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Abstract: The triflic-acid-promoted cyclization of 1-phenyl-3-(pyren-1-yl)-1H-pyrazole-4-carbaldehyde
afforded a mixture of 9-phenyl-7,9-dihydropyreno (10,1-fg)indazole and 9-phenylpyreno(10,1-fg)indazole-
7(9H)-one, readily separable by column chromatography. Both products contained a rigid six-ringed
pyrazoolympicene backbone and exhibited bright fluorescence in chloroform solution and a weak
fluorescence in the solid state. DFT and TD DFT calculations revealed that the lowest excited state (S1)
of these compounds is populated via HOMO→LUMO π-π * transition. Furthermore, the synthesized
compounds behaved as weak bases and their emission spectra showed substantial changes upon pro-
tonation. Therefore, they may be of interest for sensing of strongly acidic fluorophore environments.
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1. Introduction

Pyrene is one of the most interesting fluorophores, exhibiting intense and environment-
sensitive emission [1,2], aggregation-induced emission (AIE) [3] and capable of forming
emissive excimers and exciplexes [4–6]. Moreover, it can also be easily functionalized [7–9].
Due to these properties, pyrene has been the subject of interest in numerous studies aimed at
its modification to obtain useful fluorophores for practical applications in various branches
of science, ranging from optoelectronics to biology and medicine [4,7,10–14]. Pyrazoles
are another class of small molecule fluorophores exhibiting intense and tunable emission,
thoroughly studied in recent years [15–20]. Therefore, it seemed interesting to synthesize
molecules with conjugated pyrene-pyrazole cores and to study their luminescent properties.

We previously reported the synthesis and fluorescent properties of pyrazolylpyrenes 1
and 2 (Figure 1) [21,22].
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1. Introduction 
Pyrene is one of the most interesting fluorophores, exhibiting intense and environ-
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studies aimed at its modification to obtain useful fluorophores for practical applications 
in various branches of science, ranging from optoelectronics to biology and medicine 
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and tunable emission, thoroughly studied in recent years [15–20]. Therefore, it seemed 
interesting to synthesize molecules with conjugated pyrene-pyrazole cores and to study 
their luminescent properties. 

We previously reported the synthesis and fluorescent properties of pyrazolylpyrenes 
1 and 2 (Figure 1) [21,22]. 
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Figure 1. Molecular structures of pyrazolylpyrenes 1 and 2. Arrows indicate possible rotations 
around single bonds. 
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However, both molecules are conformationally labile and may adopt nonplanar ge-
ometries, which may decrease their emission efficiencies (their emission quantum yields in
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chloroform are 0.69 and 0.26, respectively). Therefore, we became interested in the synthesis
of conformationally restrained and planarized analogs of these compounds with the aim of
batochromically shifting their emission maxima and improving their emission quantum
yields. The bathochromic shift of the absorption and emission bands and the increase
in the emission efficiency of the fluorophore resulting from the structural prevention of
intramolecular rotations have already been demonstrated for various classes of dye [23–25]

Herein, we disclose the synthesis of dyes 3 and 4 (Scheme 1), along with the study of
their structures and optical properties, in comparison to those of 1 and 2.
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Scheme 1. Triflic acid-promoted cyclization of 2. Insets show the fluorescence of 3 and 4 in chloroform
solutions (left vial on both pictures) and solid samples (right vial on both pictures) illuminated with a
UV light.

2. Results and Discussion
2.1. Synthesis of 3 and 4

Inspired by the Klumpp’s work on the superacid-promoted cyclization of naphthyl
pyrazolecarbaldehyde [26], we investigated the possibility of performing a similar cy-
clization with compound 2. Pleasingly, we found that the addition of an excess of trifluo-
romethanesulfonic (triflic) acid to a solution of this compound in dichloromethane at room
temperature resulted in the rapid formation of fluorescent cyclization products, 9-phenyl-
7,9-dihydropyreno (10,1-fg)indazole, 3 and 9-phenylpyreno(10,1-fg)indazole-7(9H)-one,
4, readily separable by column chromatography. Both compounds contain a “pyrazo-
olympicene” six-ringed system (Figure 2).
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The structures of 3 and 4 were confirmed by spectroscopic methods. That of 3 was
confirmed by single crystal X-ray diffraction (Figure 3).
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As expected, unlike the highly twisted molecules of 1 [21], the molecules of 3 were
found to be planar (Figure 4 and Supplementary Information).
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Figure 4. Overlay of the X-ray diffraction-derived structures of 3 (blue) and 1 (red).

