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Renal injury secondary to COVID-19 is an important factor for the poor

prognosis of COVID-19 patients. The pathogenesis of renal injury caused by

aberrant immune inflammatory of COVID-19 remains unclear. In this study, a

total of 166 samples from 4 peripheral blood transcriptomic datasets of

COVID-19 patients were integrated. By using the weighted gene co-

expression network (WGCNA) algorithm, we identified key genes for mild,

moderate, and severe COVID-19. Subsequently, taking these genes as input

genes, we performed Short Time-series Expression Miner (STEM) analysis in a

time consecutive ischemia-reperfusion injury (IRI) -kidney dataset to identify

genes associated with renal injury in COVID-19. The results showed that only in

severe COVID-19 there exist a small group of genes associated with the

progression of renal injury. Gene enrichment analysis revealed that these

genes are involved in extensive immune inflammation and cell death-related

pathways. A further protein-protein interaction (PPI) network analysis screened

15 PPI-hub genes: ALOX5, CD38, GSF3R, LGR, RPR1, HCK, ITGAX, LYN, MAPK3,

NCF4, SELP, SPI1, WAS, TLR2 and TLR4. Single-cell sequencing analysis

indicated that PPI-hub genes were mainly distributed in neutrophils,

macrophages, and dendritic cells. Intercellular ligand-receptor analysis

characterized the activated ligand-receptors between these immune cells

and parenchyma cells in depth. And KEGG enrichment analysis revealed that

viral protein interaction with cytokine and cytokine receptor, necroptosis, and

Toll-like receptor signaling pathway may be potentially essential for immune

cell infiltration leading to COVID-19 renal injury. Finally, we validated the

expression pattern of PPI-hub genes in an independent data set by random

forest. In addition, we found that the high expression of these genes was

correlated with a low glomerular filtration rate. Including them as risk genes in
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lasso regression, we constructed a Nomogram model for predicting severe

COVID-19. In conclusion, our study explores the pathogenesis of renal injury

promoted by immunoinflammatory in severe COVID-19 and extends the

clinical utility of its key genes.
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1 Introduction

The World Health Organization (WHO) formally designated

the disease caused by the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019

(COVID-19) on February 11, 2020 (1). Over 70% of severe

COVID-19 patients with basic disease progress swiftly to acute

respiratory distress syndrome, metabolic acidosis, or multi-organ

failure (2). Accumulating evidences suggested aberrant activation

of immune cells, elevated plasma cytokine concentrations (IL-6, IL-

10, TNF, and others), and cytokine storm are significant causes of

SARS-CoV-2 infected individuals with multi-organ failure (3).

Epidemiological studies suggest that acute or chronic kidney

injury has a substantial effect on patients’ prognoses (4). The

reported incidence of AKI in patients infected with COVID-19

varies from0.5 to28.0%(5, 6).According toa recent study, 43.0% to

59.0% of patients presented with varying degrees of proteinuria on

admission, and 26.7% to 44.0% of patients presented with

hematuria (7, 8). Furthermore, anomalies in renal imaging were

observed, including increased perirenal fat density, perirenal fascial

thickening, and interstitial fluid (9). In addition to the deleterious

effects of SARS-CoV-2 that impairs the antiviral immune response

and binds directly to the angiotensin-converting enzyme 2 (ACE2)

receptor in the kidney (10–13). Risk factors such as hemodynamic

abnormalities, mechanical ventilation, and antibiotic therapy also

all contribute significantly to the development of COVID-19 renal

injury (4, 14). The truth is that the imbalance of immune

homeostasis caused by such multifactorial causes is the most

important driver of COVID-19 progression (15). Due to the

limitations of traditional experimental methods and the

availability of appropriate samples, it is difficult to investigate the

effects of such complicated immune status on the kidney in depth.

Recently, an increasing amount of medical research has

shifted its focus to the molecular and genetic levels of disease,

and network-based strategies have allowed a more in-depth

examination of disease mechanisms (16). Nashiry MA et al.

(17). innovatively employed bioinformatics to investigate the

associat ion between COVID-19 and digest ive and

cardiovascular diseases. It has opened up a new avenue for

exploring the pathophysiology of COVID-19-associated renal
02
injury. In this study, we performed a comprehensive

bioinformatic analysis of single-cell transcriptome data from

our mouse kidney injury model and the transcriptome

data of COVID-19 and kidney injury from public databases.

We aimed to explore the pathogenesis and risk genes of

immunoinflammation-promoted COVID-19 renal injury.
2 Materials and methods

2.1 Data download and pre-processing

Transcriptome datasets are accessed through the GEO

database (https://www.ncbi.nlm.nih.gov/geo/) of the National

Center for Biotechnology Information (NCBI). Search the

database for “COVID-19”, “blood”, and “PBMC” to obtain

high throughput sequencing datasets related to COVID-19. A

total of 4 COVID-19 datasets were included as a discovery set.

