
fphys-12-805148 December 18, 2021 Time: 18:14 # 1

REVIEW
published: 23 December 2021

doi: 10.3389/fphys.2021.805148

Edited by:
Jinwei Zhang,

University of Exeter, United Kingdom

Reviewed by:
Rajan Sah,

Washington University in St. Louis,
United States

Peter Kovermann,
Institute of Biological Information

Processing, Molekular und
Zellphysiology (IBI-1),

Forschungszentrum Jülich GmbH,
Germany

*Correspondence:
Yasunobu Okada
okada@nips.ac.jp

Specialty section:
This article was submitted to

Membrane Physiology
and Membrane Biophysics,

a section of the journal
Frontiers in Physiology

Received: 29 October 2021
Accepted: 06 December 2021
Published: 23 December 2021

Citation:
Okada Y, Sabirov RZ,

Merzlyak PG, Numata T and
Sato-Numata K (2021) Properties,

Structures, and Physiological Roles
of Three Types of Anion Channels

Molecularly Identified in the 2010’s.
Front. Physiol. 12:805148.

doi: 10.3389/fphys.2021.805148

Properties, Structures, and
Physiological Roles of Three Types of
Anion Channels Molecularly
Identified in the 2010’s
Yasunobu Okada1,2,3,4* , Ravshan Z. Sabirov5, Petr G. Merzlyak5, Tomohiro Numata6 and
Kaori Sato-Numata6,7

1 National Institute for Physiological Sciences (NIPS), Okazaki, Japan, 2 Department of Physiology, School of Medicine, Aichi
Medical University, Nagakute, Japan, 3 Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan,
4 Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan, 5 Laboratory of Molecular Physiology,
Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan, 6 Department of Integrative
Physiology, Graduate School of Medicine, Akita University, Akita, Japan, 7 Japan Society for the Promotion of Science,
Tokyo, Japan

Molecular identification was, at last, successfully accomplished for three types of anion
channels that are all implicated in cell volume regulation/dysregulation. LRRC8A plus
LRRC8C/D/E, SLCO2A1, and TMEM206 were shown to be the core or pore-forming
molecules of the volume-sensitive outwardly rectifying anion channel (VSOR) also called
the volume-regulated anion channel (VRAC), the large-conductance maxi-anion channel
(Maxi-Cl), and the acid-sensitive outwardly rectifying anion channel (ASOR) also called
the proton-activated anion channel (PAC) in 2014, 2017, and 2019, respectively. More
recently in 2020 and 2021, we have identified the S100A10-annexin A2 complex and
TRPM7 as the regulatory proteins for Maxi-Cl and VSOR/VRAC, respectively. In this
review article, we summarize their biophysical and structural properties as well as their
physiological roles by comparing with each other on the basis of their molecular insights.
We also point out unsolved important issues to be elucidated soon in the future.

Keywords: volume-related anion channels, LRRC8A, SLCO2A1, TMEM206, TRPM7, cell swelling, acidosis,
regulatory volume decrease

INTRODUCTION

According to the activation mechanisms, mammalian anion channels have been classified into
six major groups: voltage-gated, ligand-gated receptor-coupled, Ca2+-activated, cAMP-activated,
volume-activated, and acid-activated ones. Among them, the volume- or swelling-activated and
the acid- or proton-activated anion channels, that are not directly gated by voltage, ligands,
Ca2+, and cAMP, are known to be ubiquitously expressed and tightly involved in cell volume
regulation/dysregulation (see Review: Okada et al., 2019a) and cell death induction/protection
(see Reviews: Okada et al., 2021a for the former channel; Okada et al., 2021b for the latter
channel). Volume-activated anion channels include two members: the volume-sensitive outwardly
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rectifying anion channel (VSOR), also called the volume-
regulated anion channel (VRAC), and the large-conductance
maxi-anion channel (Maxi-Cl). VSOR/VRAC and Maxi-Cl were
functionally discovered in 1988 (Cahalan and Lewis, 1988;
Hazama and Okada, 1988) and 1983 (Blatz and Magleby,
1983), respectively. The acid-sensitive outwardly rectifying anion
channel (ASOR), also called the proton-activated anion channel
(PAC), represents the acid-activated anion channel, and was
functionally discovered in 2003 (Auzanneau et al., 2003). The
core molecules for VSOR/VRAC, Maxi-Cl, and ASOR/PAC were
identified at last in 2014–2019 (see below) all by unbiased
genome-wide approaches, whereas molecular entities of other
types of anion channels were elucidated much earlier. Here we
concisely review their molecular identities, functional properties,
structural features and physiological roles in comparison with
each other.

MOLECULAR IDENTIFICATION FOR THE
CORE AND REGULATORY MOLECULES
OF VOLUME-SENSITIVE OUTWARDLY
RECTIFYING ANION
CHANNEL/VOLUME-REGULATED ANION
CHANNEL, MAXI-ANION CHANNEL, AND
ACID-SENSITIVE OUTWARDLY
RECTIFYING/PROTON-ACTIVATED
ANION CHANNEL

