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Purpose. To investigate whether the radiomics analysis of MR imaging in the hepatobiliary phase (HBP) can be used to predict
microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC). Method. A total of 130 patients with HCC,
including 80 MVI-positive patients and 50 MVI-negative patients, who underwent MR imaging with Gd-EOB-DTPA were
enrolled. Least absolute shrinkage and selection operator (LASSO) regression was applied to select radiomics parameters derived
from MR images obtained in the HBP 5min, 10min, and 15min images. The selected features at each phase were adopted into
support vector machine (SVM) classifiers to establish models. Multiple comparisons of the AUCs at each phase were performed
by the Delong test. The decision curve analysis (DCA) was used to analyze the classification of MVI-positive and MVI-negative
patients. Results. The most predictive features between MVI-positive and MVI-negative patients included 9, 8, and 14 radiomics
parameters on HBP 5min, 10min, and 15min images, respectively. A model incorporating the selected features produced an
AUC of 0.685, 0.718, and 0.795 on HBP 5min, 10min, and 15min images, respectively. The predictive model for HBP 5min,
10min and 15min showed no significant difference by the Delong test. DCA indicated that the predictive model for HBP
15min outperformed the models for HBP 5min and 10min. Conclusions. Radiomics parameters in the HBP can be used to
predict MVI, with the HBP 15min model having the best differential diagnosis ability.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common
malignant tumors in the liver [1]. Surgery is regarded as the
first choice for eligible patients [2]. Microvascular invasion
(MVI) is a vital predictor of HCC recurrence, especially in
the early stage after surgical resection [3, 4]. Previous studies
have identified MVI as a major risk factor for early recur-
rence within two years after hepatectomy and transplanta-
tion [5]. The application of preoperative imaging methods
to predict MVI has important clinical significance. Therefore,

it is necessary to predict MVI to identify tumor invasion
and predict tumor recurrence after hepatectomy and
transplantation.

Previous studies found that some imaging features, such
as the tumor size, shape, capsule, margin, apparent diffusion
coefficient (ADC) values, and enhancement pattern, may
contribute to the diagnosis of MVI before surgery [6–8].
However, these qualitative findings can be affected by many
factors, including the variability between observers and the
lack of external validation, and there is still debate about
the predictive value of MVI in HCC. Recently, radiomics
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analysis has become an emerging quantitative image process-
ing method. It can quantify tissue heterogeneity by evaluat-
ing the distribution of radiomics roughness and irregularity
within lesions. Different from tissue biomarkers, which can
assess the microheterogeneity of regional tumors, radioactive
biomarkers can noninvasively examine the whole tumor at
the millimeter level [9]. Therefore, this method is expected
to quantitatively evaluate lesion characteristics in more detail
and with better repeatability than visual analysis by human
observers. Some published studies have evaluated the poten-
tial of radiomics in predicting MVI in hepatocellular carci-
noma [4, 10–12]. To the best of our knowledge, no research
on predicting MVI or comparing imaging at different hepa-
tobiliary phase (HBP) times using radiomics analysis of
gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic
acid- (Gd-EOB-DTPA-) enhanced MR has been reported.

Thus, the aim of this study was to investigate whether
radiomics analysis of MR imaging with Gd-EOB-DTPA in
HBP can be used to predict MVI in patients with HCC and
compare the prediction of MVI on different HBP delay times.

2. Materials and Methods

2.1. Patients. This retrospective study was approved by our
institutional review committee, and patient informed con-
sent was waived. By searching our institution’s database,
294 consecutive liver cancer patients were selected between
January 2015 and May 2020. The inclusion criteria were as
follows: (1) MR images showing liver tumors larger than
1 cm in diameter; (2) Gd-EOB-DTPA-enhanced MRI scan
including complete examination recordings at HBP 5min,
10min, and 15min; and (3) HCC diagnosed by postoperative
pathology. The exclusion criteria were as follows: (1) patients
who underwent MRI examination more than one month
before surgery; (2) patients who had received liver cancer
treatment before surgery; and (3) insufficient image quality
for radiomics analysis. Finally, 130 HCC patients, including
80MVI-positive patients and 50MVI-negative patients, were
included in this study. The MVI information was obtained
from the HIS system at our hospital and was diagnosed by
the same pathologist. According to the date of MRI, the
cohort was divided into a training set (n = 91; 60 men and
31 women; mean age 57:8 ± 12:6 years) and a time-
independent validation set (n = 39; 29 men and 10 women;
average age 58:6 ± 11:6 years).