The GSE196822 dataset is a peripheral blood transcriptome data

of COVID-19 from India, containing 9 healthy individuals, 8

mild COVID-19 patients, 10 moderate COVID-19 patients, and

7 severe COVID-19 patients. The GSE179627 dataset is

peripheral blood mononuclear cell (PBMC) transcriptome data

of COVID-19 and contains data from 26 healthy individuals, 3

patients with mild COVID-19, and 10 patients with moderate

COVID-19. The GSE171110 dataset is a peripheral blood

transcriptome data of COVID-19, containing 10 healthy

individuals, and 44 patients with severe COVID-19. The

GSE197204 dataset contains 42 severe COVID-19 peripheral

blood transcriptomic data. The GSE157103 dataset was used as

an independent validation set, for sample selection, see sections

2.8 and 2.9. All patients with COVID-19 in the dataset were

confirmed positive by PCR, and the classification criteria for

mild, moderate, and severe COVID-19 among different datasets

were classified according to international guidelines for the

severity of COVID-19 (18–24). GSE98622 (25) is a dataset of

renal ischemia-reperfusion injury (IRI) which contains 18

normal mouse kidneys and 10 consecutive time points of IRI

kidney injury data, with 3 samples for each time point. The

original matrix was normalized by log2 transformation after
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missing values were replenished with the “impute” R package. In

the case of a single gene corresponding to multiple expressions,

the average value was taken as its gene expression. Four different

provenanced datasets in the COVID-19 discovery set were

integrated using the “inSilicoMerging” R package (26). The

“ComBat” function of the “sva “R package was used to remove

batch effects (27).
2.2 Weighted gene co-expression
network analysis

The “WGCNA” R package (28) was used to create a

weighted gene co-expression network to identify key modules

and genes in the discovery COVID-19 set. First of all, the

“hcluster” function was used to cluster and eliminate outliers

to maintain the network’s stability. After that, the optimal soft

threshold with scale-free topology fit index (R2) > 0.80 and good

average network connectivity is selected using the

“pickSoftThreshold” function and the network is converted to

a scale-free network. The “adjacency” function is applied to

convert to a topological overlap matrix. Subsequently,

hierarchical clustering was performed using the dynamic shear

tree method, resulting in an overall clustering tree of COVID-19

differential genes. By iteratively clustering the eigenvector genes

of different modules, modules with high similarity can be

obtained, thus constructing a weighted co-expression network

of differentially expressed genes. Correlations between gene

modules and COVID-19 phenotypes were calculated. Positive

correlation modules with p-values less than 0.05 were considered

key modules associated with the phenotype and included in the

subsequent analysis. Genes within the key modules were further

screened by calculating module membership (MM) and gene

significance (GS) values; We set |MM|>0.8 and |GS|>0.1 to filter

COVID-19 key genes following the official WGCNA guidelines

(28) and previous application examples (29, 30) to obtain the

most relevant genes to the traits in the key modules.
2.3 Short time series expression
miner analysis

To identify the gene expression pattern of COVID-19 renal

injury,weperformed STEManalysis (31, 32), which can cluster and

analyze the expression pattern of time-series expression data

sampled chronologically. Each gene was assigned to the closest

trendby calculating the Pearson correlationdistancebetweengenes

and the predicted expression trend in the expression profile. The

expected number of genes assigned to each trend was computed

using the exhaustive method of permutations, and the significance

level of genes within the trendwas calculated. The parameters were

set as follows: 1)MaximumUnit Change inmodel profiles between

time points is 1; 2) Maximum output profiles number is 5 (similar
Frontiers in Immunology 03
profiles will be merged); 3) Minimum ratio of the fold change of

differentially expressed genes is no less than 2.0.
2.4 Gene enrichment and protein-
protein interaction network analysis

The Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG), and Reactome enrichment analysis was

conducted through the “clusterProfiler” R package (33) and

the results were visualized through the “ggplot2” R package

(34). The STRING database (https://string-db.org/) was used to

perform PPI network analysis on key genes of COVID-19 renal

injury with a minimum effective binding score of 0.4. Cytoscape

3.7.2 software (https://cytoscape.org/) was used to visualize the

results of the PPI network analysis. The degree values of nodes in

the PPI network are calculated using the cytoHubba (35) plugin

in the Cytoscape. A higher degree value implies that the highly

regarded nodes play a significant part in the network’s topology,

and these genes are defined as PPI-hub genes.
2.5 Construction of IRI-AKI mouse
model and Single-cell
transcriptome sequencing