The Core and Regulatory Molecules of
Volume-Sensitive Outwardly Rectifying
Anion Channel/Volume-Regulated Anion
Channel
Leucine-rich repeat-containing eight family member A
(LRRC8A) was identified as the core molecule of VSOR/VRAC
in 2014 (Qiu et al., 2014; Voss et al., 2014) and was shown
to form a heterohexamer with LRRC8C, 8D, and/or 8E
(Voss et al., 2014; Syeda et al., 2016). Given heterogeneity
of heterohexameric composition of the core component,
the term VSOR/VRAC is likely to comprise a group of
similar channels with a common molecular architecture
and common fundamental properties of whole-cell currents
(see below) but different subtype compositions in different
tissues. The pore-forming role of LRRC8A was suggested
by some mutation studies (see Review: König and Stauber,
2019), especially by a slight change in the PI/PCl ratio
induced by a charge-reversing K98E mutation (Ullrich
et al., 2016) and by a small increase in the Na+ permeability
induced by a charge-neutralizing R103A mutation (Deneka
et al., 2018). Also, it is noted that purified LRRC8A plus
LRRC8C/D/E were found to be sufficient to form VSOR/VRAC
channels activated by low ionic strength, though not by
swelling, when reconstituted in lipid droplets by Syeda
et al. (2016), the fact of which strongly suggests that
the heteromer per se provides the pore of VSOR/VRAC

channels activated by reduced ionic strength. However,
whether LRRC8A plus 8C/D/E form the pore of swelling-
activated VSOR/VRAC by themselves still awaits further
study to obtain such decisive evidence as the transformation
from anion selectivity to cation selectivity caused by
introduction of some charge-modifying mutation at the
selectivity filter site.

Most recently TRPM7 was shown to serve as an essential
regulator of VSOR activity and plasmalemmal expression of
LRRC8A with exhibiting the physical protein-protein interaction
between LRRC8A and TRPM7 as evidenced by the effects of
TRPM7 gene deletion and silencing on LRRC8A expression,
stable LRRC8A expression to the plasma membrane, as well
as plasmalemmal co-localization and co-immunoprecipitation
between LRRC8A and TRPM7 tagged with fluorescent proteins,
which were detected by antibodies specific to tagged proteins,
in a manner sensitive to the deletion of the kinase domain of
TRPM7 (Numata et al., 2021). To certify the general role of
TRPM7 in VSOR/VRAC regulation, future studies are awaited
to be performed by using different types of antibodies in a
number of cell types, including those derived from TRPM7-
knockout mice. Given that the LRR motif serves as the
site for protein-protein interactions, it is likely that some
other regulatory components for VSOR/VRAC/LRRC8 channels
are still missing.

The Core and Regulatory Molecules of
Maxi-Anion Channel and Acid-Sensitive
Outwardly Rectifying/Proton-Activated
Anion Channel
SLCO2A1, which is known as a prostaglandin transporter
(Kanai et al., 1995), was identified as the pore molecule of
Maxi-Cl in 2017 (Sabirov et al., 2017). This identification
extends the list of transporter-associated anion channels (see
Review: Minor, 2017) such as glutamate transporter-associated
anion channels, SLC1As/EAATs (see Review: Fahlke et al.,
2016; Untiet et al., 2017; Engels et al., 2021) involved
in chloride homeostasis. More recently in 2019, the core
molecule of ASOR/PAC was identified to be TMEM206
(Ullrich et al., 2019; Yang et al., 2019a). The firmest evidence
for pore-forming roles in Maxi-Cl and ASOR/PAC was
provided by the observations that a charge-neutralizing K613G
mutant of SLCO2A1 (Sabirov et al., 2017) and a charge-
reversing K319E mutant of TMEM206 (Ruan et al., 2020)
converted their activities from anion-selective to cation-selective
channels, respectively.

The hetero-tetrameric S100A10-annexin A2 (ANXA2)
complex formed by two S100A10 and two ANXA2 molecules
was identified by Islam et al. (2020) as the regulatory
component of Maxi-Cl. The physical protein-protein
interaction between SLCO2A1 and ANXA2 was evidenced by
co-immunoprecipitation assays. Furthermore, the ANXA2-
S100A10 complex was shown to be responsible for the
dependence of Maxi-Cl activity on cytosolic Ca2+ and tyrosine
dephosphorylation (Islam et al., 2020). However, the regulatory
subunit for ASOR/PAC/TMEM206 remains to be identified.
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These established molecular components of VSOR/VRAC,
Maxi-Cl, and ASOR/PAC are listed in Table 1A.

FUNCTIONAL PROPERTIES OF
VOLUME-SENSITIVE OUTWARDLY
RECTIFYING ANION
CHANNEL/VOLUME-REGULATED ANION
CHANNEL, MAXI-ANION CHANNEL, AND
ACID-SENSITIVE OUTWARDLY
RECTIFYING/PROTON-ACTIVATED
ANION CHANNEL

Electrophysiological properties of these three types of volume-
related anion channels were directly studied by observing
their channel currents using patch-clamp techniques, and
those were described in detail so far in the review articles for
VSOR/VRAC (Strange et al., 1996; Nilius et al., 1997; Okada,
1997), Maxi-Cl (Sabirov et al., 2016, 2021), and ASOR/PAC
(Okada et al., 2021b). The pharmacological properties of
these three types of volume-related anion channels are
different from each other, as recently summarized in our
review article (Okada et al., 2019b). Here, we summarize
biophysical and physiological properties of these three
types of anion channels together by comparing them with
each other in order to shed light on the research subjects
remaining to be studied.