2.2. MR Techniques. All study patients underwent MR imag-
ing using a 3.0T scanner (GEHCGEHC, GE medical systems,
Waukesha, WI). A dose of 0.1mL/kg (0.025mmol/kg) Gd-
EOB-DTPA (Primovist, Bayer HealthCare, Berlin, Ger-
many)) was administered at a flow rate of 1.0mL/s followed
by 25mL of saline. A 3D fat-suppressed Liver Acquisition
with Volumetric Acceleration (LAVA, GE Healthcare)
sequence was performed in the axial plane at 5, 10, and
15min after contrast agent injection (HBP 5min, 10min,
and 15min, respectively). The imaging parameters of the
LAVA sequence were as follows: TR/TE, 2.5/1.1; inversion
time, 5.0 milliseconds; flip angle, 9°; thickness, 5mm; slice
spacing, 2.5mm; FOV, 380–450mm; 256 × 256matrix; num-

ber of signals acquired, 0.70; and bandwidth, 976.6 kHz. The
comparison of dynamic T1-weighted and T2-weighted imag-
ing was not the focus of this study and was not conducted.

2.3. MR Radiomics Analysis. The workflow of the radiomics
analysis included tumor segmentation, feature extraction,
feature selection, and model construction and evaluation
(Figure 1).

Three-dimensional segmentation of HCC using the IBEX
software (http://bit.ly/IBEX) was performed by two radiolo-
gists in abdominal diagnostics with 8-year and 10-year MR
experience who were blinded to the MVI information. When
patients had multiple tumors, the largest tumor was ana-
lyzed. The regions of interest were drawn manually on HBP
5min, 10min, and 15min images, covering the whole tumor.
Radiomics parameters were selected using the IBEX software
and included eight categories: Gradient Orient Histogram,
Gray Level Cooccurrence Matrix 25, Gray Level Run Length
Matrix 25, Intensity Direct, Intensity Histogram, Intensity
Histogram Gauss Fit, Neighbor Intensity Difference 25,
and Shape. Each category included different radiomics
parameters. The intraclass correlation coefficient (ICC) of
30 randomly selected tumors was calculated to test the
repeatability of features extracted by repeated segmentation,
and features with an ICC less than 0.80 were excluded.

2.4. Statistical Analysis. Two independent sample t tests were
used to compare the mean age between the MVI-positive and
MVI-negative patients. The chi-square test was used to com-
pare the sex distribution between the MVI-positive and
MVI-negative patients. The least absolute shrinkage and
selection operator (LASSO) regression method was used to
select the most valuable parameter from all parameters
obtained at HBP 5min, 10min, and 15min. Receiver operat-
ing characteristic (ROC) curves and areas under the ROC
curve (AUCs) of the radiomics parameters selected at each
phase were calculated. The selected features at each phase
were adopted into support vector machine (SVM) classifiers
to establish models. SVM models were evaluated by 10-fold
cross-validation to reduce overfitting. Multiple comparisons
of the AUCs at each phase were performed by the Delong test
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Figure 1: Workflow of radiomics analysis.
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with Bonferroni-adjusted p values. To present the distribu-
tion of the radiomics parameters in which HBP imaging
can best differentiate MVI-positive and MVI-negative
patients, a heat map was created. Decision curve analysis
(DCA) was used to analyze the classification. The interob-
server reproducibility of the selected valuable radiomics
parameter was evaluated by ICC. SPSS 22.0 (Chicago,
Illinois, USA) was used for statistical analysis. LASSO regres-
sion, ROC curves, the Delong test, and DCA were performed
by using R (https://www.r-project.org/). p < 0:05 was consid-
ered statistically significant.

3. Results

3.1. Demographics. Eighty MVI-positive HCC patients and
50 MVI-negative patients were included. There was no sig-
nificant difference in age or sex between MVI-positive and
MVI-negative patients. Examples of HCCs in MVI-positive
and MVI-negative patients are shown in Figure 2.

3.2. Comparison of MR Radiomics Analyses with LASSO
Regression. Each ROI has 8 categories and 1768 radiomics
parameters. The most predictive features between MVI-

positive and MVI-negative patients included 9 radiomics
parameters at HBP 5min, 8 radiomics parameters at HBP
10min, and 14 radiomics parameters at HBP 15min
(Table 1). The two radiomics parameters with the top two
AUC values were X0.7 Homogeneity (AUC = 0:641) and
Compactness2 (AUC = 0:615) in the hepatobiliary phase
(HBP) at 5min, X1.7 Contrast (AUC = 0:625) and X4.7 Auto
Correlation (AUC = 0:605) in the hepatobiliary phase (HBP)
at 10min, and X6.1 Difference Entropy (AUC = 0:645) and
X4.7 Dissimilarity (AUC = 0:638) in the hepatobiliary phase
(HBP) at 15min. A model incorporating all radiomics
parameters selected by LASSO in each phase produced AUCs
of 0.685, 0.718, and 0.795 at HBP 5min, 10min, and 15min,
respectively (Figure 3).

