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Abstract

Background: Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS).
Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples
without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor
samples that are known to have large regions of CNAs.

Results: This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs.
The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster
Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls
can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we
have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the
samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions
with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier
(BRLMM).

Conclusions: In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor
samples with CNAs.

Keywords: Bayesian cluster regression, Copy number alteration, Genotyping, SNP array
Background
Most multicellular organisms have two copies of chro-
mosomes (diploid organisms). An allele refers to one of
the different arrangements of nucleus acids in the same
genetic location (locus) on homologous chromosomes.
Every individual has two alleles in one locus, making
up the genotype, either homozygous or heterozygous. A
Single Nucleotide Polymorphism (SNP) is a genetic vari-
ation where one single nucleotide differs between the
two alleles in members of a population or paired chro-
mosomes. In humans, although most SNPs have no ef-
fect on health, some of them have been shown to affect
how an individual develops diseases and responds to
drug treatments. As a result, a great deal of contempor-
ary biomedical research focuses on investigating the
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reproduction in any medium, provided the or
association between SNPs and phenotypes (e.g. diseases),
known as Genome-Wide Association Study (GWAS).
Since the release of the first commercial SNP array in

1996 by Affymetrix (Santa Clara, CA, USA), SNP arrays
have been intensively used in GWAS. In the last decade,
these applications have resulted in the identification of a
large number of common genetic variants that are associ-
ated with different diseases. Today, while Next-Generation
Sequencing (NGS) has greatly changed the landscape of
genetic research due to the rapid drop in cost, SNP array
technique is still more economical to use and has many
other advantages, such as less labor intensive sample prep-
aration and being more conducive to working for a large
number of samples.
Accurate SNP genotyping is one of the important fac-

tors of a successful GWAS. This has motivated researchers,
in both academia and industry, to develop sophisticated
algorithms to improve genotyping accuracy.
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For technical supports, Affymetrix developed the ac-
companying genotyping software - Modified Partitioning
Around Medoids (MPAM), after the release of their
first generation GeneChip array, and then the Dynamic
Model (DM) algorithm for the GeneChip 100 K array.
These two arrays have similar designs although the
100 K arrays include more SNPs. For each array, every
SNP is interrogated by a number of probe quartets, each
of which is composed of a 25-base-pair Perfect Match
oligonucleotide probe (PM; probe sequence matching
the target sequence) and a Mismatch probe (MM; probe
sequence obtained by replacing the middle (13th) base
of the PM with its Watson-Crick complement) for alleles
A and B separately. To make a genotype call for a SNP,
one can use allelic intensities detected by the PM probe(s)
as foreground and those by the MM probe(s) as back-
ground to calculate the likelihood for each possible
genotype (AA, AB, BB, or NoCall), and then make the
genotyping call, based on the highest likelihood [1]. For
example, if the likelihood for genotype AA is the largest,
we assign “AA” as the genotype for the SNP. However,
since both MAPM and DM were designed to genotype
one SNP on one chip (sample) at a time, their overall
genotyping call accuracies are not satisfactory. To im-
prove genotyping accuracy, many other methods have
been proposed, including the Robust Linear Model with
Mahalanobis distance classifier (RLMM) [2]. Specifically,
for each SNP, by using PM probes only (it has been shown
that MM probes can cause more trouble than good),
RLMM includes all allelic intensities across multiple chips
in a model to estimate the possible genotype clusters. In
this way, the between-chip-level variations can be well ac-
commodated. Subsequently, an improved model, named
BRLMM [3], was proposed by adding a Bayesian step to
RLMM. BRLMM utilizes the genotyping calls from DM as
the initial “seed” genotypes to determine the parameters
of the Bayesian prior distributions, and adopts the
multi-array model approach to enhance the accuracy
of genotype cluster estimates. Note that the link between
BRLMM and DM limits the application of BRLMM to
newer generations of arrays, such as SNP array 5.0/6.0, be-
cause these new arrays do not have MM probes that are
employed by DM to make the initial “seed” genotype calls.
To overcome this limitation, BRLMM-P was introduced,
which estimates initial “seed” genotypes directly from the
clustering properties of the PM probes [4]. However, this
data-driven approach requires a rigorous performance
standard for SNP screening. As a result, for 500 k array,
only 440,794, out of 500,568, SNPs are considered to
have high quality BRLMM-P calls.
The Birdsuite software, introduced by the Broad Institute

in collaboration with Affymetrix, was initially developed for
genotyping SNP 6.0 array data. The birdseed, one compo-
nent of the software, like all other software mentioned
above, was developed exclusively for genotyping diploid
genomic regions that do not have CNAs (duplication and
deletion events occurring in somatic cells) [5], and copy
number variations (CNVs; local duplication and deletion
events occurring at kb or Mb scale in germline cells). The
Birdseye software, another component of Birdsuite, al-
though being able to detect rare CNVs and genotype SNPs
in CNV regions, was not designed to make genotype calls
for samples with CNAs. This is generally because of issues
such as random occurrence of CNAs along the genome
and contamination of normal tissues in tumor samples [6].
Like Affymetrix, Illumina has its own genotyping

software, called GenCall and implemented within the
BeadStudio, to genotype SNPs on the BeadChip arrays.
Similar to RLMM and BRLMM-P, GenCall applies a
multi-array approach and can make genotype calls with
or without using a reference dataset, depending on the
sample size.
In addition, other methods are also available for genotyp-

ing Affymetrix/Illumina arrays. These algorithms differ in
their aims. For example, Corrected Robust Model with
Maximum Likelihood Distance (CRLMM) [7] focused on
reducing across-lab variations through improving data pre-
processing. SNiPer-High Density (SNiPer-HD) [8] was de-
signed to obtain high accuracy for highly informative (that
is, the genotype is called with high confidence) SNPs.
Chiamo [9] and ALCHEMY [10] were especially useful for
calling small batch sizes and highly homozygous popula-
tions. Algorithms designed for Illumina arrays include
GenoSNP [11] for improved calling on rare variants; M3