The mechanism proposed by Klumpp [26] suggests that compounds 3 and 4 may be
formed by the disproportionation of alcohol, 5, which is the presumed initial cyclization
product, and thus obtained in equivalent amounts. However, we found that 3 tended to
undergo partial oxidation to 4 on workup. As a result, the isolated yields of 3 and 4 were
different and not strictly reproducible (15–25% for 3 and 70–80% for 4).

2.2. Photophysical Properties of 1–4
2.2.1. UV/VIS Absorption and Emission Spectra in Solution

The electronic absorption and emission spectra of compounds 1–4 in chloroform are
shown in Figure 5 and the corresponding spectroscopic data are presented in Table 1.

It can be seen that the absorption bands of conformationally restrained compounds 3
and 4 are bathochromically shifted relative to the bands of their conformationally labile
counterparts, 1 and 2. We noted that in contrast to the broad, structureless absorption band
of compound 1, the red-shifted absorption band of compound 3 showed a well-resolved
vibronic structure. On the other hand, the emission spectra of both compounds displayed
structured bands at highly similar wavelengths, which suggests that their emitting states
had similar geometries, and thus compound 1 was planarized upon photoexcitation. More-
over, the comparison of the emission quantum yields of 1 and 3 (0.69 and 0.77, respectively)
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indicated that the rotation around the C-C bond linking the pyrazole and pyrene units can-
not be considered as an efficient nonradiative excited state deactivation channel. Therefore,
it can be assumed that the decrease in the emission efficiency of compound 2 can be related
to deactivation via the rotation of the aldehyde group. The higher emission quantum yield
of compound 4 (0.94) can be attributed to the restriction of this rotation.
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inated from aggregates or excimers. 

Figure 5. Electronic absorption (top) and emission (bottom) spectra of compounds 1–4. Excitation at
the maxima of absorption.

Table 1. Photophysical data of compounds 1–4.

Compound Absorption
(nm)/εmax (M−1 cm−1)

Emission
(nm)

Stokes Shift
(nm/cm−1)

Quantum Yield
ΦF

1 352/45,570/ * 392, 415, 438 (sh) * 40/2900 0.69 *
2 332/25,240/, 347/32,640/ ** 449 ** 102/6547 0.26 **
3 357/23,100/, 376/47,240/, 399 (57,140) 406, 432, 459 7/432 0.77
4 381/6480/, 402/9770/, 437/12,510/ 503, 532 66/3003 0.94

* Data taken from [21] ** Data taken from [22].
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2.2.2. Solid State Fluorescence of 3 and 4

Microcrystalline solid samples of 3 and 4 displayed a weak fluorescence (quantum
yields of 0.045 and 0.08, respectively) (Figure 6). In comparison to the emission bands
observed in solution the bands of solid samples were broad, structureless and red shifted
(maxima at 506 nm and 615 nm, respectively), which suggests that they might have origi-
nated from aggregates or excimers.

Molecules 2022, 27, x FOR PEER REVIEW 6 of 14 
 

 

450 500 550 600 650 700 750 800
0

0.25

0.5

0.75

1

λ [nm]

In
te

ns
ity

 (a
.u

.)

 3
 4

 
Figure 6. Normalized solid-state emission spectra of compounds 3 and 4 (excitation at 390 nm for 3 
and 420 nm for 4). 

The presence of π···π stacked dimers in the crystal of 3 was confirmed by X-ray dif-
fraction data (Figure 7). 

  

Figure 7. Crystal packing of compound 3 in selected directions (three crystallographically independ-
ent molecules are highlighted in colors). Left: View in the direction parallel to the pyrene planes of 
all molecules, showing π···π stacked dimers; Right: View along [100] showing the layers separation 
along [001]. More details are provided in Supplementary Information. 

2.3. Theoretical Calculations 
For an in-depth understanding of the molecular structures and electronic transitions 

leading to the lowest-energy singlet-excited states of compounds 3 and 4, we performed 
density functional theory (DFT) and time-dependent density functional theory (TD-DFT) 
calculations using Gaussian16 package and B3PW91/6-311++G(d,p) basis set. The calcula-
tions were carried out for isolated molecules with the solvent (chloroform) simulated in 
polarizable continuous model (PCM) approximation. The DFT calculations were per-
formed using resources from WCSS (grant 115). 

  

Figure 6. Normalized solid-state emission spectra of compounds 3 and 4 (excitation at 390 nm for 3
and 420 nm for 4).