C57BL/6mice (8–10weeks, 23–26 g,male) were obtained from

the pathogen-free (SPF) facility of Fujian Medical University. All

animal experiments were approved by the Laboratory Animal

Management and Ethics Committee of Fujian Medical University

and were performed following the “ChinaGuide for the Protection

andUse of LaboratoryAnimals”. Allmicewere housed in a specific

pathogen-free facility with a 12-hour light/dark cycle. In the

procedure of IRI-AKI surgery, retroperitoneal clipping surgery

was used. After mice were anesthetized with ketamine (80-100

mg/kg/i.p., CaymanChemical) and xylazine (10mg/kg/i.p., Selleck

Chemicals), approximate 10-mm incisions were performed at a

distanceof about 8mmoneach sideof the spine.After both kidneys

were carefully exposed, bilateral renal pedicles were clamped for

43 min by a vascular clip (Fine Science Tools). The kidney was

observed visual with a loss of blood supply and turning pale. After

the vascular clamps were removed to restore the blood supply with

visually reperfusion, the surgical incisions were closed in two layers

with 5-0 sutures. The mice were then injected with pre-warmed

physiological saline solution (37°C; 1 ml per 20g body weight)

subcutaneously (s.c.). At the end of these procedures,micewere put

back in cages in a temperature-controlled room (25°C) where free

access to water and food was available. Cell capture was performed

using the official library kit (10X Genomics Chromium Single-Cell

3’ kit, V3) according to the manufacturer’s instructions. Following

the capture of target cells, sequencing was performed using the

NovaSeq6000 sequencing platform (paired-end multiplexing run,

150 bp) by LC-Bio Technology Co. Ltd. (Hangzhou, China).
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2.6 Single-cell transcriptome sequencing
data analysis

GSE163668 (36) is a single-cell transcriptome dataset of

COVID-19 peripheral blood which contains samples from

different states of COVID-19 patients. Both the single-cell data

from IRI-AKI and COVID-19 were analyzed through the “Seurat”

procedure (37). In IRI-AKI, the following parameters were used to

remove low-quality cells: (1) exclude cells expressing ≤500 or

≥4,000 genes/cell; (2) exclude cells expressing ≤500 or ≥15,000

unique molecular identifier per cell (UMIs/cell); (3) exclude cells

withhigh cell complexity (log10GenesPerUMI)≤0.8; (4)since renal

tubular epithelial cells in the kidney are very energetically involved

in active transport, which requires a large number ofmitochondria

to provide energy (38, 39); we exclude cells with >30%

mitochondrial ratio; (5) exclude doublets using the

“DoubletFinder” (Version 2.0.3) package; (6) retain genes

expressed in at least 10 cells. The quality control steps in

COVID-19 PBMC were the same as the original study (36). The

LogNormalize method of the “Normalization” function was used

for expression homogenization. The “FindVariableGenesfunction”

function selected 2,000 highly variable genes based on the average

expression and dispersion of each gene. Since cell cycle arrest is a

normal manifestation of AKI pathology, we did not regress the

effect of cell cycle genes on the results. The “harmony” algorithm

(40) was then used to minimize the batch variation and merge the

data, and the “FindClusters” function determines the proper

resolution and clusters all cells. We use the “RuntSNE” function

to reduce the dimensionality, and available biomarkers labelled the

clustered cells to identify cell types. Finally, PPI-hub genes were

visualized in severe COVID-19 blood and IRI-AKI kidneys using

the “FeaturePlot” function.
2.7 Ligand-receptor interaction
analysis between renal immune-
parenchymal cells

We used “CellPhoneDB” (Version 2.1.7) (41) to investigate

potential ligand-receptor interactions between renal immune and

parenchymal cells. A total of 18,130 homologous genes were

obtained after human-mouse homologous gene conversion using

the “bioMart” (Version 2.46.3) package. We first randomly

arranged cluster markers for all cells 1,000 times to determine the

average receptor and ligand expression levels of the interacting

clusters. This produced a zero distribution for each receptor-ligand

pair. P-values for the cell type-specific likelihood of the

corresponding receptor-ligand complex were obtained by

calculating the proportion of means above the actual mean and

the data were visualized by weighted network plots. Chemokines

and immunostimulatory pathway-related ligand-receptors were

selected for analysis and the intercellular interaction weight

network was plotted. The greater the degree of intercellular
Frontiers in Immunology 04
interaction, the thicker the lines in the network and the larger the

corresponding interaction numbers.
2.8 Construction of a random forest
model by using PPI-hub genes in an
independent validation set and clinical
data analysis in Nephroseq database

TheRpackage “randomForest”wasused toconstruct a random

forest model to validate the expression of PPI-hub genes in an

independent COVID-19 dataset: GSE157103. Severe COVID-19

patients (n=50) and non-severe COVID-19 patients (n=50) in this

datasetwereconsidered asoutcomevariables, and15PPI-hubgenes

wereused as response variables.The train and test sets aredivided in

the ratio of 7:3.The train set isused formodelingwith3000 treesand

15 variables to randomly select each tree, and the test set is used to

evaluate the accuracy of the model. To find the optimal mtry

parameter (i.e., the optimal number of variables in the binomial

tree of the specified node), we performed recursive random forest

classification on all possible numbers in the variables and calculated

the average error rate of the model. After randomly sampling the

training set with put-back for the random forest, the variables are

ranked by the relative importance of the final obtained response

variables. The importance was assessed by the degree of mean

decrease accuracy and the degree of mean decrease Gini index. At

last, the accuracy of the model is evaluated in the test set by the

receiver operating characteristic curve (ROC) and visualized using

the “pROC” R package. Subsequently, we verified the expression of

PPI-hub genes, and the significance test was performed using the

Wilcoxon-Mann-Whitney test, and the results were visualized

using the “ggplot2” R package. In addition, we analyzed the

association between PPI-hub genes and clinical features through

the Nephroseq database (http://v5.nephroseq.org/). Following the

calculation of Pearson correlation coefficients between co-DEGs

and glomerular filtration rates (GFRs), a scatter plot

was constructed.
2.9 Lasso regression to screen variables and
construct Nomogram predictionmodel