[12], which is based on Modified Mixed Model; and
Opticall [13] for more accurately genotyping rare, low-
frequency and common variants.
Although the majority of these algorithms showed some

success in improving the genotyping accuracy, they were
initially developed for genotyping samples without CNAs.
We comment that GenoCN [14] could genotype samples
with CNAs, but it adopted a one chip at a time approach,
and was designed mainly for Illumina array data.
On the other hand, many genetic diseases (cancers)

are associated with CNAs, and lots of methodologies
have been developed to correctly detect CNAs [15-17].
By each of these methods, copy number status (gain/
loss/unchanged) can be obtained for every SNP in a
sample. Generally, CNA calls for tumor samples with
paired normal samples can have a high level of accuracy.
If there are no paired normal samples, one can still be
able to obtain reliable CNA calls by using a generic
normal as control [18]. Note that since CNAs are som-
atic alterations, it is difficult to predict where on the
chromosome CNAs occur. Meanwhile, in the sample pre-
paring step, it is usually hard to avoid normal tissue con-
tamination. Most cluster-based genotyping algorithms
could run into the problem of misclassification at the
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regions of CNAs because CNAs substantially altered the
number of A and B alleles, and thus, the A and B allele log-
intensities from the array. We recommend incorporating
CNA status into the cluster regression model to adjust for
the effect of CNAs. To do so, both high quality copy num-
ber calls and stringent sample screening are necessary.
In this paper, we propose a Bayesian Cluster Regres-

sion based genotyping (BCRgt) approach to genotype
samples with CNAs. This is motivated by the facts that
cancer tissues often have large regions of genetic structural
alterations such as CNAs [19], and that researchers have
been interested in genotyping SNPs from such samples.
The setup of the paper is as follows. In Section Methods,

we will describe the steps of BCRgt. In Section Results
and discussion, we use HapMap (details in Subsection
Genotyping the samples without CNAs by BCRgt) geno-
type calls as a gold standard to calculate the concordance
rates, the probability that a pair of genotyping results have
a certain genotype, given that one of the pair has such
a genotype, in order to evaluate the performance of BCRgt
for samples without CNAs. Furthermore, we will apply
BCRgt to samples with CNAs, to illustrate the improve-
ment that BCRgt makes in genotyping CNA regions com-
paring over BRLMM. At the end of the paper, we will
briefly discuss the ideal situation for using BCRgt and the
limitations of this method.

Methods
There are several widely used Affymetrix SNP array plat-
forms, including the genome-wide human SNP Array
5.0/6.0, GeneChip® Mapping 10 K/100 K/500 K Array.
In this paper, we will focus on the Affymetrix GeneChip®
Mapping 500 K array. The Array Set consis ts of Nsp
and Sty arrays for Nsp I and Sty I restriction enzyme
digested genomes, respectively. Each Nsp (or Sty) array
has the capacity to interrogate about 250,000 SNPs,
with, on average, 6 to 10 pairs of allele-specific intensity
measurements per SNP. In our analysis, for each SNP,
these 6 to 10 measurements are averaged for both A and
B alleles, and the averaged values will be used as the in-
put in BCRgt. Note that although Mapping 500 K array
has both PM and MM probes for each allele, BCRgt uti-
lizes only PM probe intensities, and thus, can be directly
applied to newer generations of Affymetrix arrays.

Quantile normalization
SNP-specific signal intensity distributions are different
not only across SNPs but also across samples/labs/stud-
ies. SNP array genotyping is usually carried out array-
wisely, one SNP at a time. Thus, a successful genotyping
algorithm can benefit from an appropriate normalization
step to adjust for the undesirable between-array experimen-
tal/biological variations. Quantile Normalization (QN)
is one of the widely used normalization methods. By
assuming that the distributions of DNA abundances
are nearly the same across all samples, QN transforms
the raw intensities to the corresponding quantile’s
value. Although QN has many good properties when
all the samples for genotyping do not have CNAs, it
does not perform well in normalizing samples with
CNAs [20]. Therefore, for simplicity we recommend
applying QN on samples without CNAs, but not doing
so for samples with CNAs.

Bayesian cluster regression
Let xij ∈ (0,∞), yij ∈ (0,∞) denote the log-intensities of A,
B alleles of the jth SNP of the ith subject. A successful
genotyping approach should depend on the relative rela-
tionship between A and B alleles, not on the absolute
values of A and B alleles. Thus, we will make genotype
calls based on such allelic relationship, and arbitrarily
choose either A or B allelic log-intensity as the predictor
so that the linear relationship between A and B alleles
can be investigated via a traditional linear regression if
they come from the same population (genotype). We
further assume, for simplification, that the allelic log-
intensities of adjacent SNPs are independent of each
other. The rationale underlying this assumption is that
the physical distance between two consecutive SNPs
is very often at least hundreds of base pairs apart. For
notational convenience, we will drop the subscript j be-
cause genotyping call is made independently for each
SNP in the proposed algorithm. In addition, for every
SNP, both A and B allelic log-intensities are centralized
at the median of the A allele log-intensities.