Biophysical Properties of
Volume-Sensitive Outwardly Rectifying
Anion Channel/Volume-Regulated Anion
Channel, Maxi-Anion Channel, and
Acid-Sensitive Outwardly
Rectifying/Proton-Activated Anion
Channel
The pore radii of VSOR/VRAC and Maxi-Cl were functionally
evaluated to be around 0.63 (Ternovsky et al., 2004) and 0.75–
1.3 nm (Sabirov and Okada, 2004), respectively. However, the
pore radius of ASOR/PAC has not been directly studied as
yet. In accord with the above pore size, the unitary (single-
channel) conductance of Maxi-Cl (300–500 pS) is larger than
that of VSOR/VRAC (10–90 pS). Since the unitary conductance
of ASOR/PAC (4–10 pS) is smaller than VSOR/VRAC, the pore
radius of ASOR/PAC could be predicted to be smaller than that
of VSOR/VRAC. Whole-cell currents (I) of these three types
of anion channels are also distinct from each other in their
rectification and voltage (V)-dependent gating time courses. The
I–V relationship of Maxi-Cl is linear (ohmic) and distinct from
those of VSOR/VRAC and ASOR/PAC exhibiting weakly and
sharply outward rectifying voltage dependence, respectively. The
voltage- and time-dependent activation kinetics of ASOR/PAC
currents showing in response to application of positive voltages
is distinct from inactivation kinetics of VSOR/VRAC currents
upon positive voltages and of Maxi-Cl currents upon positive

TABLE 1 | Comparisons of the molecular, biophysical, and physiological
properties among volume-sensitive outwardly rectifying anion
channel/volume-regulated anion channel (VSOR/VRAC), maxi-anion channel
(Maxi-Cl), and acid-sensitive outwardly rectifying/proton-activated anion
channel (ASOR/PAC).

Anion channels VSOR/VRAC Maxi-Cl ASOR/PAC

(A) Molecular identities

Core LRRC8A + 8C/D/E SLCO2A1 TMEM206

Regulatory TRPM7 ANXA2 + S100A10 ?

(B) Biophysical properties

Pore radius ∼0.63 nm 0.75-1.3 nm ?

Unitary
conductance

Intermediate
(10-90 pS)

Large (300-500 pS) Small (4-10 pS)

Rectification Mild outward Linear sharp
outward

Sharp outward

Gating Inactivation
kinetics at +V*

Inactivation kinetics
at +V and -V*

Activation
kinetics at +V*

(C) Physiological properties

Activation factors

Strong acidity Suppressing ? Activating

Cell swelling Activating Activating Insensitive

ROS Activating ? ?

Regulatory factors

Cytosolic ATP Dependent Inhibiting Independent

Cytosolic Mg2+ Sensitive ? Insensitive

Cytosolic Ca2+ Indirectly
dependent

Directly dependent Insensitive

*+V and -V represent positive and negative voltages, respectively.

and negative voltages. These biophysical properties are listed in
comparison to each other in Table 1B.

Physiological Properties of
Volume-Sensitive Outwardly Rectifying
Anion Channel/Volume-Regulated Anion
Channel, Maxi-Anion Channel, and
Acid-Sensitive Outwardly
Rectifying/Proton-Activated Anion
Channel
Extracellular acidification activates ASOR/PAC but rather
suppresses VSOR/VRAC (Sabirov et al., 2000). Osmotic cell
swelling is a well-known stimulus not only for VSOR/VRAC but
also for Maxi-Cl, whereas ASOR/PAC was found to be unaffected
by osmotic cell swelling (Kittl et al., 2019). VSOR/VRAC activity
is activated also by reactive oxygen species (ROS) even in
the absence of cell swelling (Browe and Baumgarten, 2004;
Shimizu et al., 2004; Varela et al., 2004), presumably via co-
localization and physical interaction between LRRC8A and
NOX1 (Choi et al., 2016) as well as co-localization and not
only physical but also functional interactions between LRRC8C
and NOX1 (Choi et al., 2021), although these interactions must
be reexamined by using antibodies more specific to LRRC8A,
LRRC8C, and NOX1. There has, however, been no study on
the effects of ROS on ASOR/PAC and Maxi-Cl activities. The
presence of ATP in the cytosol is definitely indispensable for
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VSOR/VRAC activation (Jackson et al., 1994; Oiki et al., 1994)
but dispensable for ASOR/PAC activation (Yamamoto and Ehara,
2006), whereas cytosolic ATP rather downregulates Maxi-Cl
activity (Sabirov and Okada, 2009). Cytosolic free Mg2+ was
shown to reduce VSOR/VRAC activity (Oiki et al., 1994) in
a concentration-dependent manner (Okada et al., 2019b) but
to have no effect on ASOR/PAC (Lambert and Oberwinkler,
2005), whereas the effect of cytosolic Mg2+ on Maxi-Cl was not
studied as yet. An increased intracellular free Ca2+ concentration
([Ca2+]i) was suggested to be somehow involved in activation
of Maxi-Cl currents based on the effect of a Ca2+ ionophore
(Light et al., 1990; Kawahara and Takuwa, 1991) and was
actually shown to upregulate Maxi-Cl activity in a concentration-
dependent manner by binding to S100A10 (Islam et al., 2020),
whereas Ca2+-dependent activation of VSOR/VRAC is indirectly
produced in response to stimulation of G protein-coupled
receptor (GPCR; Mongin and Kimelberg, 2005) through NOX-
mediated ROS production (Akita et al., 2011; Akita and Okada,
2011) at very high [Ca2+]i regions in the immediate vicinity of
the channel, called Ca2+ nanodomains (Akita and Okada, 2011).
In contrast, ASOR/PAC activity is totally insensitive to cytosolic
Ca2+ (Nobles et al., 2004; Yamamoto and Ehara, 2006; Kittl et al.,
2019). These physiological properties are listed with comparing
them to each other in Table 1C.

