, proliferation, and differentiation [81].
Including BMAC to biomaterials is done in an effort to increase multipotent cell levels that can
differentiate into local cell types and improve the health of the target region [82].

The most common biomaterials utilized with both PRP and BMAC in clinical applications
are the natural biomaterials collagen and hyaluronic acid, and the synthetic biomaterial
poly(lactic-co-glycolic) acid.

4.1. Collagen

Collagen is the primary structural component of the ECM, and is therefore also one of the most
largely studied polymer structures for tissue regeneration due to its biocompatibility, biodegradability,
and cell interactivity [83]. Collagen molecules are made of three polypeptide chains aligned in a
parallel manner, coiled, and stabilized by h-bonds between strands which are capable of forming
macroscopic fibrous networks [83]. Collagen networks are highly supportive of cell infiltration and can
interact with cells via receptors, or through secondary interactions with collagen associated proteins
such as decorin, laminin, and other RGD(Arg-Gly-Asp) -containing proteins [83]. A third of all protein
in humans is collagen based, and over thirteen types of collagen have been identified, though the
most used in biomaterial applications is collagen type 1 which is found in skin, tendon, and bone [84].
Due to the variety of tissues collagen is found in, it has been used in tissue regeneration efforts in
many tissue types, including bone, muscle, and cartilage. Collagen scaffolds have also been shown to
guide differentiation of tissue specific cell types with the addition of PRP, and have promoted tissue
regeneration and remodeling by bone marrow associated cells, lending credence to its use in clinical
PRP and BMAC applications [85,86].

4.2. Hyaluronic Acid (HA)

HA is a naturally occurring glycosaminoglycan found in the extracellular matrix of animal tissues,
and has been used in a variety of tissue engineering applications as a bare scaffold material, a drug
delivery device, and a cell seeded construct [87]. Predominantly found in the eye and in cartilage
tissues, HA is biocompatible and cell adhesive and, therefore, it is able to interact with cellular proteins
to allow for cell infiltration. In addition, HA is tunable to support a variety of structural designs
ranging from single layered highly organized bioprinted layouts, to micropatterning techniques, to
macroscale ECM-simulating scaffolds [87–89]. HA scaffolds can be engineered to contain specific
biodegradation kinetics that allow for enhanced control over bioactive molecule delivery, and have
been shown to enhance proliferation and protein secretion of specific cell types [90]. The addition of
PRP to scaffolds that contain HA has shown that induction of differentiation of chondrocytes is possible,
and thus is very promising in fields focusing on cartilage tissue regeneration [91]. Due to the large
amounts of HA in native cartilage tissue and its ability to maintain if not promote chondrocyte activity,
many BMAC clinical applications have utilized HA materials, and have shown strong applicability
in macroscale defect cartilage tissue engineering. In addition, HA and other saccharide-containing
material platforms are continuing to show promise in expanding the applicability of PRP and BMAC
therapies for tissue regeneration [92,93].
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4.3. Poly (Lactic-Co-Glycolic) Acid (PLGA)

Poly(lactic-co-glycolic) acid (PLGA) is a synthetic copolymer substance frequently used in tissue
engineering and drug delivery applications [94]. PLGA is biocompatible, biodegradable, and has
tunable physical and mechanical properties for applications in a variety of tissue types. This tunability
is influenced mainly by altering the ratio of the two monomers polylactic acid (PLA) and polyglycolic
acid (PLG), which varies the amount of ester linkages and thus the points subjected to degradation by
hydrolysis [94–96]. PLGA has been approved for a variety of drug delivery applications, and is able
to be chemically modified to improve cell adhesive qualities for applications in tissue regeneration
and cell therapies [94,97,98]. PLGA can also be used in blended polymer formulations with either
natural or synthetic materials to increase cell interactive properties. PRP and BMAC loaded PLGA
scaffolds have shown promise in multiple tissue type regeneration studies, including models focusing
on cartilage and bone [99–102]. In addition, clinical applications of PRP and BMAC loaded into PLGA
scaffolds have demonstrated significantly increased quality of repair by both quantitative and clinical
evaluations in cartilage regeneration efforts [103–105].