Traditional cluster regression
Consider the case of three clusters, and assume that the
paired observations (xi, yi) come from one of the three
unknown component populations (clusters), that is, Ci =
k with probability πk, where k ∈ {1, 2, 3}. Let X be a
matrix with the first column being an all-ones vector,
and the second column consisting of the corresponding
x values from the cluster k. For a given cluster Ci = k,
the relationship between X and y can be expressed in
the following model with parameter βk,

yCi¼k ¼ XCi¼kβk þ ξk ;

where Ci ~Multinomial(π) and the error vector ξk ~N
(0, σ2I) [21]. Note that the three clusters represent three
different genotypes, AA, AB, BB, and that each of the
three linear regression models in the above equation is
fitted for one of the three genotypes. A NoCall can be
made if none of the probability of AA, AB or BB is
above a certain threshold, such as 99.9%. We comment
that setting such a threshold can improve the overall
genotyping accuracy, but, as a tradeoff, the overall call
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rate (the percentage of SNPs that are called as AA, AB
or BB rather than NoCall) drops.

Bayesian cluster regression
Despite the fact that cluster regression has many good
properties in classifying samples into different groups at
the individual SNP level, further improvement can be
made by incorporating additional information from all
SNPs across the samples. Adding a Bayesian step would
be a good choice for this purpose.
For every SNP, cluster regression partitions all samples

into “AA”, “BB” and “AB” genotype clusters. However,
problems might arise if one or even two genotypes do
not exist for all samples, thus misclassification is very
likely to occur. BCRgt adds a Bayesian layer to pre-
define the distribution of each of the three clusters based
on the intercept and slope of each cluster, which are es-
timated from the A and B allele log-intensities of a large
sample of all SNPs and all samples. Then, if the geno-
types of a SNP are the same for all the samples, applying
a prior distribution based on these estimates will im-
prove the accuracy in estimating the parameters of the
posterior distributions.
One of the key issues in a Bayesian model is to derive

the posterior distribution. In order to have a closed-form
posterior distribution, the commonly used prior for (β,
σ2) is a normal-inverse-gamma distribution of the form
p(β, σ2) = p(β | σ2)p( σ2) with the first part being a
multivariate normal distribution and the second part an
inverse-gamma distribution [21]. Note that the posterior
distribution is also a normal-inverse-gamma distribution.
In this paper, for model and computational simplicity,
we will use the frequentist method (that is, parameters
are estimated from the current data itself, no prior infor-
mation is needed) to estimate σ2, instead of imposing a
prior on σ2. By doing so, we impose that the prior is re-
duced to a multivariate normal distribution N(βprior,
σ2V), where the elements βk0,prior and βk1,prior of the two-
dimensional mean vector βprior represent the expected
values of the distributions of the intercept and slope for the
cluster k, respectively, and σ2V is a diagonal matrix with
the diagonal elements being the corresponding variances.
The expectation of the posterior distribution can be easily

derived as β̂Bayes ¼ V−1 þ X 0X
� �−1

V−1βprior þ X 0y
� �

(see

Additional file 1). We comment that higher-order polyno-
mial terms may be added to the model in order to better
accommodate the samples with less stringent quality con-
trol. However, since minor changes in higher-order terms
usually have substantial effects on model fitting, in order to
make sure that the prior distributions of the higher order
terms do not have dominating effects on the posterior dis-
tribution, a very strong prior favoring the null hypothesis,
i.e., higher order terms do not contribute to the model,
should be used. In practice, we observed that, for the sam-
ples we have tested, adding a quadratic term to the simple
linear model could only result in a negligible difference in
the fitting results. Thus, for the model parsimony reason,
we only considered a simple linear model.
The Expectation-Maximization (EM) algorithm [22,23]

was used to estimate β. Specifically, the expectation step
was to find the expectation of Q(β, σ2|β(t), σ2(t)), namely
E(Cik | y, βk, σ

2), based on data; and the maximization
step was to update (β, σ2) with (β(t+1), σ2(t+1)) that maxi-
mizes Q(β, σ2|β(t), σ2(t)) (see Additional file 1). The EM
algorithm was converged/stopped when the difference of
two consecutive estimates of the parameters was smaller
than a pre-set small value or after 30 iterations. The
parameter values from the last iteration were taken as
the final estimates.

The values of the parameters of the prior distributions
Setting parameter values for the prior distributions is a
critical step in a successful Bayesian cluster regression.
We describe in the next subsections how to setup these
values.

The expectations of the intercepts and slopes of the prior
distributions
We followed the approach in [13] to take advantage of
the information obtained from the data. Specifically, we
randomly selected a subset of all the paired A and B
allelic log-intensities across samples. The size of the sub-
set is quite arbitrary, for example, 5,000 to 50,000. The
three clusters representing AA, AB and BB genotypes
are clearly separated (Figure 1(a)) and can be roughly
classified by most of cluster analysis methods proposed
in literature. Our approach is a computationally simple
alternative. We calculated the first difference statistics
[24], diff(x − y) = (x − y)(t) − (x − y)(t − 1), where (x-y) is log-
Ratio of the A and B allelic signal intensities and t is the
order, and searched by a moving average (the un-
weighted mean of the previous n data points) approach
for the two maximum values, between the 25th and 50th
percentiles and between the 50th and 75th percentiles,
respectively. The numbers of observations separated by
the two maximum values are roughly equal to the num-
bers of observations with AA, AB and BB genotypes re-
spectively (Figure 1(b)). After identifying these three
clusters, we fitted a simple linear regression for each
cluster and used the estimated model parameters as the
intercept and slope of the prior distribution for the cor-
responding cluster. We comment that, 1) in practice,
although the estimates of the slopes are somewhat differ-
ent from 1 (45 degree), it usually works well to use 1 for
all slopes for simplification purpose; 2) the proportion of
observations with AB genotype is lower than those of
observations with AA/BB genotypes, and this can be