3.3. Comparison of the 3 HBP Delays in Differentiating MVI.
The results of the Delong test used to differentiate MVI-
positive and MVI-negative patients for the 3 HBP delays
are shown in Table 2. The predictive model for HBP 5min,
10min, and 15min showed no significant difference (HBP
5min vs. HBP 10min, p = 0:751; HBP 5min vs. HBP
15min, p = 0:362; HBP 10min vs. HBP 15min, p = 0:440).
The radiomics parameter distribution at HBP 15min is

(a) (b) (c)

(d) (e) (f)

Figure 2: Axial MR imaging with Gd-EOB-DTPA on HBP in a HCC MVI-negative patient ((a) HBP 5min, (b) HBP 10min, and (c) HBP
15min), and a MVI-positive patient ((d) HBP 5min, (e) HBP 10min, and (f) HBP 15min). The imaging of MVI negative shows a
smooth tumor margin, while MVI-positive shows a nonsmooth tumor margin. However, other tumor features between MVI positive and
negative are difficult to identify by visual inspection.
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demonstrated with a heat map in Figure 4. The results of
DCA at HBP 5min, 10min, and 15min are shown in
Figure 5. There was no net benefit of HBP 5min when the
threshold probability was less than approximately 0.5 and
no net benefit of HBP 10min within almost the same thresh-
old probability range. HBP 15min had a larger net benefit
than HBP 5min when the threshold probability was less than
approximately 0.7, and there was a slightly lesser net benefit
when the threshold probability was between approximately
0.7 and 0.8.

3.4. Interobserver Agreement for the Selected Valuable
Radiomics Parameter at HBP 15Min. The interobserver
agreement between the 2 radiologists was good for the
selected valuable radiomics parameter at HBP 15min (ICC
range: 0801–0.997) (Table 3).

4. Discussion

MVI is a vital independent predictor of early recurrence
in HCC patients [13, 14]. Gd-EOB-DTPA is a biphasic
T1-weighted MRI contrast agent which enters hepatocytes
in an ATP-dependent manner through the organic anion
transport polypeptide (OATP1B1/B3) and is finally excreted
through the biliary tract. It is used for dynamically contrast-
enhanced MRI of the liver, as well as the specific imaging
process during the HBP after injection. A previous study
indicated that radiomics signatures on HBP 20min images
could assess MVI in patients with HCC [15]. However, few
studies have been conducted to assess MVI and compare
HBP 5min, 10min, and 15min images using radiomics from
Gd-EOB-DTPA-enhanced MR. In the present study, after
recruiting patients with HCC, we employed radiomics to

Table 1: The most predictive features between MVI-positive and MVI-negative selected by LASSO regression.