To further establish a prediction model capable of predicting

the development of COVID-19 patients to severe status, COVID-

19 patients admitted to the ICU were considered as the severe

COVID-19 group and the remaining COVID-19 patients were

considered as theControl group.Weevaluated the clinical trait data

corresponding to the sample, traits with more than 40% missing

values were excluded (apacheii scores, lactate, and sofa scores were

excluded). Samples with missing values for the remaining traits

were also excluded. Finally, 78 sampleswith complete data onCRP,

D-Dimer, procalcitonin,fibrinogen,Charles score, ferritin, age, and

gender were included in the lasso regression. The median
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expression levels of PPI-hub geneswereutilized as cut-off values for

classifying genes into high- and low-expression categories, which

wereconsidered as riskgenes and thencombined in lasso regression

analysis. The “glmnet” R package was used to perform lasso

regression. Lasso regression is a sophisticated algorithm for

variable selection in multicollinear or high-dimensional data.

Previous research has established that lasso regression simplifies

the model’s complexity and enhances its prediction accuracy (42).

After including the screening risk variables into the prediction

model, by using the “rms” R package, we constructed a nomogram

prediction model that can predict COVID-19 patients progressed

to severe status. The clinical validity of the model was determined

using the ROC analysis, calibration curve, C index, and decision

curve analysis (DCA).
3 Results

3.1 WGCNA identifies key genes for mild,
moderate and severe COVID-19

A flow chart was created for the whole experiment to illustrate

the details of the data more explicitly (Figure 1). A total of 166

samples were included in the discovery set of COVID-19 after

integrating the four datasets. Sample boxline plots showed that

batch effects from different datasets were removed (Figure 2A)
Frontiers in Immunology 05
and principal component analysis (PCA) showed that there were

significant differences between the healthy and COVID-19

samples (p<0.05) (Figure 2B). The different status of COVID-19

samples was included as clinical traits in theWGCNA analysis. By

combining both genetic and clinical trait data, the gene expression

profile of complex biological processes can be divided into several

highly correlated signature modules to identify genes of interest.

For constructing the scale-free topological overlap matrix,

“pickSoftThreshold” function selects b=14 as the optimal soft

threshold b (Figure 2C). Identification and merging of similar

gene modules were performed by the dynamic shearing tree

method. The shearing height was set to 0.25, and the minimum

number of genes in each module was set to 50. A total of 15 gene

modules were identified, of which the gray modules were

nonsense modules (Figure 2D). The modules with p-value <0.05

were selected as the key modules for each of the COVID-19 mild,

moderate, and severe traits. This led to the identification of the

salmon module (R=0.17, p=0.03) as a key module for mild

COVID-19, orange (R=0.21, p=0.01) and pink (R=0.18, p=0.02)

module as key modules for moderate COVID-19, and in severe

COVID-19, magenta (R=0.25, p=0.004), darkorange (R=0.21,

p=0.007), orange (R=0.19, p=0.01) and darked (R=0.18, p=0.02)

module were identified as a key modules (Figure 2E).

Subsequently, |MM| >0.8 and |GS| >0.1 were set to screen key

genes in each module (Figure 2F, Supplementary Table S1). Gene

enrichment analysis of key genes suggested that progressive severe
FIGURE 1

Study workflow. Coronavirus disease 2019, (COVID-19); Weighted gene co-expression network analysis, (WGCNA); Ischemia-reperfusion injury,
(IRI); Kyoto encyclopedia of genes and genomes, (KEGG); Protein-Protein interaction, (PPI).
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immune and coagulation-related events were activated during

COVID-19 progression, which also validated the reliability of key

genes (Supplementary Figure S1).
3.2 STEM analysis indicates that severe
COVID-19 is associated with the
progression of kidney injury

STEM analysis can identify a group of differentially expressed

genes with the same expression pattern in a continuous-time point

expression profile. In a dataset with 10 consecutive time points of
Frontiers in Immunology 06
IRI kidney injury, we performed STEM analysis by using mild