Figure 1 Plots illustrate how parameters of the prior distributions are estimated. (a) Scatter plot of Centralized A and B allelic log-intensities for
5,000 SNPs. Note that observations are symmetric about the 45 degree line. (b) First difference plot: the two vertical lines partition observations into three
clusters corresponding to observations with AA, AB and BB genotypes.

Figure 2 An example of applying BCRgt to genotype calling on
one SNP. Three clusters represent three genotypes (AA, AB and BB
are represented by star “*”, solid square and circle, respectively). The
bold black line is the 45 degree line, and the three dotted lines are
the prediction lines for three clusters separately.
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conveniently adjusted in the EM algorithm by putting
different weights for AB and AA/BB genotypes.

The variances of the intercepts and slopes of the prior
distributions
It is well known that the posterior mean of the parameter
vector in Bayesian linear regression can be expressed in
terms of the least square estimate and the prior mean. To
obtain the variance of the least square estimate, we chose
100 SNPs that have only one genotype (either AA or BB),
and calculated the average of the 100 variances of the least
square estimates of the slope. We then used one third of
such an average value as the variance of the prior distribu-
tion for the slope to ensure that the prior information on
the slope plays a substantial role. As a justification, we
replaced one third by a decreasing sequence: one fifth,
one tenth of the average value, and observed very small
differences in genotype calling results (data not shown).
Similarly, we set the variance of the prior distribution for
the intercept to be roughly equal to three times of that
estimated from the data so that the intercepts are more
influenced by the data.
Meanwhile, the model in maximization step is defined as

yCi¼k ¼ βk0 þ xCi¼kβk1 þ ξk ;
wherek¼1; 2; 3; and ξ1 ¼ ξ3 ¼

ffiffiffiffiffiffiffi
2ξ2

p
:

The error term for the heterozygous AB cluster was
set smaller than those of the homozygous clusters in
order to adjust for the difference in the spreads of the
heterozygous and homozygous observations (Figure 1).
The adjustment factor could be obtained empirically
from the sample data described in Section Genotyping
the samples without CNAs by BCRgt. Here we use

ffiffiffi
2

p
for

convenience.
For demonstration purposes, we applied BCRgt to a
good-quality SNP with no missing genotypes and pre-
sented the results in Figure 2. The effect of the priors
can be seen from two observations with BB genotype
(circles). The prediction line would go through both dots if
no prior were imposed. With BCRgt, the slope for BB geno-
type is very close to 1 (45 degree line). This example shows
how the prior information on slope works. And we expect
that the true slope for BB genotype would be approximately
1 if more samples were observed. In addition, the heterozy-
gous cluster (solid squares) has less spread than the cluster
representing AA genotype (symbol “*”), which concurs
with the pattern in Figure 1. We also demonstrated in
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Additional file 1: Figure S1 that BCRgt performed well if
one or two genotypes were missing.

Incorporating the CNA variable into the model
Comparing with the commonly used genotyping
methods (cluster-based models), BCRgt has the advan-
tage of conveniently adding extra covariates in the
model. Next, we will explain how to utilize this advan-
tage in incorporating copy number information in
BCRgt. The reason for adding this information is given
in Section Background.
Once the CNA calls are obtained, we include CNA as

a covariate in the regression, and the maximization step
will be to find the maximum likelihood estimators for
the following new regression model. The main rationales
behind this model are that the relationship between the
log-intensities of A, B alleles within a cluster (genotype)
is approximately linear (see the left panel of Figure 1),
and that any allele gain/loss will move the corresponding
observation vertically.

yCi¼k ¼ βk0 þ xCi¼kβk1 þ CNCi¼kβkCN þ ξk ;

where k ¼ 1; 2; 3; and CN is defined as

CN ¼ 0; if no copy number change;

CN ¼ ‐constant; if A allele loss;

CN ¼ constant; if B allele loss;

CN ¼ ‐constant=5; if B allele gain;

CN ¼ constant=5; if A allele gain;

with xCi¼k and yCi¼k being the log‐intensities of A

and B alleles; respectively:

Note that, for samples with copy number loss, if the
log-intensity of A allele is greater than that of B allele,
we define them as B allele loss; otherwise, we define
them as A allele loss. A or B allele gain can be defined
similarly for the samples with copy number gain. In EM
algorithm, we treated CN as a fixed factor for computa-
tional simplification. Also, for copy number gain based
on empirical evaluation, the input value for CN is five
times smaller than that for copy number loss in order to
adjust for 1) the saturation effect – the maximal signal
intensity is limited by the amount of corresponding
probes on the array, so that increases in copy number
might not be proportionally reflected in signal intensity;
and 2) the difference in absolute change in signal inten-
sity between copy number gain and loss (see Additional
file 1: Figure S2). In addition, we used the larger of the
absolute values of the 2.5 and 97.5 percentiles of the dif-
ferences of A and B allele log-intensities as the input
value for “constant” in the above model. We comment
that, because we choose a weak prior on βkCN ; these pre-
set values do not significantly affect genotyping results
unless they are completely out of range.
Results and discussion
Genotyping the samples without CNAs by BCRgt
In order to evaluate the performance of our proposed
method, a decent number of samples with known geno-
types are needed. The International HapMap Consor-
tium has made such samples available – the Phase 2 of
HapMap data release provides reference calls for ap-
proximately 70% of the SNPs on the GeneChip® Human
Mapping 500 K Array Set for a collection of 270 sam-
ples, and the Phase 3 release provides more reference
calls. These calls were generated from the consent of re-
sults from various technologies and sources, and are
generally considered as a gold standard, although it is
reasonable to assume that the genotype calls in HapMap
still have some rare errors.
The Mapping 500 K Array data for all 270 HapMap sam-