Both PRP and BMAC used in conjunction with biomaterials have shown promise in clinical trials
to regenerate both bone and cartilage, as summarized in Table 3 and detailed below.

Table 3. Main biomaterials used with PRP and/or BMAC to treat cartilage and bone injuries.

Tissue Study Biomaterial Formulation Preparation
(PRP/BMAC) Follow-up Findings

Bone

Dallari et al.,
2007 [103] Bone Chip Scaffold PRP/BMAC 1 year

(=) No significant difference between PRP/BMAC groups
and empty lyophilized bone controls as all patients

reported relieved knee pain and full range of motion.

Sauerbier et al.,
2010 [106]

Bovine Bone
Mineral Particles BMAC 4 months

(=) New bone formation was 19.9% but not significantly
different from the synthetic polysaccharide isolation

method control.

Jager et al., 2011
[104] Collagen Sponge BMAC 1 year

(+) Radiography showed significant bone remodeling in all
groups, but healing was longer when compared to

BMAC/hydroxyapatite controls.
Yassibag-Berkman
et al., 2007 [107] β-TCP Slurry PRP 1 year (=) No significant difference between clinical parameters in

PRP and control groups
Attia et al., 2010

[108] β-TCP Slurry PRP 1 year (+) Significant reduction of probing depth and increase in
clinical attachment gain (p < 0.01)

Saini et al., 2011
[109] β-TCP Slurry PRP 9 months

(+) Significant decrease in pocket depth and increase in
clinical attachment (p < 0.05) in β TCP/PRP compared to β

TCP alone
Özdemir et al.,

2012 [110]
β-TCP Slurry PRP 6 months (=) All 6 parameters evaluating clinical outcome were not

significant between PRP and control groups (p < 0.05)

Okuda et al.,
2005 [111] HAp Scaffold PRP 1 year

(+/−) There were significant differences in gingival index,
bleeding on probing, probing depth and clinical attachment

level, in PRP groups compared baseline (p < 0.001), and
significant differences in PRP versus control groups in
probing depth, clinical attachment gain, and vertical

attachment (p < 0.05)
No significant difference in defect change between PRP

scaffolds versus saline scaffolds, however, positive
significant gain was seen compared to baseline

measurements (p < 0.01)

Vaishnavi et al.,
2011 [112] HAp Scaffold PRP 1 year

(=) Radiographic evaluation showed bone regeneration in
all groups (scaffold, PRP, scaffold with PRP) except the

negative control

Menezes et al.,
2012 [113] HAp Scaffold PRP 4 years

(+) Significant differences in defect fill were seen in
PRP/hydroxyapatite treated group compared to

hydroxyapatite/saline control (p < 0.001)

Kutkut et al.,
2012 [114] MGCSH Scaffold PRP 3 months

(+) Radiographic evaluation confirmed more dense bone in
MGCSH and PRP groups compared to empty MGCSH, and

histomorphic analysis showed a statistically significant
difference between these groups (p < 0.05)
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Table 3. Cont.

Tissue Study Biomaterial Formulation Preparation
(PRP/BMAC) Follow-up Findings

Cartilage

Siclari et al.,
2012, 2014

[81,115,116]
PLGA-HA Matrix PRP 1–5 years

(+) Histology showed homogenous repair tissues and good
integration of repair tissues to the subchondral bone and

adjacent cartilage and immunohistochemistry showed
signs of hyaline like cartilage formation. At 2 years,

hyaline-to hyaline cartilage repair tissue that was rich with
a chondrocyte morphology, proteoglycans, and type-II
collagen. At 4 years, MRI confirmed good defect and
volume filling in 20 of 21 patients and received high

MOCART scores.
Siclari et al.,
2018 [117] PLGA-HA Matrix PRP 2 years (+) AOFAS rating increased significantly (p < 0.01). ROM

increased significantly (p < 0.01).