(Figure3A),moderate (Figure3B), and severe (Figure3C)COVID-

19pathogenesis keygenes obtained inWGCNAas input genes.The

STEMalgorithm simulated 5 representative gene expression trends

with time progression in the original IRI kidney injury expression

profile in advance. These 5 trends were considered as the

trajectories of gene changes associated with the progression of

kidney injury. Then the algorithm assigned the input genes to the 5

trends for clusteringanddifferential expressionanalysis. The results

indicated that only in severeCOVID-19 there existed 71 geneswith

significantly differential synchronous changes (Figures 3C, D). The

validation of expression also showed that in the kidney, the
A B

D

E F

C

FIGURE 2

The weighted gene co-expression network (WGCNA) identifies key genes in mild, moderate, and severe COVID-19 modules. (A) The boxline
plot after integrating the data suggests that batch effects between different datasets were removed. (B) Principal component analysis (PCA) of
the integrated dataset showed significant differences between the Healthy and COVID-19 samples (p<0.05). (C) WGCNA analysis was performed
on the integrated COVID-19 dataset, and the topological overlap matrix was constructed by calculating the optimal soft threshold. (D) Similar
gene modules were merged in WGCNA by the dynamic shearing tree method. (E) Gene modules-clinical features correlation heatmap. WGCNA
calculated correlation coefficients and p-values between clinical features and 15 gene modules, of which the gray modules were nonsignificant.
Modules with the p-values < 0.05 in the mild (Salmon), moderate (Pink, Orange), and severe (Magenta, Darked, Orange, Darkorange) COVID-19
were selected for subsequent analysis. (F) Correlation dotplots of gene significance (GS) value and module membership (MM) value for the
selected key modules in mild, moderate, and severe COVID-19, |MM|>0.8 and |GS|>0.15 were set to filter COVID-19 key genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.950076
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2022.950076
expression of these 71 genes gradually elevated after 24h of IRI, and

part of them persistently highly expressed up to 12 months of IRI.

And in COVID-19 peripheral blood, these 71 genes were highly

expressed in severe COVID-19 (Figure 3E).
3.3 Gene enrichment analysis of
COVID-19 kidney injury-related genes
and identification of PPI-hub genes

We deduced the specific functions and signaling pathways

of the key genes of COVID-19 kidney injury via GO, Reactome,
Frontiers in Immunology 07
and KEGG enrichment analysis. The results show that the

main GO entries enriched included various immune cell

responses and cell death-related processes (Figure 4A). The

entries enriched by Reactome analysis include multiple

transcription factor pathways associated with the immune

response (Figure 4B). The KEGG pathways involved include

various cellular stress pathways associated with inflammation

and cell death receptors, as well as pathways associated with

viral infection (Figure 4C). Our STRING database results

showed the protein interaction associations of the COVID-19

kidney key genes; we imported the results into cytoscape

software to calculate the degree values inside the networks.
A

B

D E

C

FIGURE 3

Short-time sequence expression miner (STEM) identifies genes associated with the progression of kidney injury in different COVID-19 stages.
(A–C) STEM analysis was performed in a dataset with consecutive time points of IRI kidney injury by using key genes of mild (A) moderate (B)
and severe (C) COVID-19. Five different gene expression profiles were simulated to identify genes that are altered in parallel with COVID-19 in
the IRI kidney. (D, E) STEM analysis revealed that only in severe COVID-19, a small cluster of key genes was associated with IRI kidney injury (D).
These 71 genes had the same expression trend and were elevated after 24h of IRI, with some genes persistently highly expressed in the
subsequent IRI time points (E), these genes are potentially highly correlated with COVID-19 renal injury.
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Fifteen of the 71 genes (ALOX5, CD38, GSF3R, LGR, RPR1,

HCK, ITGAX, LYN, MAPK3, NCF4, SELP, SPI1, WAS, TLR2

and TLR4) interacted with other genes and have higher degree

values which are hub genes in the PPI network (Figure 4D).

Notably, ACE2, a known critical target of COVID-19 infecting

renal cells, was engaged in the PPI network by interacting

with TLR4.
3.4 Single-cell sequencing reveals the
distribution of PPI-hub genes in immune
cells and renal parenchymal cells

We further explored the distribution of PPI-hub genes in

immune cells and renal cells by single-cell sequencing. Notably,

since COVID-19-induced immune storm and tissue ischemia-
Frontiers in Immunology 08
reperfusion injury is an etiology of pre-nephrotic kidney injury,

STEM analysis also implicates overexpression of PPI-hub gene

correlates with acute kidney injury in severe COVID-19 patients.

Therefore, we constructed a classic pre-nephrotic kidney injury

model: the IRI-AKI mouse model to simulate this process. The

single-cell sequencing of peripheral blood from a public database

of patients with severe COVID-19 suggested that the PPI-hub

genes were predominantly distributed in neutrophils,

macrophages, and dendritic cells (Figure 5A). Renal single-cell

sequencing of IRI-AKI showed that in renal parenchymal cells, the

PPI-hub genes were predominantly distributed in proximal

tubular cells (PTCs), podocytes, and endothelial cells (ECs).