ples were downloaded from the NCBI’s Gene Expression
Omnibus website (Accession number: GSE5173). In the
comparison, we focused on chromosome 1 to demonstrate
the performance of BCRgt, but it is reasonable to assume
that results from other autosomal chromosomes would be
very similar.
Genotype calls for over 93% of SNPs on chromosome

1 are available from the HapMap genotype data (July
2009 release, www.HapMap.org). Concordance rates, the
percentage of agreement between HapMap calls and BCRgt
calls, for different datasets are presented in Table 1. There
are two sections in this table. The upper section (datasets
from A to G) displays genotyping concordance rates using
the BCRgt without any model training, that is, we used
generic prior distributions for every SNP. Note that in this
upper section we genotyped different numbers of samples
(270 samples for A; 50 for B, C, D; and 30 for E, F, G) in
order to evaluate the effect of sample size on concordance
rate. Also, for datasets A to D, H, each dataset has two rows
corresponding to two different call rates. The lower section
(datasets from H to O) displays the concordance rates using
BCRgt with a model training step. We randomly split the
whole HapMap 270 samples into two groups of equal size
(135 each), and used one group as the training set to obtain
parameter estimates (including intercepts and slopes) of the
prior distributions for each SNP. Then we employed these
prior distributions in BCRgt, and performed genotyping on
different subsets of samples (with size 135, 50, 30 and 20)
randomly selected from the other group. We expected that,
by including the training step, much higher concordance
rates with HapMap genotype calls can be achieved.
For dataset A, the overall concordance rates between

HapMap and BCRgt genotypes are 99.59% and 99.50%
with overall calling rates at 99.56% and 100%, respect-
ively. We can see that the lower call rate is associated
with a higher concordance rate because SNPs that are
difficult to call were treated as NoCall, and this reduced
the probability of making an error. For datasets B, C and

www.HapMap.org


Table 1 Call rates and concordance rates for various datasets of different sizes (values are in percentages)

DataSet # of Samples Overall call rate Homo call rate Hetero call rate Overall concord rate Homo concord rate Hetero concord rate

A 270 99.56 99.80 98.97 99.59 99.58 99.63

A 270 100.0 100.0 100.0 99.50 99.51 99.46

B 50 99.56 99.82 98.82 99.58 99.58 99.57

B 50 100.0 100.0 100.0 99.47 99.52 99.35

C 50 99.73 99.90 99.49 99.58 99.61 99.27

C 50 100.0 100.0 100.0 99.52 99.58 99.35

D 50 99.53 99.79 98.89 99.44 99.41 99.51

D 50 100.0 100.0 100.0 99.33 99.34 99.31

E 30 99.61 99.84 98.92 99.35 99.43 99.13

F 30 99.71 99.89 99.24 99.43 99.21 99.51

G 30 99.56 99.79 98.92 99.25 99.29 99.13

H 135 99.51 99.76 98.94 99.77 99.83 99.61

H 135 100.0 100.0 100.0 99.70 99.77 99.52

I 50 100.0 100.0 100.0 99.65 99.71 99.51

J 50 100.0 100.0 100.0 99.61 99.68 99.43

K 50 100.0 100.0 100.0 99.76 99.82 99.61

L 30 100.0 100.0 100.0 99.65 99.71 99.50

M 30 100.0 100.0 100.0 99.64 99.66 99.60

N 30 100.0 100.0 100.0 99.56 99.61 99.41

O 20 100.0 100.0 100.0 99.49 99.50 99.44
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D, each having 50 samples randomly selected from the
HapMap samples, the average overall concordance rates
are 99.53% and 99.44% with average calling rates at
99.60% and 100%, respectively. With further reduced
size of 30, datasets E, F and G have the average overall
concordance rate of above 99.34% with an average over-
all call rate of 99.63%. We observed that the concord-
ance rate declines as the dataset becomes smaller. Note
that this is an empirical conclusion from several estima-
tions. It would be interesting to rigorously assess the
statistical relationship between sample size and concord-
ance rate in the future study.
The percentages in the lower section of Table 1 indi-

cate that adding the training step can greatly improve
genotyping accuracy. For example, the overall concord-
ance rates (dataset H) reach 99.70% and 99.77% with
overall call rates at 100% and 99.51%, respectively. For a
further reduced sample size of 20, we could still have an
overall concordance rate at about 99.5% (dataset O). In
Table 1, we also list concordance rates for homozygous
and heterozygous calls separately, which are generally
close to the overall concordance rates.
We could not provide the concordance rate for dataset of

size greater than 270 due to the sample size limitation in
the HapMap database. Interested users are encouraged to
apply the strategy described in [25] for genotyping larger
datasets.
Our training step is different from the commonly used
approach in that the latter would use the whole set of
the 270 samples from one laboratory to train the model,
and then perform genotyping on another independent
dataset from a different laboratory (the same 270 sam-
ples). We comment that, although not taking advantage
of the whole HapMap samples in the training step, our
method can avoid the possibility of inflating the mea-
sures of performance because it does not use the same
biological samples in both the training and validating
sets. Note that if the objective is to genotype samples
other than those participated in the HapMap study, we
will use all the 270 samples as the training set.