Enea et al., 2013
[118] PLGA-HA Matrix BMAC 2 years

(+) MRIs showed all patients had complete defect and
volume filling and resurfacing of articular cartilage to

previous cartilage level. Some bone marrow edema and
subchondral irregularities were observed—as well

subchondral irregularities.

Giannini et al.,
2009 [119] HA Membrane BMAC 2 years

(+) MRI done 12 months postoperatively showed tissue
regeneration in all 48 patients. Integration with the healthy
cartilage was complete, and transition zones were smooth
in all patients. Immunohistologic results confirmed new
cartilaginous tissues with varied hyaline cartilage tissue

remodeling.

Buda et al., 2010
[120] HA Scaffold BMAC 2 years

(+) Post-treatment IKDC and KOOS scores were
significantly higher than pre-treatment (p < 0.0005). MRIs
taken at 1 and 2 years after treatment shown subchondral

bone and cartilage regeneration. Histological analysis
showed a proteoglycan rich matrix and collagen II

throughout the regenerated tissue.

Gobbi et al.,
2016 [121] HA Scaffold BMAC 5 years

(+) All HA-BMAC scaffold treated patients maintained
classification as normal or nearly normal by IKDC, KOOS,

Tegner, and Lysholm. No quality of repair studies were
done in this study.

Gobbi et al.,
2017 [122] HA Scaffold BMAC 4 years

(+) KOOS, IDKC, Tegner, and VAS scores were significantly
improved in both the over and under 45 year-old groups.

MRI determined 80% defect filling in the over 45 group and
71% defect filling in the under 45 group, and histology on 3

and 2 patients from these groups, respectively, showed
good tissue repair with varying amounts of hyaline-like

tissue.

Dhollander et
al., 2011 [123] Collagen Scaffold PRP 2 years

(+) VAS, Tegner, Kujala patellofemoral, and KOOS scores
showed improvement. MRI data showed incomplete filling

in 3/5 patients, hypertrophy in 2/5 patients. Complete
integration with adjacent was observed in all patients, but
the surface of the repair tissue was irregular in all patients
during 1 year and 2 year post-operative scans. MOCART

scores remained stable during the 2 year period.

Enea et al., 2015
[124] Collagen Membrane BMAC 2 years

(+/−) Significant (p < 0.05) IKDC subjective score
improvement, Lysholm score, VAS, and activity level pre vs.
post-operative, but no change in Tegner score. MRI scans
taken between 6–9mo after surgery showed reconstitution

of original cartilage levels, bone marrow edema and/or
subchondral; irregularities for all cases. Histologically, only
1/5 had hyaline-like matrix, and that matrix did not exhibit

cell arrangements of normal articular cartilage.

Gigante et al.,
2012 [82] Collagen Membrane BMAC 2 year

(+) Full weight bearing in 6 weeks, jogging at 6 months,
continuously asymptomatic at 24 months. MRI scan at 12

months showed good defect filling with tissue signal
signals similar to that or surrounding tissue without signs

of bone marrow edema.

Gigante et al.,
2011 [125] Collagen Scaffold BMAC 1 year

(+/−) All 5 patients self-reported themselves as
asymptomatic. Mean histological scores of 59.8(SD 14.5). 1
had hyaline-like cartilage,3 had hyaline/fibrocartilage, and

1 had fibrocartilage formation. Columnar structures of
normal articular cartilage were not observed in any case.

Giannini et al.,
2013 [126] Collagen Scaffold BMAC 4 years

(+/−) AOFAS score improved significantly (p < 0.0005) at
24mo, but decreased significantly between 24mo and 36mo
(p < 0.001), and 24mo to 48mo (p < 0.005). MRI T2 mapping
analysis showed that regenerated tissue has similar values
to that of hyaline cartilage −9/20 had complete defect filling

and 13/20 had tissue integration at the border zone.
However, a majority of patients also had damaged

subchondral lamina, disrupted subchondral bone, and
subchondral edema.