And similar to peripheral blood in severe COVID-19, these

genes were also predominantly distributed in neutrophils,

macrophages, and dendritic cells in renal immune

cells (Figure 5B).
A B

DC

FIGURE 4

Gene enrichment analysis and protein-protein interaction network (PPI) analysis of 71 key genes in severe COVID-19 renal injury. (A–C) GO
(A), Reactome (B), and KEGG (C) enrichment analysis of COVID-19 renal injury-related genes. (D) The PPI network of COVID-19 renal
injury-related genes was constructed by the STRING database, and the hub genes in the network were further screened by the cytohubba
plugin of cytoscape software.
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3.5 Ligand-receptor analysis reveals
potentially activated
immunoinflammatory pathways in
COVID-19 Kidneys

STEM analysis indicated that the persistent overexpression

of PPI-hub genes during renal injury may be associated with

AKI progression. Moreover, it is well recognized that immune

cell infiltration plays an important role in the progression of

kidney injury. Therefore, in combination with the distribution of

PPI-hub genes, we performed ligand-receptor analysis between

immune cells and parenchymal cells in IRI-AKI data by

“CellPhoneDB”. In AKI kidneys, there exist extensive

intercellular ligand-receptor interactions between immune and

parenchymal cells. We highlighted the interaction network

between cells where PPI-hub genes are predominantly

distributed: neutrophils, macrophages, dendritic cells and

proximal renal tubular cells, podocytes, and endothelial cells

(Figure 6A). Then, dotted heatmaps present a more detailed

illustration of the specific interaction of intercellular chemokine-

related ligand receptors and immunostimulatory pathway-

related ligand receptors (Figures 6B–D). These ligand

receptors may be critical molecules in the progression of renal

injury due to immune cell infiltration in COVID-19. All these

genes (red dashed line) were incorporated into the KEGG

pathway analysis along with the PPI-hub genes to further

explore the signaling pathways activated between renal

immune cells and parenchymal cells (Figure 7A). We found

that viral protein interaction with cytokine and cytokine

receptors (Figure 7B), necroptosis (Figure 7C), and Toll-like
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receptor signaling pathway (Figure 7D) emerged more

prominently in the results. Combined with their actual

biological functions, we proposed that they may be key

pathways in COVID-19 renal injury.
3.6 PPI-hub genes of COVID-19 renal
injury can be used to predict the
occurrence of severe COVID-19

For ranking the importance of PPI-hub genes and validating

their diagnostic efficacy. We built a random forest classifier using

PPI-hub genes as response variables in an independent COVID-

19 dataset. The optimal mtry value for random forest selection

after optimized parameters is 2 and the number of decision trees

is 3000 (Figure 8A). The ranking of variables’ importance

determined by the mean decrease accuracy index and mean

decrease Gini index showed that ALOX5, TLR2, SELP, FPR1,

MAPK3 , NCF4 (MeanDecreaseGini>6) had a greater

contribution to the accuracy of the model (Figure 8B). The

accuracy of the random forest model was validated in the test set,

and the results showed that the model had high accuracy (AUC:

0.858) (Figure 8C). In addition, we verified the expression

pattern of PPI-hub genes through statistical tests. The results

showed that most of the genes, as in the discovery set (except

CD38, LYN, and ITGAX) (Figure 3E), were significantly

upregulated in patients with severe COVID-19 (p < 0.05)

(Figure 8D). Subsequently, PPI-hub genes were correlated with

clinical traits of kidney disease through the Nephroseq database.

The results showed that all PPI-hub genes were associated with
A

B

FIGURE 5

Single-cell sequencing explores the expression of PPI-hub genes in immune and kidney cells. (A) In the peripheral blood of patients with severe
COVID-19, the PPI-hub genes were predominantly expressed in neutrophils, macrophages, and dendritic cells. (B) In renal parenchymal cells of
IRI-AKI mice, PPI-hub genes were mainly expressed in proximal tubular cells, podocytes, and endothelial cells. In IRI-AKI renal immune cells,
PPI-hub genes were mainly expressed in neutrophils, macrophages, and dendritic cells.
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low GFR in kidney disease (Supplementary Figure S2). And

finally, based on the clinical characteristic information provided

by the raw data of the validation set, Fifteen PPI-hub genes

combined with 8 clinical traits were included in lasso regression

to screen for variables. The results showed that the coefficients of

the influences initially included in the model were compressed as

the penalty coefficient l changed. Some of the factors were

compressed to zero. The l value at the cross-validation error of

lmin + ambda.1se was selected as the optimal value of the

model, and 8 variables were finally screened out, which were

Charlson score, ferritin, CRP, D-Dimer, procalcitonin, ALOX5

and TLR2 (Figures 9A, B). Based on these risk factors, we

established a nomogram to predict whether patients with

COVID-19 would progress to the severe status (Figure 9C).