STRUCTURAL FEATURES OF
VOLUME-SENSITIVE OUTWARDLY
RECTIFYING ANION
CHANNEL/VOLUME-REGULATED ANION
CHANNEL, MAXI-ANION CHANNEL, AND
ACID-SENSITIVE OUTWARDLY
RECTIFYING/PROTON-ACTIVATED
ANION CHANNEL

Structures of the Core Molecules of
Volume-Sensitive Outwardly Rectifying
Anion Channel/Volume-Regulated Anion
Channel
The series of three-dimensional (3D)-structures of
homohexamers of LRRC8A (Deneka et al., 2018; Kasuya
et al., 2018; Kefauver et al., 2018; Kern et al., 2019) and LRRC8D
(Nakamura et al., 2020) were an impressive breakthrough
achieved during the past 4 years by employing cryo-EM in
combination with single particle computational analysis. In the
homo-hexameric assembly of human LRRC8A (Kasuya et al.,
2018), single subunits have very similar topology, all of which are
characterized by the following four regions: the transmembrane
region (∼4 nm) is formed by transmembrane helixes (TM1–
TM4); two extracellular loops between TM1 and TM2 (EL1) and
TM3 and TM4 (EL2) form the extracellular region (∼3.5 nm);
TM2 and TM3 are connected by an intracellular loop (IL1),
and IL1 together with another intracellular loop (IL2) forms the
intracellular region (∼3.5 nm); the IL2 connects TM4 with the
leucine-rich repeats (LRR) region (∼6 nm) containing 15 LRRs.

In the hexameric channel, the six LRRs are twisted in a clockwise
manner. The overall shape and relative dimensions of the four
regions of the LRRC8A homohexameric complex are illustrated
in Figure 1A. Other reported structures share similar topology
(Deneka et al., 2018; Kefauver et al., 2018; Kern et al., 2019).
However, it must be noted that the 3D-structures of heteromeric
hexamers of LRRC8A plus LRRC8C/D/E remain undetermined.

All four regions of the LRRC8A hexamer contribute to the
channel pore, which appears to be fairly long. In the human
channel (Kasuya et al., 2018), the distance from the extracellular
entrance (with radius R ∼ 0.74 nm) to the intracellular exit
vestibule (R ∼ 1.13 nm) is about 14 nm (Figure 1A). The pore
is not uniform in size exhibiting a constriction of R ∼ 0.38 nm
(presumably a selectivity filter) followed by a local widening with
R ∼ 2.54 nm around the transmembrane region. Although the
vestibules’ constriction and middle widening were observed in
all reported 3D-structures of recombinant LRRC8 proteins, their
dimensions were quite variable. Thus, the narrowest selectivity
filter (R ∼ 0.1 nm) was observed for human LRRC8A hexamer
by Kefauver et al. (2018), whereas the homohexameric channel
made of human LRRC8D had the widest pore (R ∼ 0.57 nm)
at the constriction site (Nakamura et al., 2020). The latter value
is close to the size of native VSOR/VRAC: R ∼ 0.57–0.71 nm
indirectly estimated by permeability to organic anions (Nilius
et al., 1999; Nilius and Droogmans, 2003), and by blocking effects
of calixarenes (Droogmans et al., 1998, 1999) and R ∼ 0.63
evaluated by non-electrolyte partitioning (Ternovsky et al., 2004).
Obviously, experimental conditions during sample preparation,
such as lipidic environment and ionic strength, significantly affect
the tightness of the resulting protein assembly [see Figure 1
in Okada et al. (2021a) for summary of the pore radii at the
constriction site for the published 3D-structures].

In the LRRC8A hexameric channel, the narrowest constriction
site corresponds to the ring of positively charged R103 located
at the N-terminal part of the EL1 (Deneka et al., 2018;
Kasuya et al., 2018; Kefauver et al., 2018; Kern et al., 2019).
This residue is a putative determinant of anion selectivity,
extracellular ATP blockage and binding to a VSOR/VRAC
selective blocker, 4-(2-butyl-6,7-dichloro-2-cyclopentyl-indan-1-
on-5-yl) oxobutyric acid (DCPIB), that binds to the pore in
a “cork-in-bottle” manner (Kern et al., 2019). T44 at the
extracellular end of TM1 is also known to induce small changes in
the channel selectivity to I− and Cl− (Qiu et al., 2014). Residues
K98 and D100 located at the C-terminus of the EL1 are also
conceived to be involved in selectivity as well as in voltage-
dependent gating (Ullrich et al., 2016; Deneka et al., 2018; Kasuya
et al., 2018; Kefauver et al., 2018; Strange et al., 2019). Locations
of the mentioned amino acids are depicted in Figure 1A.