Gobbi et al., 2011
[127] Collagen Matrix BMAC 2 years

(+) Visual analog scale (VAS), IKDC, KOOS, Lysholm,
Marx, SF-36, and Tegner scores all showed significant

improvement after the final follow-up of 15 patients (p <
0.005). MRI T2 and histology showed hyaline like cartilage
formation and complete defect filling of 12 of 15 patients
with no signs of hypertrophy. Integration with adjacent

cartilage was complete in 14 of those same patients.
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Table 3. Cont.

Tissue Study Biomaterial Formulation Preparation
(PRP/BMAC) Follow-up Findings

Krych et al.,
2016 [105] PLGA Scaffold PRP/BMAC 1 year

(+) No subjective clinical outcome measures were included
in 11 control patients, 23 PRP treated patients, and 12

BMAC treated patients. PRP and BMAC patients both had
significantly (p < 0.002, p < 0.03) better fill than the control

and was more hyaline like as determined my MRI T2
mapping.

Skowronski et al.
2013 [128] Collagen Membrane BMAC 5 years

(+) An improvement was observed in 52 out of 54 patients
in all scales (KOOS, Lysholm, VAS, KOOs pain) after

comparison between Preoperative and 12 months
post-operatively. No differences were observed between 12

months and 5 years after surgery.

(+) superior results, (−) inferior results, (=) similar results, AOFAS = American Orthopaedic Foot and Ankle Society,
HA = hyaluronic acid, Hap = hydroxyapatite, IKDC = International Knee Documentation Committee, MGCSH =
medical-grade calcium sulfate hemihydrate, MOCART = Magnetic Resonance Observation of Cartilage Tissue, MRI
= magnetic resonance imaging, PLGA-HA = poly(glycolic acid)-hyaluronic acid, VAS = visual analog scale, KOOS
= Knee injury Osteoarthritis Outcome Score, β-TCP = β-tricalcium phosphate.

Bone regeneration clinical trials utilizing biomaterials in conjunction with PRP and BMAC range
from naturally sourced scaffolds to inorganic slurries and have shown promising, although mixed,
results. Regenerative therapy for osseous tissue often relies on bone grafting, the most common
regenerative therapy for bone [108]. Grafts are a wide range of materials and include autologously
isolated tissues from patients and alloplastic materials. Dallari et al. utilized lyophilized bone chips
supplemented with PRP or PRP/BMAC to treat 33 patients undergoing high tibial osteotomy for genu
varum [103]. Patients were split into three groups–A, B, and C—that received bone chips with PRP,
bone chips with PRP and BMAC, or empty bone chips, respectively [103]. Clinical evaluation utilizing
the Knee Society scoring system and radiography were used to define outcome at six weeks, 12 weeks,
six months, and one year. As early as six weeks following the procedure, histomorphometry showed
significantly higher numbers of bone forming cells in groups A and B compared to the control group
C [103]. Radiographically, groups A and B showed significantly higher osteointegration at all time
points when compared to controls, and group B showed significantly higher osteointegration that
group A until the six-month time point [103]. At a full year, all groups had relief of knee pain and
reported improvements in walking ability; in addition, all patients showed complete healing at a
clinical and functional level regardless of group [103].