The presence of π···π stacked dimers in the crystal of 3 was confirmed by X-ray
diffraction data (Figure 7).

Molecules 2022, 27, x FOR PEER REVIEW 6 of 14 
 

 

450 500 550 600 650 700 750 800
0

0.25

0.5

0.75

1

λ [nm]

In
te

ns
ity

 (a
.u

.)

 3
 4

 
Figure 6. Normalized solid-state emission spectra of compounds 3 and 4 (excitation at 390 nm for 3 
and 420 nm for 4). 

The presence of π···π stacked dimers in the crystal of 3 was confirmed by X-ray dif-
fraction data (Figure 7). 

  

Figure 7. Crystal packing of compound 3 in selected directions (three crystallographically independ-
ent molecules are highlighted in colors). Left: View in the direction parallel to the pyrene planes of 
all molecules, showing π···π stacked dimers; Right: View along [100] showing the layers separation 
along [001]. More details are provided in Supplementary Information. 

2.3. Theoretical Calculations 
For an in-depth understanding of the molecular structures and electronic transitions 

leading to the lowest-energy singlet-excited states of compounds 3 and 4, we performed 
density functional theory (DFT) and time-dependent density functional theory (TD-DFT) 
calculations using Gaussian16 package and B3PW91/6-311++G(d,p) basis set. The calcula-
tions were carried out for isolated molecules with the solvent (chloroform) simulated in 
polarizable continuous model (PCM) approximation. The DFT calculations were per-
formed using resources from WCSS (grant 115). 

  

Figure 7. Crystal packing of compound 3 in selected directions (three crystallographically indepen-
dent molecules are highlighted in colors). Left: View in the direction parallel to the pyrene planes of
all molecules, showing π · π stacked dimers; Right: View along [100] showing the layers separation
along [001]. More details are provided in Supplementary Information.

2.3. Theoretical Calculations

For an in-depth understanding of the molecular structures and electronic transitions
leading to the lowest-energy singlet-excited states of compounds 3 and 4, we performed
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density functional theory (DFT) and time-dependent density functional theory (TD-DFT)
calculations using Gaussian16 package and B3PW91/6-311++G(d,p) basis set. The calcula-
tions were carried out for isolated molecules with the solvent (chloroform) simulated in
polarizable continuous model (PCM) approximation. The DFT calculations were performed
using resources from WCSS (grant 115).

2.3.1. Geometry Optimizations

The optimized structures of 3 and 4, in their ground (S0) and in their first excited state
(S1), are shown in Figure S2 (Supplementary Information). The significant interatomic
distances, in comparison to the X-ray diffraction data obtained for 3, are presented in
Table S2 (Supplementary Information).

In the S0 state, the six-ringed system was planar in both compounds. In compound
4, the phenyl ring was found to be twisted out by an angle of approximately 30◦, but the
twist disappeared in the S1 state (Figure S2d).

The changes in the bond lengths upon excitation are schematically represented in
Figure 8. There was a tendency towards the equalization of the bond lengths between the
formally single and double bonds, indicating more efficient electronic conjugation along
the π-backbone in the S1 state.
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2.3.2. Molecular Orbitals

The main molecular orbitals of compounds 3 and 4 are shown in Figure 9.
We found that the highest occupied molecular orbital (HOMO) and lowest unoccupied

molecular orbitals (LUMO) of 3 and 4 were mostly localized on the pyrene fragment, with
a certain degree of extension on the pyrazole ring and (for 4) on the carbonyl group. The
energies of these orbitals and the HOMO-LUMO gap of compound 3 were comparable
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to those of pyrene (HOMO: −5.33 eV, LUMO: −1.50 eV, HOMO-LUMO gap: 3.83 eV (in
gas phase) [28]. On the other hand, the HOMO of 4 was stabilized by ~0.6 eV, while the
stabilization of LUMO was stronger (~1.3 eV). As a result, the HOMO-LUMO gap of this
compound (3.08 eV) was significantly lower than that of 3 (3.63 eV).
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2.3.3. Electronic Transitions

The nature, energies and oscillator strengths of the lowest energy (S0→S1) transitions
of compounds 1–4 are presented in Table 2.
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Table 2. TD-DFT calculated electronic transitions involved in the formation of lowest-energy singlet
excited states (S0→S1) of compounds 1–4 in chloroform, their energies, wavelengths and oscillator
strengths (f).