The nomogram model enables calculating a score for each

patient predictor, and the sum of these values is used to get

the overall score. The total score related to the predictive value

represents the risk probability of the COVID-19 patient

developing a severe condition. The model was evaluated, and

the calculated C-index was 0.872, the area under the ROC curve
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was 0.872, and both the calibration curve and DCA analysis

indicated that the model had a favorable outcome

(Figures 9D–F).
4 Discussion

Previous studies on COVID-19 renal injury focused more on

changes caused by the virus binding directly to ACE2 in the

kidney (4, 43–45). However, kidney injury promoted by persistent

system-wide immunoinflammation has been neglected. In this

study, we used comprehensive bioinformatics approaches to

identify genes involved in the progression of kidney injury in

severe COVID-19. In the renal microenvironment, these genes

may contribute to the progression of renal injury by facilitating

the activation of immunoinflammatory-related pathways through

abundant ligand-receptor interactions between immune-

parenchymal cells. And considering these genes as risk genes for

COVID-19 renal injury could better predict the occurrence of

severe COVID-19.
A B

DC

FIGURE 6

Intercellular ligand-receptor analysis explores potential renal immune cell-parenchymal cell interactions in COVID-19 kidney injury. (A) Ligand-
receptor interaction network between specific renal immune cells (neutrophils, macrophages, and dendritic cells) and parenchymal cells
(proximal tubule cells, podocytes, and endothelial cells). (B–D) Expression of immunostimulatory and chemokine-related ligand receptors
between specific renal immune cells and parenchymal cells.
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We characterized key genes of COVID-19 in mild, moderate

to severe in this study. Similar results were obtained previously by

Hasankhani et al. who characterized COVID-19 expression

profiles usin who characterized COVID-19 expression profiles

using WGCNA (46). As COVID-19 progresses, the expression of

hub genes changes subsequently with the activation of an

increasing number of immunoinflammatory-related functions

and pathways. The progressive intensification of the cytokine

storm throughout the system and the cascade activation of

platelets leads to coagulation disorders and the reduction

of tissue oxygenation. This process is gradually being revealed

(10, 43, 47, 48). One of the limitations of our study, the lack of

complete age and gender data in the integrated dataset due to the
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limitations of integrating multiple datasets, may have implications

for several putative pathways.

Our findings highlight the role of immune cells from the

circulation infiltrating into the kidney of patients with severe

COVID-19 through 15 hub genes. ALOX5 was the gene that

contributed most to the accuracy of the random forest model in

the validation set. This gene encodes a member of the

lipoxygenase gene family that plays a dual role in the synthesis

of leukotrienes from arachidonic acid (49). In addition to

inflammatory processes, ALOX5 is also involved in dendritic

cell migration, wound healing, and adhesion to endothelial cells

via ITGAM and ITGAX on monocytes (50, 51). It is well known

that dysfunction of peritubular capillary endothelial cells is a
A B

DC

FIGURE 7

KEGG enrichment analysis of the PPI-hub genes and activated intercellular immunostimulatory and chemokine-related ligand receptors for
COVID-19 kidney injury. (A) The most significantly enriched pathways in the four major classes of KEGG are shown. (B–D) Viral protein
interaction with cytokine and cytokine receptor (B), necroptosis (C), and Toll-like receptor signaling pathways (D) are activated among specific
immune cells and parenchymal cells in the kidney, these pathways may be crucial for COVID-19 renal injury.
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recognized cause of ischemia and hypoxia in PTCs during the

pathogenesis of AKI (43, 52, 53). Thus, this gene may be a

critical molecule causing endothelial cell injury in COVID-19

kidneys. The identified PPI-hub genes also include three

tyrosine-protein kinase family members: HCK, FGR, and LYN.

These genes can deliver signals from cell surface receptors and

play important roles in the regulation of innate and adaptive

immune responses, integrin signaling, and responses to DNA

damage and genotoxic agents (54–58). In myeloid and B-

lymphocyte lineage cells, HCK may help a couple of the Fc

receptors to the activation of the respiratory burst (59), which

may promote the formation of cytokine storms in COVID-19. In

addition, HCK can phosphorylate WAS and participate in

extracellular stimulation of cytoskeleton remodeling,

phagocytosis, cell adhesion, and migration together with FGR

and LYN (60, 61). Thereby, it regulates gene transcription and

repair of damaged DNA, promotes mast cell degranulation, and

releases inflammatory cytokines. This may be one of the essential

mechanisms of immune cell activation in COVID-19.

The proteins encoded by TLR2 and TLR4 can form

heterodimers with other TLR family members to recognize

conserved molecules of microorganisms and play an important

role in pathogen recognition and innate immune activation (62,
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63). Previous studies have shown that dimerization of caspase-8

and Toll-like receptors 2 and 4 can trigger the activation of

NLRP3 inflammatory vesicles in human monocytes (64, 65).