Biomaterials isolated from bone, such as hydroxyapatite (HAp) have also been used with PRP and
BMAC. HAp is the main mineral component of bone tissue, and it has been largely applied to clinical
bone tissue engineering efforts with promising results [129]. One clinical study on endodontically
induced periapical lesion repair using HAp scaffolds utilized HAp/PRP, HAp alone, PRP alone,
and no intervention as the test group—the test group, two positive controls and a negative control,
respectively [112]. This 20 patient study returned positive results as seen in complete bone regeneration
in all treated groups with most rapid regeneration seen in the HAp/PRP group at 6 months, while
PRP and HAp groups alone had complete regeneration at 9 months and 1 year, respectively [112].
Thus, though HAp scaffolds and PRP alone returned positive and complete regeneration, utilizing a
combinatorial approach resulted in expediated healing [112]. This trend is supported by other studies,
such as Okuda et al., which utilized HAp loaded with PRP to treat osseous defects in 70 patients
with chronic periodontitis. Thirty-five subjects were treated with HAp/PRP, and 35 were treated
with HAp/saline as a control [111]. Clinical outcomes at one year post-treatment were evaluated by
probing depth (PD), clinical attachment level (CAL), gival recession (GR), while quality of repair of
the defect fill was determined by radiography [111]. Clinical evaluation for the HAp/PRP group after
a year showed significant improvement compared to the control in all parameters [111]. Although
clinical evaluations were promising, radiographic defect fill was not significantly different between
groups [111]. In contrast, Menezes et al. demonstrated that after 4 years, that Hap/PRP had significantly
better clinical outcomes (probing depth reduction and clinical attachment gain) and quality of repair
as determined by radiographic determination of defect fill in periodontal intraosseous defect model
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compared to HAp/saline controls [113]. BMAC alone has also been utilized with HAp scaffolds. Jäger
et al. investigated BMAC application in HAp or collagen scaffolds in a human bone defect model of 39
patients [104]. Clinical evaluation was determined by mobility and activity pre and post intervention,
and quality of repair was determined radiographically [104]. Although both groups showed complete
bone healing, the HAp treated group of 27 patients showed significantly earlier and complete bone
formation compared to the collagen sponge group—suggesting that scaffold choice can impact the rate
of therapeutic benefit BMAC can provide [104].

Synthetic materials have also been studied as scaffolds for bone regeneration. Calcium sulfate
products, such as medical grade calcium sulfate hemihydrate (MGCSH), have a long history of use in
regenerative efforts. Calcium sulphate was one of the first bone substitutes applied in orthopedics and
dentistry because it was easily sterilized, inexpensive, and biocompatible [130]. When mixed with PRP,
MGCSH scaffold group showed significantly higher vital bone after 3 months when compared to a
collagen plug control in a tooth extraction socket model [114]. β-Tricalcium phosphate (β-TCP) is an
osteoconductive matrix that promotes bone remodeling, therefore, because of these features, β-TCP is
a promising bone grafting material [131,132]. β-TCP has been used extensively in conjunction with
PRP in clinical bone regeneration efforts, with mixed results. Intrabony defects were treated with
β-TCP or β-TCP/PRP in a clinical study of 14 chronic periodontitis patients and returned no significant
difference between groups both clinically and radiographically after 6 months [110]. Similarly, no
significant differences were seen between groups (β-TCP, β-TCP + PRP, β-TCP + PRP + membrane)
clinically or radiographically in a 25-patient, interproximal intrabony defects clinical study after a year
post intervention [107]. In contrast, Saini et al. showed significant differences in clinical evaluations
(probing pocket depth and clinical attachment level) and linear bone fill between β-TCP and β-TCP
+ PRP groups after 9 months in a 20-patient bilateral infrabony defect model [109]. Attia et al. also
returned significantly better improvements both clinically and radiographically in a PRP/β-TCP group
compared to β-TCP control in an 18-patient 1-year postoperative follow-up intrabony defect clinical
study [108].