The uniquely arranged LRR region contains numerous
charged amino acids at the contacting surfaces between adjacent
subunits (Deneka et al., 2018; Kasuya et al., 2018; Kefauver
et al., 2018; Kern et al., 2019; Nakamura et al., 2020). Such
arrangements may explain the well-known activation by low
ionic strength of the native VSOR/VRAC (Cannon et al., 1998;
Voets et al., 1999; Sabirov et al., 2000; Deneka et al., 2021)
and purified LRRC8 proteins in lipid bilayers (Syeda et al.,
2016). This is thought to occur due to altered electrostatic
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FIGURE 1 | Structural features of volume-sensitive outwardly rectifying anion channel/volume-regulated anion channel (VSOR/VRAC), maxi-anion channel (Maxi-Cl),
and acid-sensitive outwardly rectifying/proton-activated anion channel (ASOR/PAC). (A) Structure of the human homohexameric LRRC8A channel. Upper panel: top
view; lower panel: side view. The pore radius along the central axis (graph at the right of the lower panel) is shown in scale. The structure is drawn according to
Kasuya et al. (2018) using the 5zsu.pdb file downloaded from https://www.rcsb.org/structure/5zsu. On the upper right side, schematic membrane topology of the
monomeric protein is drawn according to Voss et al. (2014). (B) The presumed structure of the Maxi-Cl. The homology model of the SLCO2A protein built using the
glycerol-3-phosphate transporter from Escherichia coli as a template is shown [modified from Sabirov et al. (2017)]. On the middle right side, the protein membrane
topology is drawn according to Nakanishi et al. (2021). The pore radius along the central pore axis (graph at the right of the lower panel) is calculated using HOLE
program (Smart et al., 1996). Arrows indicate position of the two putative gates. Green and red lines illustrate a shift in the pore radius when indicated amino acids
are replaced with Gly (see text for details). (C) Top (upper panel) and side (lower panel) views of the human ASOR/PAC channel. E250 of cognate subunit together
with E107 and D109 of the next adjacent subunit form an “acidic pocket” for the protonated H98. The pore radius along the central axis is shown in scale. Red and
black lines correspond to the deprotonated and protonated channels, respectively. The drawing is based on the 7jna.pdb file downloaded from
https://www.rcsb.org/structure/7jna [Modified from Okada et al. (2021b)]. Schematic membrane topology of the monomeric protein is drawn on the middle right
side, according to Ullrich et al. (2019).

interactions between subunits via a mechanism, which could also
be caused by mechanical stress (Strange et al., 2019). Consistent
with this paradigm, a recent study demonstrated that synthetic

proteinaceous nanobodies (called sybodies) targeting different
LRR epitopes profoundly modulate activation of the native
channel by low ionic strength (Deneka et al., 2021).
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Structural Features of the Core Molecule
of Maxi-Anion Channel
The molecular basis of the Maxi-Cl has been established only
recently as the SLCO2A1 protein (Sabirov et al., 2017), and
thus no high-resolution 3D-structures are available at present.
Figure 1B shows the homology model of SLCO2A1 protein
based on the published crystal structure of the glycerol-3-
phosphate transporter (Sabirov et al., 2017). The full-length
protein possesses 12 transmembrane domains, is located mostly
within the membrane (Transmembrane region in Figure 1B)
with relatively small extra- and intra-cellular regions. The pore
radius calculated along the central axes shows two constrictions
around T346 and F556 (Figure 1B: black line in the graph given
at the right of the lower panel), which supposedly correspond
to two gates necessary for its function as a prostaglandin
transporter (Minor, 2017). Upon changing these amino acids
to Gly, the modeled pore widens (Figure 1B: green line for
T346G and red line for F556G). However, such widening (up
to R ∼ 0.2–0.4 nm) in this conformation of SLCO2A1 would
not allow passage of ATP, ADP, and UTP [R ∼ 0.53–0.61 nm;
see Table 2 in Sabirov and Okada (2005)], although native
Maxi-Cl channels are known to be ATP-conductive, as noted
below. Therefore, we believe that a major conformational change
(not just a local residue shift at the gates) should take place
in the protein structure when it turns from the prostaglandin
transporter mode to the ATP-conductive channel mode. Thus,
the 3D-structure of the channel mode of SLCO2A1 remains
to be elucidated.

Structures of the Core Molecules of
Acid-Sensitive Outwardly
Rectifying/Proton-Activated Anion
Channel
Identification of the ASOR/PAC channel as TMEM206 (Ullrich
et al., 2019; Yang et al., 2019a) has initiated a breakthrough in
revealing its spatial architecture. To date, two 3D-structures are
available: human TMEM206 (Ruan et al., 2020) and its ortholog
of pufferfish (Deng et al., 2021). Both channels exhibited a homo-
trimeric structure with a ball-shaped extracellular domain (ECD),
mostly made of β-strains, connected to a slim transmembrane
(TM) domain composed of two α-helixes (TM1 and TM2) from
each of the three subunits (Figure 1C). Although the ECD
possesses a water-accessible cavity reminiscent of an extracellular
vestibule, there is a tight seal that separates it from the channel
pore inside the transmembrane region. The ion-conducting path
is supposed to begin in “fenestrations” (Ruan et al., 2020) at
the beginnings of transmembrane region (Figure 1C), and the
contribution of the “lateral openings” seen in the ECD of the
pufferfish channel to the conducting pathway has also been
suggested (Deng et al., 2021). The pore is lined by residues of
TM2 of each subunit with K319 in human channel (corresponds
to K320 in the pufferfish protein) as a key determinant of
selectivity and outward rectification. This is justified by the
charge-reversing mutation K319E that confers cation selectivity
and inward rectification (Ruan et al., 2020).