Genotyping samples with CNAs by BCRgt
Genotyping samples with CNAs is more challenging, and
the validation of genotypes for such samples is currently
difficult due to the lack of a gold standard such as the Hap-
Map genotype data. Therefore, in this subsection, we will
provide some individual SNP level as well as individual
sample level examples to illustrate how BCRgt performs.
The comparisons, regarding heterozygous call rate and
genotyping error rate, between genotype calls made by
BCRgt and BRLMM, will be presented at the end of this
subsection.
The data, downloaded from GEO (access#: GSE21349),

were generated for the study of myeloma, a disease
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associated with CNAs [26]. There are 80 paired mye-
loma samples in the dataset. The rationales of using
these samples include the known existence of CNAs in
the tumor samples and the availability of the paired nor-
mal samples from the same patients. We comment that
BCRgt does not require paired normal samples in geno-
type calling, but it could achieve higher accuracy in
genotyping from improved copy number assignment if
paired normal samples are available (details not dis-
cussed here). The genotype calls for the paired normal
samples were used to evaluate the performance of the
genotype calls for the tumor samples. Note that, since
tumor samples can have normal cell contamination, we
excluded samples with choppy noises or poor quality, as
well as those having less than 1% CNAs, in order to ob-
tain reliable genotype calls. Thus, only 66 samples were
genotyped by BCRgt.
As indicated by the three clusters in Figure 2, if there

are no CNAs, samples with the same genotype, AA or
AB or BB, tend to cluster together in the scattered plot
of A versus B allele log-intensities. This is not the case if
there are CNAs in some tumor samples. Figure 3(c)
Figure 3 An example of applying gtBCR on samples with CNAs. (a) A
of their paired normal samples: blue, green and red representing “AA”, “AB
each sample: red squares represent samples with copy number loss, green
are samples without CNAs. (c) Genotypes called by BCRgt, with colors being t
that have “AB” genotype in the paired normal sample (see (a)) and have copy n
agrees with their copy number status. (d) Genotypes called by BRLMM: no c
the observation pointed by the red arrow, which is inconsistent to its co
shows that it is difficult to call the observations pointed
by the black and red arrows without knowing the copy
number status. Note that BRLMM has no call on the ob-
servation pointed by the black arrow, and a call of AB
for the observation pointed by the red arrow (Figure 3(d)).
This is not consistent with the copy number status be-
cause the copy number call plot (Figure 3(b)) implies
that both tumor samples have copy number loss at this
SNP locus, and thus, they cannot be heterozygous. As
a comparison, BCRgt is able to call both correctly as
AA/A (Figure 3(c)). Since paired normal samples are
available, we can use the genotypes of them as refer-
ences (Figure 3(a)), to assess how copy number change
affects genotype callings (see Additional file 1: Figure S3
explanation of how the intensities of two observations
drop because of the copy number loss). Furthermore,
we can see that among the three BB observations (col-
ored in red, Figure 3(c)), one does not have copy num-
ber loss, while the other two do. The prediction line
(the bottom gray line, Figure 3(c)) provides a good fit
even though there are only three observations with the
BB genotype.
and B allele log-intensity plot with samples colored by the genotypes
” and “BB” genotype, respectively. (b) The copy number status plot for
squares represent samples with copy number gain, and gray squares
he same as (a). Both the black and red arrows point to the observations
umber loss (see (b)). They are both correctly called “AA” by BCRgt, which
all on the observation pointed by the black arrow, and “AB” call on
py number status.
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At the individual sample level, copy number status can
be visualized on a scatter plot. We illustrate this with a
sample that has multiple large segments of copy number
losses (Figure 4). The copy number analysis suggested
that chromosomes 1, 4, 6, 8, 10, 12–14, 16–18, 21 and
22 have copy number losses (see Additional file 1: Figure
S4, or Figure 3(b) in [27]). Thus, we expect no heterozy-
gous calls because only one copy of chromosome exists
on those chromosomes. The genotype calls by BCRgt
and BRLMM are presented in Figure 4. Figure 4(a) and
(c) are SNPs with AB genotypes called by BCRgt and
BRLMM, respectively, while Figure 4b) and (d) are SNPs
with either AA or BB genotypes called by BCRgt and
BRLMM separately. It is clear that on chromosomes
with copy number loss, BCRgt called much less AB ge-
notypes than BRLMM did. Note that some regions of
chromosomes 11 and 18 are minor clone (the smaller
population of a sample of heterogeneous tumor cells) copy
number losses, but BCRgt still performs better than
BRLMM on these regions. There are on average more than
4% heterozygous genotypes called by BRLMM, comparing
to only 0.23% by BCRgt (Table 2) for SNPs in regions with
Figure 4 Comparison of genotyping results generated by BCRgt, BRL
Correct copy number data were used for (a)-(d), and incorrect copy numb
regions) were used for (e) and (f). (a) SNPs with “AB” genotype called by B
1, 4, 6, 8, 10, 12–14, 16–18, 21 and 22. (b) SNPs called “AA”/“BB” by BCRgt. (
(e) SNPs with “AB” genotype called by BCRgt, but we intentionally misclass
copy number loss. We also calculated the genotyping error
rates for SNPs in CNA and normal two-copy regions separ-
ately. A genotyping error occurs if the paired normal sam-
ple has AA/BB, but the tumor has AB call, or, very
uncommonly, the tumor and paired normal samples have
different homozygous calls. Here, we assume that the calls
for the paired normal samples are highly accurate. From
Table 2, we observe that in the CNA regions, the calling
error rate by BRLMM is much higher (> 10 folds) than that
by BCRgt, while these rates are similar in regions without
CNAs. In addition, for the tumor samples with higher nor-
mal cell contamination, BRLMM generally has a much
worse performance in that the proportion of AB genotypes
in copy number loss regions can be as high as 13%, while
the proportion by BCRgt is only around 1.5% in the same
regions (see the example in Additional file 1: Figure S5).
Misclassification of CNA status may be an issue in