4.4. Cartilage

Osteochondral (cartilage) tissue engineering advances rely on the fabrication of biomaterial
scaffolds due to the limited ability of cartilage to regenerate and self-repair [133]. Clinical trials
for cartilage healing and regeneration using biomaterials with PRP or BMAC utilize a different
variety of materials than bone. While bone is rigid and motivates the use of stiffer and mineralized
scaffolds, cartilage is composed of ECM rich in collagen and is up to 80% tissue fluid by weight [134].
Therefore, materials commonly used in cartilage tissue engineering are polymers, since polymers
can be engineered to have similar physical properties of native cartilage tissue. Due to cartilage
consisting largely of collagen, collagen has been widely studied in clinical trials with PRP and BMAC
therapies in efforts to regenerate cartilage. Dhollander et al. utilized a collagen I/III scaffold with
platelet-rich plasma to treatment of osteo chondral patellar legions in the knee in 5 five patient pilot
clinical trial [123]. Clinical evaluations on VAS, the Knee injury Osteoarthritis Outcome Score (KOOS),
Tegner activity scale, and Kujala patellofemoral score were taken preoperatively, and at 1 and 2 year
follow-ups postoperatively, which showed improvements [123]. MOCART scoring taken MRI data to
confirm quality of repair showed complete integration with patient tissue, but irregularities in surface
features and incomplete filling two years after intervention [123]. Therefore, though showing some
improvement, no significant benefits can be stated. BMAC used with collagen returned more promising
therapeutic results. In a 9-patient pilot study, focal lesions of condylar articular cartilage were treated
with arthroscopic microfractures that were then covered in a collagen membrane immersed in BMAC
showed significant clinical and repair benefit [124]. Clinical evaluations by the International Knee
Documentation Committee (IKDC) score, Lysholm score, VAS, and activity levels differed significantly
1 year postoperatively compared to preoperative scores for all but one patient [124]. MRI scans taken
6–9 months postoperatively demonstrated original cartilage levels were reached despite irregularities
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and edema being present in all patients. However, despite these promising figures, when samples were
taken and histologically analyzed from 4 of 9 patients, only a single patient had hyaline like cartilage
formation while the remaining had some level of fibrocartilage present [124]. In addition, while all
cartilage implants were determined to be reabsorbed in these 4 cases, cell arrangements in the bioptic
samples were unlike that of native cartilage tissue [124]. Another microfracture, BMAC, and collagen
membrane case study, in this case to treat cartilage trauma, showed beneficial clinical improvements in
patient activity and mobility as early as 6 weeks postoperatively, and MRI scans taken a year following
showed defect filling with no signs of bone marrow edema [82]. Collagen scaffolds have also showed
positive trends, as demonstrated in a pilot study of 5 patients that received BMAC seeded into collagen
scaffolds for chondral articular defects [125]. Clinical evaluations relied on patient reports, which were
asymptomatic at the 1-year postoperative level [125]. Quality of repair was determined by both visual
examination and histologically. At the time of biopsy, the surgeon performing the procedure performed
the standard ICRS (International Cartilage Repair Society) Cartilage Repair Assessment (CRA) and all 5
patient biopsies were categorized as nearly normal [125]. Upon histological examination, 1 patient had
hyaline-like cartilage, 1 had fibrocartilage, and the remaining 3 had a mixture of hyaline/fibrocartilage,
and all scaffolds had been reabsorbed [125].

Forty eight patients suffering from osteochondral lesions were treated with BMAC loaded in
either collagen or hyaluronic acid scaffolds in a prospective clinical study in Giannini et al. (2009) [119].
Clinical outcome determined by American Orthopaedic Foot and Ankle Society (AOFAS) scores looked
at the influence of scaffold type, lesion area, lesion depth, and previous surgical intervention—which
showed improvement after 2 years, though not significantly [119]. MRI showed tissue regeneration, and
histologically, biopsies also showed regeneration of cartilage tissue, though not entirely hyaline [119].
No significant differences were seen between collagen and hyaluronic acid scaffolds [119]. A midterm
study by members of the same group looked exclusively at clinical outcomes of 64 patients suffering
from osteochondral lesions via AOFAS scores, which demonstrated significant clinical improvement
when treated with BMAC and either collagen or hyaluronic scaffolds [135]. Continuing this positive
trend in this same model and scaffolds, Giannini et al. (2013) demonstrated significant clinical
improvement by AOFAS score at 2, 3, and 4 years postoperatively [126]. MRI T2 mapping on 20 of
the 49 participants in this clinical study showed statistically significant improvement and hyaline like
cartilage formation, and MOCART scores illustrated 9 of the 20 patients had complete defect fillings and
13 of the 20 had integration at the border zone [126]. MOCART scores also demonstrated complications
were also present in a minimum of 12 of 20 patients [126]. Together these three studies illustrate two
different natural materials can result in clinically significant improvements. HA scaffolds delivering
BMAC in osteochondral lesions of the knee have also been shown to be significantly beneficial clinically
according to IKDC and KOOS in a 20 patient clinical study [120]. In addition, MRIs taken at 1 and
2 years postoperatively showed cartilage regeneration, which was supported by histological analysis
that determined high levels of collagen II in a proteoglycan rich matrix [120].