Compound Contributing Orbitals
(Contribution) ∆E [eV] λcalc (nm) f

1 * H→ L (0.93) 3.41 363.5 0.626

2 ** H→ L (0.67)
H→ L + 1 (0.30) 3.31 375.0 0.236

3 H→ L (0.96) 3.26 380.2 0.806

4 H→ L (0.96) 2.71 457.1 0.29
* Data taken from [21] ** Data taken from [22].

The first singlet electronic excited states of 1, 3 and 4 resulted from almost pure HOMO
→ LUMO (π→π*) transitions, while for 2, the theory predicts an admixture from HOMO
→ LUMO + 1 transition. These transitions are associated with charge reorganization within
pyrene-pyrazole moieties. In the case of 3 and 4, they practically do not cause any change
in molecular dipole moment (only minor changes in dipole orientation) (Figure 10). The
values of the dipole moments calculated for compound 3 in chloroform are 3.09 D in the
ground (S0) state and 3.06 D in the excited (S1) state, and the values for 4 are 2.70 D and
2.84 D, respectively.
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The calculations for 3 predicted an absorption spectrum with a maximum at 380 nm.
The experimental spectrum of this compound contains vibronic bands at 357, 376 and
399 nm. The predicted maximum is close to the center of the mass of the experimental
spectrum (Figure 11), although its vibrational structure could not be reproduced at this
level of theory.
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For compound 4, the theory predicts the lowest energy band with a maximum at
457 nm, whereas the experimental spectrum contains a broad band with poorly resolved
vibronic structure, with a maximum at 432 nm and a shoulder at ~460 nm (Figure 11).

2.4. Acidity Sensing

We expected that 3 and 4 would be endowed with weak basic properties by the
1-phenylpyrazole fragment (pKa 0.43–0.44 [30,31]); therefore, we investigated the pho-
tophysical properties of these compounds in acidic media. The effect of the addition of
trifluoroacetic acid (TFA) on the emission spectra of 3 and 4 in dichloromethane is shown
in Figure 12.
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Figure 12. Emission spectra of dichloromethane solutions of 3 and 4 (c = 5 µM) titrated with TFA at a
concentrations of 0, 20, 40, 60 and 80 mM for 3 and 0, 20, 40, 60, 80, 100, 120, 140 and 160 mM for 4
(excitation at 376 nm for 3 and 400 nm for 4). Insets show the emission colors, under UV light, in the
absence of TFA and in the presence of excess TFA (left and right, respectively).
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As can be seen, the addition of TFA led to the gradual disappearance of the bands of 3
and 4 while resulting in the appearance of broad, red-shifted bands, which can be assigned
to their protonated forms.

The above findings indicate that compounds 3 and 4 can act as fluorescent sensors of
strongly acidic fluorophore environments (during the titration, the acidity expressed by Ho
changed in the range 2.1 ÷ 0.3 for 3 and 2.1 ÷ −0.4 for 4 [32]). It is worthy of note that only
a few examples of these sensors have been reported so far [6,33].

3. Conclusions

We developed a simple method to synthesize a novel polycyclic N-heterocyclic fluo-
rophore system, pyrazoolympicene, (7,9-dihydropyreno (10,1-fg) indazole), which exhibits
intense fluorescence and may be used for sensing strongly acidic environments. We ex-
pect that the photophysical properties of this system can be tuned by various structural
modifications of the reactive 1-phenylpyrazole fragment and the carbonyl group.

4. Materials and Methods

All reagents and solvents were purchased from Sigma-Aldrich and used without
further purification. Compound 2 was prepared as described in [22]. Column chromatogra-
phy was carried out on silica gel 60 (0.040–0.063 mm, 230–400 mesh, Fluka). 1H and 13C
NMR spectra were recorded at room temperature (291 K) in CDCl3 on a Bruker ARX 600
MHz (600 MHz for 1H and 151 MHz for 13C). Chemical shifts are in ppm and coupling
constants in Hz. Fourier transform-infrared (FT-IR) spectroscopy data were obtained from
Thermo Nicolet Nexus FT-IR. The spectra were recorded from an accumulation of 32 scans
in the range of 4000~400 cm−1. Mass spectra were recorded on Varian 500-MS LC Ion Trap.
Elemental analyses were performed in the Microanalytical Laboratory of the Faculty of
Chemistry, University of Lodz.

4.1. Synthesis of 3 and 4

Triflic acid (176 µL, 2 mmol) was added to a solution of 2 (372 mg, 1 mmol) in
dichloromethane (10 mL). After stirring for 1 h, the reaction mixture was poured into water
(100 mL) and extracted several times with dichloromethane. The combined extracts were
dried over anhydrous Na2SO4 and evaporated to dryness. The products were separated by
column chromatography on silica gel (dichloromethane as eluent).