Channel protonation induces a large conformational change
that involves movement of the protonated H98 at the interface
between TMs and ECD to an ”acidic pocket” formed by three
negatively charged amino acids (E107, D109, and E250) inside
the ECD (Ruan et al., 2020). This movement is associated with
enlargement of the channel interior. However, even the structure
obtained at pH 4 (Figure 1C: black line in the graph given at the
right of the lower panel) is too narrow to be conductive to anions,
implying that all the reported structures were caught in closed (or
inactivated) states. Thus, further studies are warranted to clarify
the 3D-structure of TMEM206 in the open (or activated) state.

PHYSIOLOGICAL ROLES OF
VOLUME-SENSITIVE OUTWARDLY
RECTIFYING ANION
CHANNEL/VOLUME-REGULATED ANION
CHANNEL, MAXI-ANION CHANNEL, AND
ACID-SENSITIVE OUTWARDLY
RECTIFYING/PROTON-ACTIVATED
ANION CHANNEL

Roles in Organic Signal Release of
Volume-Sensitive Outwardly Rectifying
Anion Channel/Volume-Regulated Anion
Channel, Maxi-Anion Channel, and
Acid-Sensitive Outwardly
Rectifying/Proton-Activated Anion
Channel
Volume-sensitive outwardly rectifying anion channel/Volume-
regulated anion channel and Maxi-Cl may play roles in cellular
release of organic signal molecules, because not only most
inorganic but also some organic anions are permeable to
VSOR/VRAC and Maxi-Cl, when the size of the given anionic
substance is smaller than that of the pore size. VSOR-mediated
conductance of glutamate (Glu) [its effective radius of 0.345 nm
(Sabirov and Okada, 2005)] with Pglu/PCl of around 0.2 was
originally shown by Banderali and Roy (1992). Maxi-Cl was
also shown to exhibit significant permeability not only to
glutamate with Pglu/PCl of around 0.2 but also to ATP [its
effective radius of 0.57–0.58 nm (Sabirov and Okada, 2005)]
with PATP/PCl of around 0.09 evaluated originally by Sabirov
et al. (2001). Since glutamate and ATP exert as extracellular
paracrine/autocrine signals, these anion channels may provide
the pathways for cellular release of glutamatergic/excitotoxic
and purinergic signals, respectively. Actually, a large number of
studies demonstrated VSOR/VRAC-mediated glutamate release
and Maxi-Cl-mediated release of glutamate and ATP (see
Reviews: Okada et al., 2018, 2021a). VSOR/VRAC-mediated
ATP release was observed in some but not all types of cells
(Hisadome et al., 2002; Dutta et al., 2004; Dunn et al., 2020;
Furuya et al., 2021). Such cell type-dependent ATP release
capability of VSOR/VRAC may be explained by the fact that
ATP conductivity via VSOR/VRAC depends on the subunit
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composition of the LRRC8 hexamer (Gaitán-Peñas et al.,
2016; Syeda et al., 2016). VSOR/VRAC was also shown to
be conductive for an antioxidant glutathione (GSH; Sabirov
et al., 2013; Friard et al., 2019) with PGSH/PCl of around
0.1 and for an anticancer drug cisplatin (Planells-Cases et al.,
2015). Whether or not ASOR/PAC also significantly participates
in organic solute release and/or uptake awaits future study
for verification.

Roles in Regulatory Volume Decrease of
Volume-Sensitive Outwardly Rectifying
Anion Channel/Volume-Regulated Anion
Channel, Maxi-Anion Channel, and
Acid-Sensitive Outwardly
Rectifying/Proton-Activated Anion
Channel
Cell volume regulation after osmotic swelling observed in most
mammalian cells is called the regulatory volume decrease (RVD)
which is known to be accomplished by water efflux driven by KCl
efflux. The volume-regulatory KCl release was first directly shown
to be predominantly attained by parallel activation of K+ and
Cl− channels in 1988 (Hazama and Okada, 1988). As shown by
Numata et al. (2007b), cell swelling is initially sensed by TRPM7,
which is known as a mechano-sensing cation channel in many
cell types (Numata et al., 2007a; Liu et al., 2015; Won et al.,
2018; Zhao R. et al., 2019; Starostina et al., 2021), and thereby
causes Ca2+ influx. This swelling-triggered Ca2+ entry may
trigger ryanodine-sensitive Ca2+-induced Ca2+ release from ER,
thereby leading to sustained intracellular free Ca2+ rise (Hazama
and Okada, 1990), and then Ca2+-activated volume-regulatory
K+ channels (Figure 2).

Volume-regulatory pathways for Cl− are mainly provided
by VSOR/VRAC (Nilius et al., 1997; Okada, 1997). Molecular
evidence for an involvement of LRRC8A in RVD was provided
by the inhibitory effect of its gene silencing (Qiu et al., 2014;
Formaggio et al., 2019) and deletion (Voss et al., 2014; Friard
et al., 2017; Kang et al., 2018; Trothe et al., 2018; Green et al.,
2020). Swelling-activated VSOR/VRAC activity was recently
shown to be doubly supported by TRPM7 first through molecular
expression of LRRC8A depending on the maintenance of steady-
state Ca2+ influx via this cation channel and second through
stabilizing plasmalemmal LRRC8A expression depending on the
physical protein-protein interaction with the C-terminal domain
of TRPM7 (Numata et al., 2021). Activation of VSOR/VRAC
is known to be triggered, even in the absence of cell swelling,
by ROS production controlled by Ca2+ nanodomains caused by
stimulation of GPCRs such as purinergic P2Y receptor (P2YR;
Akita et al., 2011), bradykinin receptor (Akita and Okada, 2011)
and metabotropic glutamate receptor (mGluR; Akita and Okada,
2014). Thus, ATP released via Maxi-Cl and glutamate released
via Maxi-Cl and VSOR/VRAC may enhance, in an autocrine
fashion, VSOR/VRAC activity initially triggered by TRPM7-
induced Ca2+ rise upon cell swelling (Figure 2).