Poly (glycolic acid)-hyaluronic acid (PGA-HA) composite material has also been extensively
studied in clinical settings in conjunction with PRP and BMAC. In a 52 patient clinical study, PRP
soaked PGA-HA implants showed clinically significant improvement at 1, 2 and 5 years postoperatively
compared to baseline [81,115,116]. Histological analysis of biopsies taken at 2 years showed that tissues
were rich in chondrocyte like cells, proteoglycans, and collagen II [82]. MOCART scoring at a 4 year
follow-up showed complete cartilage repair in 20 of 21 patients—demonstrating lasting improvement
in PRP therapies applied by PGA-HA implants. PRP-soaked PGA-HA applied to 45 patients with
hallus rigidus after 3 stage resection arthroplasty showed clinically significant AOFAS and ROM and
radiographical findings showed no anomalies 2 years postoperatively [117]. BMAC delivered by
PGA-HA showed clinically significant IKDC score improvement [118]. In addition, MRI data showed
complete defects filling was observed and surface appearance returned to previous cartilage level
despite several defects [118].



Int. J. Mol. Sci. 2019, 20, 5328 14 of 22

5. Conclusions

PRP and BMAC are promising therapeutics for MsCs repair and regeneration. Clinical data have
shown that PRP and BMAC are safe and showed positive results for both cartilage and bone injuries.
There is a lack of studies comparing PRP and BMAC outcomes in bone and cartilage and there are
no clinical trials using BMAC to treat muscle injuries. PRP has many advantages: (1) the method is
economical, (2) the production does not require complex equipment, (3) the technique to collect is
not invasive and (4) PRP has a low risk of immune response [136]. On the other hand, there is still
no consensus regarding the techniques to prepare the PRP and the majority of clinical trials are not
double-blind controlled with a large number of patients.

The use of BMAC in the orthopaedic field is still recent, compared to PRP, but the results are very
promising. Although progenitor cells have been used for a long time in clinics, BMAC is not only
composed by progenitor cells, but also has a large quantity of growth factors. This combination makes
BMAC a powerful therapy. However, obtaining BMAC is invasive, requires closed systems during the
preparation, and the positive results are strongly correlated with the number of stem cells.

Biomaterials have been combined with PRP and BMAC in order to localize and extend
bioactive molecule effects and increase cell interactive properties. When designing a macroscale
tissue-engineering solution to treat MsCs, it is essential to not only select the correct therapeutic,
but also the most suitable biomaterial system for employing the therapeutic in vivo. Local tissue
architecture varies vastly between musculoskeletal tissues, can vary broadly from person to person, and
functions differently in pathological conditions—therefore, materials must be chosen to address all of
these needs to maximize therapeutic outcomes of the deliverable. As PRP and BMAC come to the clinic,
their physical properties must be taken into account in order to ensure their therapeutic potential is
maintained. Cells are sensitive to physical and chemical properties of their local environment; therefore,
the biochemical properties of the biomaterial carrier must be tuned to ensure that mechanical forces and
signaling potential both within and outside the material carrier are within ranges that are sustainable
by the local tissue and the delivered therapeutic [75]. If these conditions are not met, not only will
therapeutic benefits be limited due to biochemical diffusivity limitations and delivered cell morbidity,
but the injury itself may be exacerbated due to negative host–biomaterial interactions. Biomaterials
that are engineered to mimic local, healthy signaling pathways and native mechanical properties
are able to be incorporated within local tissue architecture and minimize abrasive host–biomaterial
interactions [75,137]. Therefore, the application of a biomaterial is not only that of a therapeutic carrier
of PRP and BMAC, but also as a functional regenerative scaffold for cell integration, proliferation,
and differentiation that can expedite macroscale musculoskeletal tissue healing.

Future directions should address biomaterials that have been optimized to mimic local tissue
properties and seek to incorporate PRP/BMAC with this level of engineering design to further improve
tissue-regeneration effects.
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