BCRgt because CNA status is an input covariate. How-
ever, with a retrospective check of the genotyping calls,
we can recognize possible CNA global misclassification.
In Figure 4(e), we intentionally misclassified the copy
loss regions on chromosomes 1, 4, 6, 8, 10, 12–14, 16–
MM and BCRgt with correct and incorrect copy number data.
er data (we intentionally call copy number loss regions as normal
CRgt on a sample with multiple copy number losses on chromosomes
c) SNPs called “AB” by BRLMM. (d) SNPs called “AA”/“BB” by BRLMM.
ified the CNA status. (f) SNPs with “AA/BB” genotype called by BCRgt.



Table 2 Percentages of heterozygous calls on
chromosomes with copy number loss and genotyping
errors (CN = copy number)

Method Heterozygous calls
at CN loss region

Genotyping
error at CN
loss region

Genotyping error at
CN normal region

BCRgt 0.23% 0.03% 0.16%

BRLMM 4.11% 1.83% 0.28%
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18, 21 and 22 as normal, and thus the proportion of het-
erozygous SNPs substantially increased (in another ex-
ample, Additional file 1: Figure S6, we considered the
situation that the normal regions were intentionally mis-
classified as copy number loss regions). Based on our
empirical study, we recommend that if this proportion is
higher than 1%, we will examine the CNA detection al-
gorithm. Note that this step is important not only for
generating correct genotype calls, but also for examining
the validity of the upstream copy number analysis. On
the other hand, this type of overall misclassification is
less likely if both tumor and paired normal samples are
available because new statistical methods can handle this
situation very well. In our recent paper on SNP array
data normalization of paired samples [27], we showed
that two-copy regions can be explicitly identified in the
normalization process, and thus the major CNAs can be
identified with very high accuracy. Note that some focal
gains/losses may be missed or falsely detected. But, if
true gains/losses are misidentified as normal copy num-
ber, BCRgt will perform similarly to other genotyping
methods.
In regions with copy number gain, the proportion of

the heterozygous calls does not provide much informa-
tion because the loss of heterozygosity (LOH) does not
occur in these regions. However, again because genotyp-
ing calls for the paired normal samples are available, we
can calculate and compare the concordances of genotyp-
ing calls from the tumor samples with those from the
paired normal samples by BCRgt and BRLMM. The re-
sults are presented in Table 3. Note that a SNP with at
least one A allele and one B allele is termed as AB geno-
type, regardless of how many extra copies of A and/or B
allele it actually has. Similarly, a homozygous SNP with
at least two A alleles or two B alleles is termed as AA or
BB. The overall concordance at the copy number gain re-
gions is higher by BCRgt (99.56%) than that by BRLMM
Table 3 Concordance rates at copy number gain and
copy number normal regions

Method Overall concordance
at CN gain region

Heterozygous call
concordance at
CN gain region

Homozygous call
concordance at
CN gain region

BCRgt 99.56% 98.76% 99.80%

BRLMM 99.14% 96.95% 99.88%
(99.14%). This reflects an approximately 1.8% increase in
the concordance rate for heterozygous calls, and a slightly
lower concordance (difference < 0.1%) for homozygous
calls. Both calling methods give much higher (about 1 - 2%)
concordance rates for homozygous calls than for heterozy-
gous calls. Theoretically, for SNPs with AB genotype, copy
number gain should not cause LOH, and should not add
heterozygosity for AA or BB alleles based on the definition
of LOH. Therefore, we expect a (ideally) 100% concordance
rate. However, due to the issues such as normal cell con-
tamination, the existence of minor clone, and signal satur-
ation effect, the concordance rate is much lower compared
to that of repeated arrays with the same normal samples,
which often has a concordance rate of around 99.9% [7].
The (about 1 - 2%) difference between concordance rates
for homozygous calls and for heterozygous calls makes per-
fect sense because copy number gains for homozygous calls
move the intensities of the homozygous SNPs away from
the heterozygous SNPs in scattered plots, as shown in
Figures 1 and 2, and thus are unlikely to cause incorrect
genotyping calls. On the other hand, copy number gains
make heterozygous SNPs to move closer to homozygous
SNPs, and consequently increase the possibility of incorrect
genotyping calls.
To conclude this section, we comment that including

more term(s), such as the percentage of normal cell con-
tamination, in BCRgt may help improve the concordance
rate. This will be investigated in our future research.