Maxi-anion channel may also, at least in part, provide the
volume-regulatory pathway for Cl− (Falke and Misler, 1989).

FIGURE 2 | Involvements of VSOR/VRAC, Maxi-Cl, and ASOR/PAC anion
channels in cell volume regulation/dysregulation under hypotonic or acidosis
conditions (see in text in detail). It is noted that cell swelling results from water
influx driven by osmotic gradient under hypotonic situations or by NaCl influx
caused by proton-induced parallel activation of ASOR/PAC anion channels
and TRPM7 cation channels under acidosis, whereas RVD is attained by
water efflux driven by parallel activation of VSOR/VRAC anion channels and
K+ channels. How TRPM7 is mobilized to physically interact with LRRC8A
after osmotic cell swelling is not known. Glutamate (Glu) and ATP released
from VSOR/VRAC and/or Maxi-Cl may also stimulate, in a paracrine fashion,
metabotropic and ionotropic glutamate receptors and purinergic receptors
expressed in neighboring cells (not drawn in this figure).

However, molecular evidence for an involvement of Maxi-
Cl/SLCO2A1 in RVD remains to be missing. The mechanisms for
activation of Maxi-Cl induced by cell swelling involve cytosolic
free Ca2+ rise through Ca2+ binding to S100A10 (Islam et al.,
2020) and also may involve mechanosensitivity of Maxi-Cl
(Schwiebert et al., 1994), as schematically illustrated in Figure 2.
Maxi-Cl activation is also shown to be induced by tyrosine de-
phosphorylation (Toychiev et al., 2009) at Tyr23 of ANXA2
(Islam et al., 2020).

Roles in Cell Volume Dysregulation
Coupled to Cell Death Induction of
Volume-Sensitive Outwardly Rectifying
Anion Channel/Volume-Regulated Anion
Channel, Maxi-Anion Channel, and
Acid-Sensitive Outwardly
Rectifying/Proton-Activated Anion
Channel
In contrast to VSOR/VRAC and Maxi-Cl, ASOR/PAC rather
plays a cell swelling-inducing but not volume-regulatory role.
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Acidosis induces lengthy cell swelling (Wang et al., 2007; Sato-
Numata et al., 2014), because extracellular protons directly
activate not only ASOR/PAC but also TRPM7 under acidotic
conditions (Numata et al., 2019). Prolonged acid-induced
activation of TRPM7 causes Na+ influx and cell depolarization
which drives Cl− influx via ASOR/PAC, thereby causing cell
swelling (Figure 2).

Persistent activation of ASOR/PAC and VSOR/VRAC plays
pathophysiological roles in induction of the necrotic volume
increase (NVI) under acidotoxic, lactacidotoxic, excitotoxic,
and hypoxic/ischemic conditions as described in recent review
articles (Okada et al., 2021a,b). A positive inotropic role of
ATP released via Maxi-Cl in response to ischemia-reperfusion
in the heart was reported in a recent study (Matsuura et al.,
2021). VSOR/VRAC activity also plays pathophysiological roles
in induction of apoptotic cell death under stimulation with
apoptosis inducers in a threefold manner, as described in
other review articles (Okada et al., 2019a, 2021a); first ROS-
mediated activation of VSOR/VRAC induces persistent cell
shrinkage called the apoptotic volume decrease (AVD; Maeno
et al., 2000; Shimizu et al., 2004; Planells-Cases et al., 2015),
second VSOR/VRAC activation mediates GSH release (Sabirov
et al., 2013), thereby contributing to intracellular GSH depletion,
and third VSOR/VRAC serves as the entry pathway for some
anticancer drugs such as cisplatin (Planells-Cases et al., 2015)
which can kill cancer cells by apoptosis (Ise et al., 2005; Sørensen
et al., 2014). It is also noted that downregulation of VSOR/VRAC
activity (Lee et al., 2007) and LRRC8A expression (Planells-
Cases et al., 2015; Sørensen et al., 2016a,b; Thorsteinsdottir
et al., 2016) is associated with acquisition of cisplatin resistance
by cancer cells.

PERSPECTIVE

As outlined in Table 1 with question marks, there remain many
questions concerning molecular, biophysical and physiological
properties of these three types of anion channels for future
studies. Also, it is still unknown about actual molecular
mechanisms including intracellular signaling pathways for
activation of these anion channels. Although cell swelling-
induced activation of VSOR/VRAC is now known to be
mediated by TRPM7, it is not elucidated how VSOR/VRAC
channels are activated by reduced ionic strength. Likewise,
how cell swelling activates Maxi-Cl/SLCO2A1 channel activity
remain to be elucidated, whereas its activation induced by
tyrosine dephosphorylation and intracellular Ca2+ rise was
shown to be mediated by the ANXA2-S100A10 complex (Islam
et al., 2020). The molecular mechanisms and intracellular
signaling for ASOR/PAC channel activation are totally
unknown. Furthermore, it should be reacknowledged that
the exact 3D-structures have not as yet been determined
for actual VSOR/VRAC channels formed by heteromers of
LRRC8A plus LRRC8C/D/E, for the Maxi-Cl channel (but not
prostaglandin transporter) conformation of SLCO2A1, and
for the open/activated (but not closed/inactivated) state of
ASOR/PAC/TMEM206 channels.