Phase Radiomics parameter Which category belongs to Regression coefficient

HBP 5min

Compactness2 Shape 0.30551482

Mass Shape 0.03586056

VoxelSize Shape 0.08370105

TextureStrength NeighborIntensityDifference25 -0.4756972

7.7Energy GrayLevelCooccurenceMatrix3 -0.22185

0.7Homogeneity GrayLevelCooccurenceMatrix3 0.17812152

4.1InformationMeasureCorr1 GrayLevelCooccurenceMatrix3 0.10846544

1.4InverseDiffMomentNorm GrayLevelCooccurenceMatrix3 0.0502487

X10.4InverseDiffNorm GrayLevelCooccurenceMatrix3 -0.10842471

HBP 10min

.333ShortRunHighGrayLevelEmpha GrayLevelRunLengthMatrix25 -0.025523039

0ShortRunHighGrayLevelEmpha - GrayLevelRunLengthMatrix25 -0.037606409

NumberOfObjects Shape -0.150641355

SurfaceArea SurfaceArea 0.04154656

1.7Contrast GrayLevelCooccurenceMatrix3 -0.327361605

.333.7Dissimilarity 7Dissimilarity -0.159344876

7.7Energy GrayLevelCooccurenceMatrix3 -0.247759079

6.7MaxProbability GrayLevelCooccurenceMatrix3 -0.301320203

HBP 15min

MedianAbsoluteDeviation GradientOrientHistogram 0.012259179

5Percentile GradientOrientHistogram -0.064760131

Mass Shape 0.052851135

SphericalDisproportion Shape -0.067929609

4.7AutoCorrelation GrayLevelCooccurenceMatrix3 -0.182481531

1.7Contrast GrayLevelCooccurenceMatrix3 -0.049683698

9.4Contrast GrayLevelCooccurenceMatrix3 -0.300911891

6.1DifferenceEntropy GrayLevelCooccurenceMatrix3 -0.105303216

4.7Dissimilarity GrayLevelCooccurenceMatrix3 -0.205762541

8.4InverseDiffNorm GrayLevelCooccurenceMatrix3 -0.002903426

1.1InverseVariance GrayLevelCooccurenceMatrix3 0.046277632

11.4InverseVariance GrayLevelCooccurenceMatrix3 -0.001397914

12.4InverseVariance GrayLevelCooccurenceMatrix3 -0.188965726

8.4MaxProbability GrayLevelCooccurenceMatrix3 -0.251615445

HBP, hepatobiliary phases.
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assess MVI in HCC with Gd-EOB-DTPA on HBP 5min,
10min, and 15min images. We verified the capability of the
radiomics model for preoperative prediction of MVI status
in a verification cohort.

Manifestations on the HBP images of Gd-EOB-DTPA-
enhanced MRI indicate the functions of hepatocytes. HCC
cells, relative to hepatocytes, fail to carry out the absorption
of Gd-EOB-DTPA in the HBP. This can lead to low intensity
within the tumor at this stage. However, previous studies [7,
16] reported that the occurrence of MVI cannot be predicted
by assessing the difference in the occurrence of intratumoral
hypointensity on HBP. In the present study, a model incor-
porating the radiomics parameters on HBP 5min, 10min,
and 15min images produced AUCs of 0.685, 0.718, and
0.795, indicating that the HBP model can assess MVI in
HCC. This is because radiomics has the advantages of stable
calculation, high repeatability, indefatigability, and being free
from human subjective initiative interference [17, 18].
Tumor heterogeneity is likely to be difficult to identify and
quantify by conventional imaging tools, the subjective assess-
ment of images, or random sampling biopsy [19], whereas

the mentioned techniques have been shown to be tightly
associated with the pathophysiology of cancer. Existing stud-
ies have reported that the characteristics of radiomics show
tight associations with the microstructure and biological
behavior of tumors [20, 21]. In the present study, 14 quanti-
tative characteristics on HBP 15min images were found,
which were not presented previously. Radiomics characteris-
tics are important markers of intratumoral homogeneity. Of
the 14 radiomics characteristics related to MVI in the present
study, 2 were histogram-related characteristics (Median
Absolute Deviation, 5th Percentile), 2 were shape-related
characteristics (Mass, Spherical Disproportion), and others
were matrix-related characteristics (4.7 Auto Correlation,
1.7 Contrast, 9.4 Contrast, 6.1 Difference Entropy, 4.7 Dis-
similarity, 8.4 Inverse Diff Norm, 1.1 Inverse Variance, 11.4
Inverse Variance, 12.4 Inverse Variance, and 8.4 Max Proba-
bility). The features based on the histogram are first-order
statistics, primarily determined by the statistics of intensity
information (or brightness information) in and around the
tumor. Subsequently, the overall distribution of intensity
information in and around the tumor was explored. The sig-
nal intensity of MVI-positive HCC was lower than that of
MVI-negative HCC, and differences in histogram character-
istics were more frequent [22]. Shape-related characteristics
were adopted to express the complexity of the lesion shape.
Given histological studies, MVI-positive HCC exhibited an
aggressive tendency, invading the tumor envelope and
extending into the noncancerous substance, thereby causing
a higher incidence of irregular tumor margins [23]. Matrix-
based characteristics are second-order statistics applied to
express lesions complex characteristics, the variation of hier-
archical structure, and the thickness of texture. The differ-
ence in the mentioned parameters may indicate the
heterogeneity of the tumor that is difficult to identify by the
subjective assessment of images. Although radiomics has
already been applied, it can effectively mark images, which
can facilitate the assessment and quantification of processes
of tumor space-related heterogeneity [24]. Nevertheless, the
radiomics characteristics are acquired and determined with
a PC. It is very challenging to explain the relationships
between the radiomics characteristics, and pathology-
related manifesting data are a challenge to develop [25]. First,
the pathophysiological process involves several interacting
parts; second, the maximum data acquired by the PC image
study are significantly greater that acquired by visual
examination.