Conclusions
Accurate genotyping is one of the key components for a
successful GWAS study. Genotyping calls for samples
without CNAs can achieve a 99.5% or higher accuracy
[6]. However, it remains a challenge to genotype samples
with CNAs, and the result of a well-designed GWAS
study can be severely compromised if the genotyping
calls have low accuracy. Therefore, it is appealing to de-
velop methods that can achieve high genotyping accuracy
for samples with CNAs. Note that there are many statistical
methods for analyzing copy number abnormalities. Al-
though most of those methods work well in detecting
CNAs at individual sample level, methods for formally
evaluating the effect of CNAs are largely lacking.
Whether or not applying Hardy-Weinberg (HW; allele

and genotype frequencies in a population will remain
constant from generation to generation in the absence of
other evolutionary influences) test in BCRgt should be
considered case by case. For samples without CNAs, if
the main assumptions of HW equilibrium are violated
(for example, the violation of random mating assump-
tion), the HW test should not be used to refine genotype
calling, and a significant test result does not imply a
problem in genotyping. Similarly, the HW test should
not be applied when genotyping samples with CNAs
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because HW is not supposed to be valid for samples that
are not diploid.
We achieved fairly high calling accuracy for samples

without CNAs when directly applying BCRgt to all 270
HapMap samples. Later, a training step was added to
further improve the accuracy. We adopted a strategy
similar to the cross-validation approach – half of the
270 samples were randomly selected and used to train
the model, while the remaining half were used as the
validation set to calculate the concordance rates with
HapMap call. We comment that this strategy is unlikely to
overestimate the concordance rate because we avoided
using the same biological sample in both the training and
validation sets. Note that there are other strategies that may
work better. For example, we can train the data produced
by one laboratory for a subset of the HapMap samples, and
then apply the trained model to the data obtained from
a different laboratory for the complementary subset of
HapMap samples. By so doing, both biological samples and
experimental variations are independent between the train-
ing and validation sets.
BCRgt has substantial improvement over BRLMM for

calling SNPs in copy number loss regions, and performs
better in copy number gain regions. There is minimal
difference between these two methods in calling SNPs in
normal two copy regions.
The core of BCRgt is a Bayesian linear regression,

which allows the adjustment for CNAs in SNP calling. It
is also feasible to incorporate additional information,
such as the percentage of normal cell contamination,
into the model for better genotype calling results. More-
over, incorporating genotypes of the paired normal sam-
ples into the model might further reduce genotyping
error should those data be available.
Depending on objectives, the output format of geno-

type calls for SNPs in the CNA regions can be flexible.
For example, genotypes in the copy number loss regions
can be outputted as 0/A/B, or 00/AA/BB, and similarly
those in one copy gain regions can be outputted as
AAA/AAB/ABB/BBB, or AA/AB/BB. We do not suggest
assigning higher copy number calls to the genotypes in
copy number gain regions due to several issues includ-
ing: 1) normal cell contamination, 2) array signal satur-
ation effect, 3) less robustness of more complex models,
and 4) increased difficulty in result interpretation.
Unlike the Affymetrix platform, Illumina arrays produce

two measurement variables, log R Ratio and B Allele Fre-
quency (BAF; a normalized measure of relative signal inten-
sity of the B and A alleles). Statistical methods, based on
either the Bayesian approach or HMM, have been proposed
to utilize both variables simultaneously to perform the ana-
lysis. However, most of these methods, such as PennCNV
[28], QuantiSNP [29] and OncoSNP [30], were designed
mainly for detecting CNA/CNV, and are not applicable to
make genotyping calls by default. GenoSNP [11], for an
Illumina platform too, provided a very low homozygosity
rate (about 90%) when used for genotyping deletion re-
gions in the HapMap samples [28,31]. In addition, though
PennCNV has a plug-in for calculating BAF for Affymetrix
data, the QN component used in the process makes it un-
attractive for samples with CNAs (it has been shown that
QN is not optimal for handling samples with CNAs).
Most of the current genotyping methods assume bi-

variate normality on the joint distribution of A and B
alleles for each genotype, which implicitly assumes that
the marginal distribution of each allele is unimodal. This
may not be true if CNAs exist because the marginal
distribution may be bimodal. In contrast, BCRgt adopts a
linear regression approach. Thus the assumption we need
is that the residuals of each cluster follow a normal distri-
bution, which is commonly made in regression analysis.
Alhough accurate copy number calls are required by

BCRgt, at each SNP, an incorrect copy number call for
one sample does not affect genotyping calls for other
samples even though this property will not hold if the
majority of the copy number calls are incorrect. In sum,
BCRgt requests that the extra information added to the
regression model is of high quality, but this should not
be a big concern if paired normal samples are available.
If the paired normal samples are not available, how to
obtain high quality information from quality array and
cytogenetic data is worth a lot of discussion. This is out
of the scope of this paper.

Availability
The R package “BCRgt” including documentation is avail-
able online. See the website, http://publichealth.lsuhsc.edu/
BCRgt.html for details.

Additional file

Additional file 1: Figure S1. A brief derivation of the posterior distribution
for βs. S2. Cluster regression parameter estimation. Figure S1. An example
of “BB” genotype missing (SNP #12). Figure S2. Illustration of the difference
in absolute change in signal intensity between copy number gain and loss.
Figure S3. Illustration of copy number loss caused signal intensity drop.
Figure S4. Copy number status of the same sample presented in Figure 4.
Figure S5. (1) An example of higher normal cell contamination. Figure S5.
(2) The copy number status of the sample presented in Figure S5.
Figure S6. An example that the normal regions were intentionally
misclassified as copy number loss regions.
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