Physiological and pathophysiological roles played by the
three discussed chloride channels in various cellular processes
suggest that their dysfunctions would result in human diseases.
Indeed, a number of human disease-associated mutations in
genes encoding LRRC8A (see Review: Vaeth and Feske, 2018)
and SLCO2A1 (see Reviews: Madruga Dias et al., 2014; Stumpff,
2018; Nakanishi et al., 2021) as well as by association of cancer
progression with TMEM206 expression (Zhao J. et al., 2019;
Zhang et al., 2020) have been reported. Global knockout of
Lrrc8a in mice exhibits increased prenatal/postnatal mortality
as well as a wide variety of disordered development of tissues
and organs (Kumar et al., 2014). Also, a number of disorders
are found in recent studies using specific cell- or tissue-targeted
Lrrc8a knockout mice. For example, impaired glucose tolerance
and insulin resistance are caused by conditional knockout of
Lrrc8a expressing in adipocytes (Zhang et al., 2017), pancreatic β

cells (Kang et al., 2018), and skeletal muscle cells (Kumar et al.,
2020); male infertility by germ cell-specific Lrrc8a disruption
(Lück et al., 2018); angiotensin-II-stimulated hypertension by
endothelial-targeted Lrrc8a knockout (Alghanem et al., 2021);
and brain hyperexcitability coupled to astrogliosis by brain-
specific Lrrc8a disruption (Wilson et al., 2021). However, it is
not known whether these dysfunctions are caused by disordered
anion-conductive activities of LRRC8A or non-conductive
protein-protein interactions. On the other hand, ischemia-
induced brain infarct was found to be partially protected not only
by astrocyte-specific Lrrc8a knockout presumably by suppressing
excitotoxicity (Yang et al., 2019b) but also by neuron-targeted
Lrrc8a disruption presumably through inhibition of apoptosis
induction (Zhou et al., 2020). Studies with Slco2a1 knockout
mice suggested that SLCO2A1 is involved in promotion of
colon cancer (Nakanishi et al., 2017), bleomycin-induced fibrosis
(Nakanishi et al., 2015), and LPS-induced febrile responses
(Nakamura et al., 2018). Although these effects have been
interpreted by prostaglandin transporting activity of SLCO2A1,
it is now required to reexamine the possible therein involvements
of Maxi-Cl channel activity of SLCO2A1. It should be noted that
episodic ataxia caused by dysfunction of glutamate transporter-
associated chloride channels (Kovermann et al., 2020) further
emphasizes pathological roles of dual transporter/channel
proteins. Tmem206 knockout mice were also found to exhibit
partially protective effects against ischemic brain injury caused
by permanent middle cerebral artery occlusion (pMCAO)
presumably by reducing acidotoxicity (Yang et al., 2019b).

An obvious and straightforward way to correct the
impaired channel functions (either inherited or acquired) is
pharmacological up- or down-regulation of functional activity
of the VSOR/VRAC, Maxi-Cl, and ASOR/PAC channels and/or
their expression. The most selective inhibitor of VSOR/VRAC,
DCPIB, has been shown to exert neuroprotective (Zhang et al.,
2008; Alibrahim et al., 2013; Han et al., 2014; Wong et al., 2018)
and cardioprotective (Xia et al., 2016; Wang et al., 2017) actions
in animal models. Other known conventional Cl− channel
blockers were also shown to suppress ischemia/reperfusion-
induced apoptotic cell death in cardiomyocytes (Wang et al.,
2005) and excitotoxic necrotic cell death in cortical neurons and
brain slices (Inoue and Okada, 2007) by inhibiting VSOR/VRAC
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activity. Inhibitory effects of the plant flavonoids (Xue et al.,
2018; Rustamova et al., 2019), tannins (Tsiferova et al., 2019)
and polyphenol gossypol (Chorieva et al., 2021) may provide
a clue to discover new, effective and safe modulators targeting
VSOR/VRAC. Some conventional Cl− channel blockers were also
found to diminish acidotoxic necrotic cell death in HeLa cells
(Wang et al., 2007) and cortical neurons (Sato-Numata et al.,
2014) by inhibiting ASOR/PAC activity. The pharmacological
targeting of Maxi-Cl and ASOR/PAC awaits intensive studies
and search among natural and synthetic compounds. More
sophisticated and precise ways to manipulate the channels at
the level of whole organism, such as RNAi- or CRISPR/Cas9-
mediated downregulation of the expression of the channel
core/pore proteins, their regulatory subunits/proteins, or the
transcription factors for these genes could be considered as
perspective tools for treatments of VSOR/VRAC, Maxi-Cl, and
ASOR/PAC channelopathies and of their dysregulated activities
under pathological conditions.

In conclusion, the core molecules of three types of
volume-related anion channels, VSOR/VRAC, Maxi-Cl, and
ASOR/PAC, were identified in the 2010’s at last. After
that, their 3D-sturctures, regulatory subunit/partner molecules,
functional properties and physiological roles became clarified
on the basis of their molecular insights. By comparing these
pieces of information to each other, it becomes apparent

that there remain numbers of missing information to be
unraveled. Accumulating evidence has revealed that these anion
channels are associated not only with essential physiological
cell functions but also with pathological situations involving
their capability of cell volume regulation/dysregulation and
organic signal release.
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