The predictive models for HBP 5min, 10min, and 15min
had no significant differences according to the Delong test
(HBP 5min vs. HBP 10min, p = 0:751; HBP 5min vs. HBP
15min, p = 0:362; and HBP 10min vs. HBP 15min, p =
0:440). To further compare the models for HBP 5min,
10min, and 15min, this study applied DCA, i.e., a method
to assess the models in terms of the clinical consequences
and calculate the benefit and the loss of the assessed models
for respective individuals [26]. This method attempts to
overcome the limitations of traditional statistical indicators
and complete decision analysis methods, which cannot
directly provide clinical value information, nor can they be
used in routine biostatistics practice [27]. The present study
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Figure 3: The ROC curves and AUC values of HBP 5min, 10min,
and 15min to differentiate MVI-positive and MVI-negative
patients. The HBP 15min produced the highest AUC of 0.795.

Table 2: The results of multiple comparisons of the AUCs by the
Delong test.

Z statistic p

HBP 5min-HBP 10min -0.3173 0.751

HBP 5min-HBP 15min -0.9121 0.362

HBP10min-HBP 15min -0.7725 0.440

HBP, hepatobiliary phases.

5BioMed Research International



revealed that HBP 15min images achieved the largest net
benefit under the threshold probability, only with a slightly
lesser net benefit when the threshold probability was between
approximately 0.7 and 0.8. Gd-EOB-DTPA enters hepato-
cytes through organic anion transport polypeptides and is
finally excreted through the biliary tract; this process takes
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Figure 4: The heat map of HBP 15min shows the distribution of the most predictive texture parameters between MVI-positive and MVI-
negative patients. Difference in colors means different values of radiomics parameter.
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benefit almost across the range of the threshold probability. HBP
15min had a larger net benefit than HBP 5min when the threshold
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the threshold probability is about between 0.7 and 0.8.

Table 3: The interobserver reproducibility of the most predictive
features on HBP 15min.

Radiomics parameter ICC

MedianAbsoluteDeviation 0.924

5Percentile 0.903

Mass 0.997

SphericalDisproportion 0.847

4.7AutoCorrelation 0.898

1.7Contrast 0.850

9.4Contrast 0.801

6.1DifferenceEntropy 0.948

4.7Dissimilarity 0.939

8.4InverseDiffNorm 0.832

1.1InverseVariance 0.975

11.4InverseVariance 0.812

12.4InverseVariance 0.838

8.4MaxProbability 0.929

ICC, intraclass correlation coefficient.
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some time to complete. Therefore, we predicted that this, in
theory, is why the HBP 15min model outperformed the
HBP 5min and 10min model. Wu et al. [28] found that the
severity of liver cirrhosis had a significant negative effect on
the detection of HCC by HBP. For patients with severe cir-
rhosis, HBP 15min or longer seems to be more suitable for
HCC than BHP 5min and 10min. Nakamura [29] reported
that more focal liver lesions could be assessed on HBP
15min images compared with HBP 5 and 10min images.
HCC patients often have a background of cirrhosis, leading
to varying degrees of damage to liver function. The present
study showed that the predictive model for HBP 15min out-
performed the HBP 5min and 10min models, which is in
line with the proposed theory and previous research. Feng
et al. [4] reported that the AUC of the HBP 20min model
for predicting MVI in the training and validation cohorts
was 0.85 and 0.83, respectively; the diagnostic efficiency of
this model was slightly higher than that of our study. How-
ever, their model combined intratumoral and peritumoral
radiomics information. Liang et al. [30] reported that HBP
15min was sufficient for lesion characterization in cirrhosis
patients with mild liver dysfunction when compared with
HBP 20min. Though the present study did not include data
for HBP 20min, we predicted that the model for HBP
15min was sufficient for MVI prediction in HCC. Addition-
ally, other features and biomarkers could be incorporated in
HBP 15min to improve diagnostic efficiency.

Several limitations are revealed in this study. First, this
study was a retrospective study, which may have caused inev-
itable selection bias, and lacks external validation. Second,
compared with the relatively large number of variables, the
sample size remained limited. Third, our verification cohort
and training cohort were from the same center, and the radi-
ology analysis conducted for the stability assessment will be
further optimized in future multicenter studies. Fourth, in
the present study, only MR images of HBP at 5min,
10min, and 15min were explored. There are no data for
HBP at 20min on account of daily busy clinical work pres-
sure. A multicenter and prospective study with a longer delay
time and a larger population is needed to validate these
results in the future. Ideally, the characterization of MVI
should involve both intratumoral and peritumoral areas;
therefore, it was another limitation for only analyzing intra-
tumoral area in this study.

5. Conclusion

In conclusion, radiomics parameters on the HBP 5min,
10min, and 15min images after Gd-EOB-DTPA injection
can be used to predict MVI for HCC, with the HBP 15min
model having the best differential diagnosis ability; this
model has potential clinical value for preoperative noninva-
sive prediction of MVI in HCC patients.
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