9-phenyl-7,9-dihydropyreno(10,1-fg)indazole (3). Yellow powder (54–89 mg, 15–25%);
mp = 347–348 ◦C; 1H NMR (600 MHz, CDCl3) δ 8.72 (d, J = 7.8 Hz, 1H), 8.21 (d, J = 7.8 Hz,
1H), 8.08 (d, J = 7.8 Hz, 1H), 8.04 (d, J = 7.8 Hz, 1H), 8.02 (q, J = 9.0 Hz, 2H), 7.95 (m, 2H),
7.86 (s, 1H), 7.84 (m, 2H), 7.50 (t, J = 7.8 Hz, 2H), 7.31 (t, J = 7.5 Hz, 1H), 4.66 (s, 2H); 13C{1H}
NMR (151 MHz, CDCl3) δ 148.9, 140.4, 131.6, 131.5, 131.2, 131.1, 129.45, 127.7, 127.0, 126.7,
126.2, 126.17,126.15, 125.8, 125.1, 124.4, 124.1, 124.0, 123.9, 119.6, 118.9, 116.6, 26.5; MS (ESI):
m/z: 357 (M)+, 379 (M + Na)+; Anal. calcd. for C26H16N2: C, 87.62; H, 4.52; found: C, 87.48;
H, 4.67.

9-phenylpyreno(10,1-fg)indazole-7(9H)-one (4). Orange powder (260–297 mg, 70–80%);
mp = 336–337 ◦C; 1H NMR (600 MHz, CDCl3) δ 9.44 (s, 1H), 9.00 (d, J = 7.8 Hz, 1H), 8.80
(s, 1H) 8.54 (d, J = 7.8 Hz, 1H), 8.40 (d, J = 7.8 Hz, 1H), 8.37 (d, J = 7.8 Hz, 1H), 8.18 (q, J
= 9.0 Hz, 2H), 8.14 (t, J = 7.5 Hz, 1H), 7.97 (m, 2H), 7.59 (m, 2H) 7.45 (t, J = 7.5 Hz, 1H);
IR (KBr, cm−1) 1659,5 (C=O); MS (ESI): m/z: 371 (M)+, 393 (M + Na)+; Anal. calcd. for
C26H14N2O: C, 84.31; H, 3.81; found: C, 84.22; H, 3.76.

All spectra are in Supplementary Materials.

4.2. UV/Vis Measurements

The electronic absorption spectra were obtained using a PerkinElmer Lambda
45 UV/VIS spectrometer, and the corrected emission spectra using a PerkinElmer LS-55
fluorescence spectrometer. The emission quantum yields were determined using a solution
of quinine sulfate in 0.5 M sulfuric acid as a reference (ΦF = 0.546) [34].
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4.3. X-ray Diffraction Measurment

The X-ray intensity data were measured on an Agilent Supernova 4 circle diffrac-
tometer system equipped with a copper (CuKα) microsource and an Atlas CCD detector.
The data were collected and integrated with CrysAlis171 software (version 1.171.38.43d).
The data were corrected for absorption effects using the multi-scan method CrysAlis171
software (version 1.171.38.43d).

The low temperature of the sample was maintained by keeping it in a cold nitrogen
stream, using Oxford Cryosystems cooling devices.

The structure was solved by direct methods using SXELXS [35] and refined by full-
matrix least squares procedure with SHELXL [35] within an OLEX2 [36] graphical interface.
Figures were produced with Mercury_3.10 [37] software.

All H atoms were visible in the residual density map, but were added geometrically
and refined mostly in riding approximation.

Detailed information about the data processing, structure solution and refinement are
presented in Table S1.

Supplementary Materials: The following supporting information can be downloaded. Figure S1:
Molecular structure of compound 3 determined by X-ray diffraction; Figure S2: The overlay of the
molecular structures of 3 and 4; Figure S3: 1H NMR spectrum of compound 3; Figure S4: 13C NMR
spectrum of compound 3; Figure S5: IR (KBr) spectrum of compound 3; Figure S6: ESI MS spectrum
of compound 3; Figure S7: 1H NMR spectrum of compound 4; Figure S8: IR (KBr) spectrum of
compound 4; Figure S9: ESI MS spectrum of compound 4; Table S1: X-ray diffraction data for 3;
Table S2: Comparison of experimental and theoretical geometries of 3 and 4.
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