Subsequently, Lyn/Syk-dependent calcium entry and reactive

oxygen species production are activated, leading to the activation

of caspase-8. In the humanized mouse model, such cascade

activation of TLR2, TLR4, and LYN triggers multiple

inflammation-associated cell death pathways, such as the

formation of necrosome in necroptosis, which activates human

monocytes to impede endothelial regeneration and promote

kidney injury (66, 67). Moreover, in COVID-19, dysregulation

of necrosome is an important mechanism that promotes

cytokine storm and intense immune inflammatory events (68,

69). Vaccine adjuvants targeting Toll-like receptor agonists are

also considered promising therapeutic targets (70, 71). FPR1

gene encodes a G protein-coupled receptor for mammalian

phagocytes that mediates the phagocytic response to microbial

invasion of the host and plays an important role in host defense

and inflammation (72, 73). MAPK3 encodes proteins that act in

signaling cascade responses to regulate various cellular processes

such as proliferation, differentiation and cell cycle progression in

response to various extracellular signals (74, 75). Previous

studies on COVID-19 have suggested that FPR1 and MAPK3
A B

D

C

FIGURE 8

Ranking the importance of PPI-hub genes and validating their diagnostic efficacy by random forest. (A) By iteratively optimizing the parameters,
3000 decision trees are ultimately selected to construct the random forest model. (B) The importance of the variables was ranked by mean
decrease accuracy and mean decrease Gini, with higher values indicating that the variable contributes greater to the accuracy of the model.
(C) The accuracy of the random forest model was validated in the test set, and the results showed that the model had a high accuracy
(AUC: 0.858). (D) Validation the expression of PPI-hub genes in an independent COVID-19 dataset, most of the genes were significantly upregulated
in patients with severe COVID-19 (*p < 0.05, **p < 0.01, ***p < 0.001, ns, not statistically significant).
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may be potential therapeutic drug targets (54, 76). In addition,

our study also highlights the abnormal activation of platelets in

severe COVID-19. SELP, a protein that redistributes to the

p lasma membrane dur ing p la te le t ac t iva t ion and

degranulation, and mediates the interaction of activated

endothelial cells or platelets with leukocytes (77–79). Among

the PPI-hub genes, we also characterized several key genes that

have not been studied in depth. NCF4, which encodes NADPH

oxidase in phagocytes (80, 81). CSF3R, which controls the

production and differentiation of granulocytes (82, 83). SPI1, a

transcriptional activator that may be specifically involved in the

differentiation or activation of macrophages or B cells (84, 85).

Further studies are needed in the future to explore the role of

these genes in COVID-19 renal injury.

Along with the risk genes screened in lasso regression,

Charlson score, ferritin, D-Dimer, CRP, and procalcitonin are

screened as risk factors for severe COVID-19. CRP and
Frontiers in Immunology 13
procalcitonin are often used markers of inflammation in

humans, particularly in the setting of severe infections or

inflammatory responses. A Meta-analysis by Lippi G et al.

who characterized COVID-19 expression profiles usin (86)

also suggested that elevated PCT levels increased the risk of

conversion to severe COVID-19 by nearly 5-fold [OR=4.76, 95%

CI (2.74, 8.29)]. Single-center retrospective research indicated

that the level of CRP was positively correlated with the severity

of COVID-19 disease (87). Tyurin et al. also indicated that

systemic disruption of the immune system in COVID-19 can

lead to defects in adaptive immune cell subsets and elevated CRP

levels, subsequently contributing to COVID-19 progression (88).

In addition, researchers observed many erythrocyte aggregates

blocking the capillary lumen at autopsy (89), as well as sporadic

iron-containing heme particles in the renal tubular epithelium of

COVID-19 patients. These findings imply that renal vascular

obstruction may be a critical factor in the development of renal
A

B

D E F

C

FIGURE 9

A nomogram model for predicting severe COVID-19. (A, B) Incorporation of PPI-hub genes and clinical characteristics data together in lasso
regression for screening variables in an independent COVID-19 dataset. (C) Using screened variables to construct a nomogram model for
predicting severe COVID-19. (D–F) Calibration curves (D), DCA curves (E) and ROC curves (F) all indicate that the nomogram model is highly
accurate and possesses good diagnostic performance.
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injury. The renin-AngII system can cause microvascular damage

and accelerate the progression of acute tubular necrosis and

cortical necrosis, potentially leading to irreversible renal failure

(90, 91).

We believe these findings will contribute to the understanding

of the pathogenesis of immune inflammation-promoted kidney

injury in COVID-19. Early detection of kidney injury in COVID-

19 and potentially arrest of progression of severe COVID-19 can

be achieved by detecting and intervening in these risk genes. Due

to the limitations of this study, more rigorous in vivo and in vitro

experiments are needed in the future to substantiate

these findings.
5 Conclusion

Our study identified 15 risk genes associated with the

progression of kidney injury in severe COVID-19: ALOX5,

CD38, GSF3R, LGR, RPR1, HCK, ITGAX, LYN, MAPK3,

NCF4, SELP, SPI1, WAS, TLR2 and TLR4. In the peripheral

blood, these genes are predominantly expressed in a variety of

inflammatory immune cells and may alter the immune

microenvironment of the kidney with circulation. In the

kidney, these genes may potentially promote the progression

of renal injury through extensive ligand-receptor interactions

between immune-parenchymal cells, activating multiple

immune-inflammatory-related pathways including viral

protein interaction with cytokine and cytokine receptor,

necroptosis, and Toll-like receptor pathways. These findings

may contribute novel insights into the pathogenesis of

COVID-19 kidney injury. In combination with the nomogram

model which includes risk genes suggest that early detection and

intervention of these genes in the clinic may be helpful in the

treatment of severe COVID-19.
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